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Abstract 

Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effec-
tive therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and 
molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcino-
genesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining 
a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly 
affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability 
to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. 
On the other hand, interaction with other pathways like Wnt, TGF-β, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase 
pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, 
which this process could be regulated via other signaling pathways. This review article aimed to shed light on how 
the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
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Introduction
Hematological malignancies include lymphoma, mye-
loma, myeloproliferative neoplasms, myelodysplastic 
syndromes, and leukemia with several subtypes [1]. Leu-
kemia is divided into lymphocytic and myeloid, which 
these two mentioned groups include acute and chronic 
groups. In total, leukemia is a clonal disorder that results 
from genetic and epigenetic changes in a hematopoietic 
stem or progenitor cells that disrupt main processes such 
as self-renewal, proliferation, and differentiation [2, 3]. 
Leukemic stem cells have several critical signaling path-
ways regulating stem or progenitor cell proliferation, 
hematopoiesis, self-renewal, tissue repair, and apopto-
sis [4, 5]. Cell numbers are based on signaling pathways 

that communicate extracellular and intracellular stimuli 
to gene transcription. For example, constitutive and 
cytokine-mediated activation of the PI3K/Akt/mTOR 
signaling pathway is a common hallmark in patients with 
acute myeloid leukemia (AML), and regulation of this 
system is a feasible therapeutic option in the treatment 
of AML [4, 6].

A new signaling pathway, Hippo, has played a cru-
cial role in maintaining organ size by regulating cell 
proliferation and death in the last decade [7]. Due to 
the severe overgrowth phenotype, Drosophila mosaic 
genetic screens first found many mutations in the 
Hippo signaling pathway [8]. Because of its remark-
able effectiveness in controlling organ size, as well as 
its apparent significance to tissue regeneration and 
cancer, the Hippo signaling pathway immediately 
has drawn widespread interest [9]. Mammalian ster-
ile 20-like 1/2 (MST1/2, also known STK4/3), Sal-
vador (SAV1), Large tumor suppressor homolog 1/2 
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(LATS1/2), MOB kinase activator 1A/B (MOB1a/b), 
and Yes-associated protein (YAP)/Transcriptional co-
activator with PDZ binding motif (TAZ, also known 
WWTR1) are the mammalian orthologs of Hpo, Sav, 
Wts, Mats, and Yki, respectively [10].

Furthermore, a mutation in the genes encoding Hippo 
signaling proteins can cause significant organ shape or 
growth parameters [11, 12]. For example, renal cell car-
cinoma [13], pancreatic cancer [14], breast cancer [15], 
cholangiocarcinoma [16], medulloblastoma [17], and 
hepatocellular cell carcinoma (HCC) [18] have all been 
found to have an abnormal expression of YAP [19–21]. 
After analyzing 177 pairs of HCC, standard samples 
with comprehensive clinical data were matched; it was 
revealed HCC patients with YAP have an independent 
prognostic marker for overall survival and disease-free 
survival [22].

There is insufficient evidence to identify the tis-
sue specificity and frequency of pathway components 
and YAP mutations in human leukemias [23]. Several 
hematological malignancies have been linked to abnor-
mal expression or genetic deficiencies in the Hippo 
signaling pathway, including acute leukemia and lym-
phoproliferative neoplasms [24, 25]. For example, in a 
study by Chen et al. they measured the effects of YAP 
knockdown on HL-60 cells. Their study found that inhi-
bition of YAP inhibits proliferation and induces apop-
tosis in the cell line [25]. YAP was also overexpressed 
in CML cells in Li et al.’s study and inhibiting this pro-
tein reduced CML cell growth, triggered apoptosis, and 
lowered the expression of YAP target genes c-Myc and 
survivin. As a result, YAP could play a key role in CML 
cell proliferation and leukemogenesis. The genetic or 
pharmacological suppression of YAP offers a potential 
CML therapeutic option [26].

The standard of care for leukemia depends on many 
factors chosen based on age and overall health, the type 
of leukemia, and the stage of the disease [27]. Common 
treatments used to fight leukemia include chemother-
apy, targeted therapy, radiation therapy, bone marrow 
transplant, immunotherapy, and engineering immune 
cells. Despite advances and extensions in existing treat-
ments, leukemia is associated with low survival rates 
and poor prognosis in some cases [28]. Some patients 
resist the usual treatments, and some relapse after 
remission induction [29]. Therefore, a search in this 
signaling pathway is needed to find a new treatment 
strategy. In this study, we intend to address the Hippo 
signaling pathway, its interaction with other pathways, 
and its importance in different types of leukemia; per-
haps by providing important and effective proteins, this 
signaling pathway provides a novel treatment strategy 
for leukemia.

Normal function of Hippo signaling pathway
The human Hippo pathway is based on a kinase sign-
aling cascade including MST1 and MST2, as well as 
LATS1/2, SAV1 and MOB1, are two types of serine/
threonine kinases [30]. When the Hippo pathway 
is inactive, unphosphorylated YAP/TAZ enters the 
nucleus and interacts with TEA DNA-binding proteins 
(TEAD1-4), then target genes regulated by this com-
plex [31, 32] (Fig. 1). It is also proteolytically degraded 
when the Hippo pathway is activated [30, 33]. The 
Hippo pathway is dysregulated in cancer, enabling 
hyperproliferation, cellular invasion, metastasis, and 
chemoresistance [7, 34] (Fig. 1).

Prognostic value of YAP in cancer
The level of YAP1 protein is elevated a variety of can-
cers, including colorectal cancer (CRC), gastric cancer, 
esophageal squamous cell cancer (ESCC), human hepa-
tocellular carcinoma (HCC), osteosarcoma [35–38]. 
The Hippo pathway can be promoted by YAP1 influ-
ence across multiple signaling pathways. Many stud-
ies have recently examined how tumorigenesis, tumor 
growth,, epithelial to mesenchymal transition (EMT), 
resistance to apoptosis and cancer prognosis are all 
affected by YAP1 [39]. YAP1 facilitates the growth of 
tumor cells and can lead to a poor prognosis in many 
cancers. Additionally, YAP1, a tumor suppressor, has 
been identified as an apoptotic factor induced by DNA 
damage in collaboration with p73 and promyelocytic 
leukemia [40, 41]. In CRC, YAP expression was associ-
ated to TNM stage, and expression level of cyclin D1; 
Wang et al. found that YAP expression was also linked 
to a short overall survival (OS) [42].

Qu et  al. reported that downregulating YAP inhibited 
cell migration and invasion, and YAP expression level 
could be a new marker for predicting the prognosis of 
patients with ESCC [36]. According to Xia et  al. high 
levels of YAP expression were positively correlated with 
TEAD4 gene expression in ovarian cancer patients [43]. 
As Barry et al. reported, complete loss of YAP was asso-
ciated with poorer patient survival and high-grade, stage 
IV disease than YAP-positive groups. Furthermore, they 
found that YAP could act independently to restrict Wnt 
signaling [44]. A meta-analysis assessed the relationship 
between YAP1 expression and overall survival (OS) in 20 
studies that was conducted on 2067 patients. As a result 
of this study, it is statistically significant that positive 
YAP1 expression can negatively impact OS and disease-
free survival (DFS) in patients with cancer. It’s also been 
claimed that YAP1 could behave as a tumor suppressor 
gene in some cancers, which would be a poor prognostic 
factor [45].
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The effect of Hippo signaling pathway 
in carcinogenesis
A wide range of upstream stimuli such as extracellular 
ligands, organ size, mechanotransduction, environmen-
tal stress, energy stress, and cell–cell contact controls 
YAP/TAZ activation in cancer cells [46]. The activation 
of YAP/TAZ via the dysregulation of the Hippo pathway 
is responsible for tumor development and confers can-
cer stem cell characteristics such as anoikis resistance, 
epithelial-to-mesenchymal transition, drug resistance, 
energy stress, and metastasis [47] (Fig. 2).

Hippo signaling pathway and interaction 
with other signaling pathways
Increased tissue development has been connected to 
YAP protein activation, as well as direct target genes 
like Myc, cell cycle regulators like CycE and E2F1, and 
apoptosis inhibitors like Diap1 and BIRC3, which have 
all been identified as contributory factors [48]. Other 
signaling pathways that may play a role in tissue growth 
control, including as the Wnt, Notch, EGFR, TGF, and 
Jak-STAT pathways, have also been identified as YAP 
protein targets [49] (Fig.  3). Upstream components of 
the Hippo pathway that adversely inhibit YAP activity, 
such as Merlin, Expanded, Kibra, AMOTL2, and LATS 

kinases, are another family of transcriptional targets 
[50]. Thousands of new potential targets have been dis-
covered according to genome-wide expression profiling 
and chromatin binding. However, there are significant 

Fig. 1 The core of the Hippo pathway. Multiple upstream signals regulate phosphorylation when the Hippo signaling pathway is activated, and 
MST1/2 kinases and SAV1 form a complex to phosphorylate and activate LATS1/2. YAP/TAZ proteins, two important downstream effectors of the 
Hippo pathway, are phosphorylated by LATS1/2 kinases. Phosphorylation of YAP/TAZ triggers the recruitment of 14-3-3 proteins, which promote 
cytoplasmic retention or proteolytic destruction. YAP/TAZ is not phosphorylated, localizes to the nucleus, forms a complex with transcription 
factor TEADs, and controls genes needed for endothelial cell proliferation, migration, and survival when the Hippo signaling pathway is turned off. 
LATS1/2 large tumor suppressor kinase; MST1/2 mammalian ste20-like kinase; SAV1 scaffold protein salvador; TAZ transcriptional co-activator with 
PDZ-binding motif; TEAD TEA domain family member; YAP Yes-associated protein

Fig. 2 The Hippo pathway is dysregulated in cancer, enabling 
hyperproliferation, cellular invasion, metastasis, and chemoresistance. 
In these mechanisms, other signaling pathways affect the Hippo 
pathway that might lead to an increase or decrease YAP/TAZ complex 
level in the cytoplasm. EMT epithelial-mesenchymal transition; Yap 
Yes-associated protein
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discrepancies between the lists of targets discovered in 
research involving various cell types, implying that much 
of the YAP response is tissue or cell-type specific [50, 51]. 
The transcription of several genes involved in cell prolif-
eration, differentiation, and growth could be affected by 
these relationships. In this part, we looked at how Hippo 
signaling interacts with other important pathways in 
leukemia.

Hippo and Wnt signaling pathways
In HSCs, Wnt signaling is critical for maintaining 
homeostasis [52, 53]. Low levels of Wnt activation pro-
mote hematopoietic stem cell (HSC) function, whereas 
high Wnt doses reduce hematopoiesis, demonstrating 
that canonical Wnt signaling regulates hematopoiesis 
in a dose-dependent manner [54]. As a result, the HSC 
requires a precisely controlled quantity of Wnt signal-
ing pathway activity for self-renewal, survival, growth, 
and proliferation [55]. The stimulation of Wnt signal-
ing is a frequent, varied feature of all leukemia types. 
For example, individuals with FLT3-mutated AML have 
high amounts of β-catenin, promoting in  vivo leukemia 
growth in xenograft mice reconstituted AML cell lines 
with del(5q) [56]. Furthermore, abnormal expression of 
Wnt pathway components such as WNT1, WNT2b, and 
LEF-1 is found in many AML cases, so Wnt signaling has 
a predictive value in AML [57].

The canonical Wnt pathway is CML’s most seriously 
impacted Wnt system [58]. Because the fusion protein 
BCR-ABL may actively adjust β-catenin levels in cells. In 
CML progenitors, nuclear β-catenin increased resistance 
to intrinsic tyrosine kinase inhibitor (TKI) [59]. In CML, 
FoxM1/ β-catenin interaction is essential for control-
ling canonical Wnt signaling and cancer stem cell self-
renewal, proliferation, and tumorigenesis [60].

According to accumulating evidence, YAP/TAZ, the 
key effectors in the Hippo signaling cascade, regulate 
β-catenin levels and activity by physically interacting 
with β-catenin or Dvl. The first clear evidence that YAP/
TAZ inhibited the Wnt/β-catenin pathway came from a 
study identifying TAZ’s direct interaction with Dvl in the 
cytoplasm. After Wnt3a stimulation, TAZ knockdown 
increased Dvl phosphorylation, consequently increas-
ing the nuclear accumulation of β-catenin. Suppressing 
an upstream kinase in the Hippo pathway improved the 
connection between TAZ and Dvl, resulting in Wnt/β-
catenin pathway downregulation [61]. TAZ’s role as a 
modulator of Wnt/β-catenin signaling is an interesting 
hypothesis. The β-catenin destruction complex, which 
is made up of APC, Axin, and GSK3, has been demon-
strated to modulate TAZ levels. β-catenin phosphoryl-
ated by GSK3 functions as a scaffold for the interaction of 
TAZ with the TrCP E3 ligase complex in the absence of 
Wnt signaling [62]. Wnt3a was also discovered to cause 
TAZ dephosphorylation and stabilization, allowing TAZ 
to be more easily localized in the nucleus.

Because Wnt signaling is essential in leukemia stem 
cells and the microenvironment, targeting Wnt signal-
ing pathways could help treat leukemia [63]. Wnt and 
Hippo signaling pathways control similar biological pro-
cesses; therefore, they could regulate each other’s activ-
ity for precise systems biology rather than function [64]. 
Furthermore, YAP can be developed as a novel treatment 
target based on the two pathways by the intersection of 
these two signaling pathways (Fig. 3).

Hippo pathway and mTOR interconnection
The cellular energy levels, amino acids, and other nutri-
ents affect the rapamycin (mTOR) pathway [65]. Also, it 
is a master regulator of cell growth and metabolism and 
is an essential downstream effector of PI3K/AKT [66]. In 
recent trials, rapamycin and its analogs have shown sig-
nificant anti-cancer activity in hematologic malignancies.

Given the importance of Hippo and mTOR signal-
ing in growth control, it is not unexpected that links 
between them have been discovered. Mutation of the 
tuberous sclerosis complex (TSC), a critical nega-
tive regulator of mTORC1, resulted in an mTOR and 
autophagy-dependent overexpression of YAP proteins in 
a mouse cancer model [67]. mTORC2 phosphorylation 

Fig. 3 The Hippo pathway interacts with other signaling pathways. 
Akt protein kinase B; AMPK AMP-activated protein kinase; GPCR G 
protein-coupled receptor; JAK-STAT  janus kinase and signal transducer 
and activator of transcription; MAPK mitogen-activated protein kinase; 
PI3K phosphatidylinositol-3-kinase; RAS rat sarcoma; SMAD mothers 
against decapentaplegic homolog; TGF transforming growth factor
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reduces AMOT-YAP interaction, resulting in increased 
expression of YAP target genes [68]. In Drosophila, TOR 
suppression caused by genetic or dietary deficiency 
decreased Yki’s ability to access its target genes in the 
nucleus via an unknown mechanism [69]. Various signals 
can modulate the Hippo signaling in cancer stem cells, 
which are crucial in tumorigenesis.

The Ras/MAPK and Hippo signaling pathways
This signaling pathway is critical for transmitting pro-
liferative signals from receptors on membrane-bound 
[70]. In human cancers, RAS-MAPK pathway genes 
with canonical strong activating somatic mutations are 
observed in AMLs [71]. They could influence pathway 
components and upstream activators such as NRAS, 
KRAS, BRAF, PTPN11, and FMS-related tyrosine kinase 
3 (FLT3), as well as chromosomal translocations in leu-
kemia (for example, BCR-ABL and TEL-PDGFR) [72]. 
CRAF (RAF-1), BRAF, and ARAF are the three members 
of the RAF family of serine/threonine kinases [73], and 
RAF-1 has also been discovered to function in MAPK 
pathway activation and STK3, also known as MST-2, is 
a serine/threonine kinase that regulates apoptosis [73]. 
MST-2 is one of the most important components of the 
Hippo pathway in mammals [74]; besides, MST-2 and 
YAP/TAZ are essential Hippo pathway effectors that have 
been linked to melanoma cell metastatic and invasive 
abilities [73].

YAP has also been shown to affect how cancer cells 
respond to inhibitors of the MAPK pathway [75, 76]. 
Tumorigenesis is the result of a complex interaction 
between a number of variables and pathways [77] (Fig. 3). 
The RAF-1/MST-2 connection, according to studies, 
could be a novel link between the MAPK and Hippo 
pathways. Ras (or Ras-related molecules), Raf, MEK, and 
ERK inhibition may be useful in the treatment of leuke-
mia [78]. Many inhibitors have been applied for clinical 
trials or are under consideration by the pharmaceutical 
industry to target essential components of this system 
[79] (Fig. 3).

Hippo signaling pathway in leukemia
Deregulation of the Hippo signaling pathway is related 
to various solid tumors, including lung, breast, liver, and 
ovary [80]. Signaling pathways alteration can cause Leu-
kemia, and among them, the Hippo pathway possesses 
significant effects on leukemia tumorigenesis [81]. The 
Hippo signaling pathway is an essential conservative 
pathway that helps regulate cell proliferation and apop-
tosis. Aberrant expression and mutation of core compo-
nents in the Hippo signaling pathway such as MST1/2, 
LATS1/2, YAP, and TAZ easily promote cancer cell 
migration, invasion, and malignancy [82].

Many of the Hippo signaling pathway’s genes have been 
identified as tumor suppressors, such as MST1/2, SAV1, 
MOB1a/b, and LATS1/2, whereas others, such as YAP/
TAZ, are oncogenes that stimulate malignant cells and 

Table 1 Expression level of Hippo signaling pathway components in studies of leukemia

AL acute leukemia; ALL acute lymphocytic leukemia; AML acute myeloid leukemia; AURKA/B aurora kinase A/B; BM-Mncs bone marrow mononuclear cells; CLL chronic 
lymphocytic leukemia; CML chronic myelogenous leukemia; LATS2: large tumor suppressor kinase 2; MST1 macrophage stimulating 1; MCL mantle cell lymphoma; 
MOBKL2A Mps one binder kinase activator-like 2A; PBMCS peripheral blood mononuclear cells; SMZL splenic marginal zone lymphoma; YAP1 Yes-associated protein 1

Hippo components Expression level Cancer type No patients Significant value Samples P value References

Lats2 Overexpression CML 67 Diagnosis marker, good 
prognosis and improve 
treatment response

PBMC < 0.05 [104]

Aurka

Taz

Aurkb

Mst1 No change AML 52 – PBMC > 0.05 [105]

Mst2

Yap1

Mst1 Downregulation Animal model of lym-
phoma and leukemia

– Ability to prevent chromo-
somal instability

Lymphocytes < 0.05 [106]

Yap Overexpression Leukemia and lymphoma – Proliferation Jurkat cell line < 0.05 [21]

Lats2 Overexpression AML 32 Cancer development PBMC < 0.05 [86]

Yap Overexpression CML – Proliferation and leukemo-
genesis

BMMNCs < 0.05 [26]

Lats2 Downregulation ALL 101 Prognostic value BMMNCs < 0.05 [87]

Mobkl2a Downregulation MCL 77 Pathogenetic role for 
cancer development

Lymph node < 0.05 [107]

Mobkl2b

Lats2



Page 6 of 11Noorbakhsh et al. Cancer Cell International          (2021) 21:705 

allow them to proliferate uncontrollably [83]. Several 
studies have indicated that the activation of this pathway 
can be seen in many leukemia patients [84] (Table 1).

YAP and TAZ are functional effectors that regulate 
gene expression by co-activating various transcrip-
tion factors involved in leukemogenesis, such as RUNX, 
TEADS, and SMADS [81, 85]. In Gholami et  al. the 
expression analysis of LATS2 as a tumor suppresser gene 
in de novo AML subjects has revealed that LATS2 may be 
correlated with leukemogenesis. LATS2 gene was signifi-
cantly overexpressed in patients who suffered AML com-
pared to normal subjects [86] (Table  1). Another study 
revealed the MST2-ETV6 fusion gene as a core compo-
nent of the Hippo signaling system, a possible oncogene, 
in AML patients with t (8;12) translocation [81].

In line with AML, Acute lymphocytic leukemia (ALL) 
low expression of the LATS2 gene was associated with 
ALL patients. Jimenez-Velasco et  al. in their research, 
showed that low expression of the LATS2 gene is linked 
to promoter region methylation in leukemia cells [87] 
(Table  1). MST1 deficiency has also been shown to 
enhance T-cell ALL in the presence of mutagenic stimu-
lation in other studies. MST1 deletion mice also develop 
lymphomas faster, and lymphocytes have been found 
to have chromosomal instability. KIBBRA, a critical 
upstream component in the Hippo signaling pathway, is 
heavily methylated, and this is the crucial underlying leu-
kemogenesis event in this subtype of leukemia [21].

Also, chronic lymphocytic Leukemia (CLL) studies 
demonstrated that YAP mRNA expression was more sig-
nificant than healthy controls. In CLL, characterized as 
lymphoma with B cell accumulation in the blood, bone 
marrow, and lymph nodes, epigenetic modulation of 
WWC1 expression was also observed. The WWC1 gene 
was methylated in around one-third of CLL patients’ 
samples, resulting in lower WWC1 expression [84]. YAP 

is overexpressed in patients’ chronic myelogenous leuke-
mia (CML) cells. Hui li et  al. found that the expression 
level of YAP is significantly higher in CML patients’ bone 
marrow mononuclear cells, indicating that YAP plays 
a critical role in CML leukemogenesis. The result of 
another survey has revealed that LATS2 and AURKA, as 
well as TAZ and AURKB at advanced phases, are over-
expressed compared to healthy control groups, which 
powerfully demonstrate the role of this signaling pathway 
deregulation in the pathogenesis of CML patients [26] 
(Table 1).

Crosstalk between the Hippo pathway and miRNAs
MicroRNAs are highly involved in the Hippo pathway 
regulation. Several studies have shed light on the role of 
the Hippo pathway in tumorigenesis in various types of 
cancer such as breast, liver, gastric, glioblastoma cancers 
[88]. Importantly, miRNAs have been revealed to directly 
target and regulate the core components of the Hippo 
pathway. For example, miR-874-3p is significantly down-
regulated in colorectal cancer (CRC) tissue compared 
to normal tissues. MiR-874-3p by inhibition the YAP 
expression in the Hippo pathway resulting in the inacti-
vation of the TEAD transcription [89]. Another research 
has revealed that miR-665 could promote proliferation 
and metastasis in hepatocellular carcinoma by inhibiting 
Hippo pathway activity [90]. In leukemia patients, which 
is the main topic of our article, several studies have been 
conducted to address the pivotal role of different micro-
RNAs on the regulation of Hippo pathway components 
[91]. miR-550-1 acts as a tumor suppressor through the 
Hippo signaling pathway in AML. In a survey, microarray 
analysis revealed that miR-550-1 was significantly down-
regulated in the AML sample from the human patients, 
probably due to hypermethylation of the associated CpG 
islands. WWTR1 gene is considered a downstream target 

Table 2 The contribution of microRNAs demonstrated to be involved in the Hippo pathway in leukemia

ALL acute lymphocytic leukemia; AML acute myeloid leukemia; CML chronic myelogenous leukemia; HL-60 human leukemia cell; miR microRNA; STK4 serine/threonine 
kinase 4; TEAD transcriptional enhanced associate domain; WWTR1 WW domain containing transcription regulator 1; YAP Yes-associated protein

MicroRNAs Expression level Cancer type Significant value Samples References

miR-9 Downregulated AML Activating Hippo/YAP signaling Cell lines (THP-1, HL-60, TF-1, KG-1) [108]

Restrain the sharp increase boost apoptosis

miR-550-1 Downregulated AML WWTR1 gene was a downstream target of miR-550-
1

Cell lines (MV4-11, Kasumi-1 cells) [92]

Disrupted the proliferation and tumorigenesis of 
AML cells

miR-181a Downregulated CML Decreased activation of YAP [109]

miR-7977 – AML miR-7977 inactivated the Hippo-YAP signaling 
pathway

Human BM CD34  +  cells [110]

miR-7977 significantly reduced the expression of 
Hippo core kinase, STK4, YAP/TEAD
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of miR-550-1, reducing the WWTR1 stability [92]. The 
information of the other microRNAs that contributed to 
the Hippo pathway in leukemia is described in Table 2.

New pharmacological inhibitor targeting YAP
Despite advances in cancer treatment in recent dec-
ades, most patients respond poorly after a certain 
number of treatment cycles, and researchers also face 
significant challenges in treating cancer [93]. We sum-
marize the pharmacological agents targeting the Hippo 
pathway to eliminate cancer cells. Dasatinib and statins 
represent compounds that inhibit YAP/TAZ activity 
via activating LATS [94]. Verteporfin represents com-
pounds that inhibit the interaction between YAP/TAZ 
and TEAD [95]. Blebbistatin, Botulinum toxin C3 and 
LY294002PDK1 inhibitor II inhibit YAP/TAZ nuclear 
localization and transcriptional activity [96, 97]. Discov-
eries imply the suppression of YAP/TAZ-driven tran-
scription via CDK9 inhibitors [98].

Simvastatin also has a potent YAP/TAZ inhibiting 
action. Ibudilast (a PDE4 selective inhibitor) and For-
skolin can promote YAP phosphorylation by preventing 
cAMP breakdown, implying that PDE inhibitors may be 
useful in the treatment of cancers with YAP oncogenic 
activity [99, 100]. Dobutamine’s possible anti-cancer 
activity was recently investigated in a variety of cancer 
types. Dobutamine causes phosphorylation of YAP-
Ser127, which causes YAP-dependent gene transcription 
to be suppressed [101]. Latrunculin B and cytochalasin D, 
which disrupt the actin cytoskeleton, limit YAP activation 

in response to cell attachment to the ECM-Inhibition 
of nuclear YAP localization via increased LATS activity 
[102]. Dihydrexidine increases YAP phosphorylation and 
inhibits Hippo signaling pathway [103] (Fig. 4).

Conclusion and future perspective
Hippo signaling plays an important role in tumor initia-
tion, invasion, drug resistance, metastatic potential, and 
self-renewal of cancer stem cells, as well as developmen-
tal control. According to studies on this signaling path-
way, YAP as a tumor suppressor gene can be involved in 
many types of cancer. In leukemias, although not much 
information is available, the increased expression of this 
protein shows a significant relationship with the poor 
prognosis of patients. Therefore, the study of the mech-
anism of action YAP and the factors affecting its inhibi-
tion in cancer can be proposed as new pharmacological 
agents in leukemia treatment.
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leukemia; AMPK: AMP-activated protein kinase; APC: Adenomatous polyposis 
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one binder kinase activator-Like 2A; MST1/2: Macrophage stimulating 1/2; 

Fig. 4 New druggable agent effective in targeting YAP. The figure shows the drug agents that can be effective in the Hippo signaling pathway. 
Some of these drugs inhibit YAP/TAZ nuclear localization or block the transcription of target genes. Some others lead to the degradation of these 
proteins by increasing LATS activity and phosphorylation of the YAP/TAZ complex. LATS large tumor suppressor kinase; Yap Yes-associated protein
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mTOR: Mammalian target of rapamycin; KIBRA: Kidney and brain protein; PI3K: 
Phosphatidylinositol-3-kinase; PTEN: Phosphatase and tensin homolog; Sav: 
Scaffold protein salvador; SMAD: Mothers against decapentaplegic homolog; 
STK4/3: Serine/threonine kinase 3/4; TAZ: Tafazzin; TAZ: Transcriptional co-
activator with PDZ binding motif; TCF: T-cell factor; TEAD1-4: TEA DNA-binding 
proteins; TGF: Transforming growth factor; Wts: Protein kinase warts; WWTR1: 
WW domain-containing transcription regulator protein 1; YAP: Yes-associated 
Protein; Yki: Yorkie.
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