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Abstract 

Background:  Liver is the most common metastatic site of colorectal cancer (CRC) and liver metastasis (LM) deter-
mines subsequent treatment as well as prognosis of patients, especially in T1 patients. T1 CRC patients with LM are 
recommended to adopt surgery and systematic treatments rather than endoscopic therapy alone. Nevertheless, there 
is still no effective model to predict the risk of LM in T1 CRC patients. Hence, we aim to construct an accurate predic-
tive model and an easy-to-use tool clinically.

Methods:  We integrated two independent CRC cohorts from Surveillance Epidemiology and End Results database 
(SEER, training dataset) and Xijing hospital (testing dataset). Artificial intelligence (AI) and machine learning (ML) 
methods were adopted to establish the predictive model.

Results:  A total of 16,785 and 326 T1 CRC patients from SEER database and Xijing hospital were incorporated respec-
tively into the study. Every single ML model demonstrated great predictive capability, with an area under the curve 
(AUC) close to 0.95 and a stacking bagging model displaying the best performance (AUC = 0.9631). Expectedly, the 
stacking model exhibited a favorable discriminative ability and precisely screened out all eight LM cases from 326 T1 
patients in the outer validation cohort. In the subgroup analysis, the stacking model also demonstrated a splendid 
predictive ability for patients with tumor size ranging from one to50mm (AUC = 0.956).

Conclusion:  We successfully established an innovative and convenient AI model for predicting LM in T1 CRC 
patients, which was further verified in the external dataset. Ultimately, we designed a novel and easy-to-use decision 
tree, which only incorporated four fundamental parameters and could be successfully applied in clinical practice.
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Introduction
Colorectal cancer (CRC) is universally acknowledged as 
one of the most prevalent gastrointestinal tract malig-
nancies with considerably high morbidity and mortality, 

drawing more and more attention annually [1–3]. In 2/3 
of CRC patients, metastasis is commonly recognized as 
both a pivotal clinical feature and a risk factor of high 
mortality for intractable CRC [4]. During the progres-
sion of CRC, over 50% of patients tend to develop liver 
metastasis (LM) which is the predominant contributor 
to unfavorable prognosis of CRC [4, 5]. Synchronous LM 
is determined at the time of diagnosis and 15–25% CRC 
patients had synchronous LM [6, 7].
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Endoscopic therapy is a widely accepted and adopted as 
a valid therapeutic method for T1 CRC patients. None-
theless, for early CRC patients with LM, conventional 
surgical excision, neoadjuvant chemotherapy and radi-
ofrequency ablation are the most effective and recom-
mended treatments, which significantly prolong the 
5-year overall survival (OS) rate of CRC patients [8, 9]. 
However, considering the inferior early screening meth-
ods, approximately 90% of CRC patients with LM fail 
to be diagnosed precisely in the early stage and thus 
undergo incomplete endoscopic resection, which ulti-
mately gives rise to undesirable clinical outcomes [10, 
11]. Although scholars and academicians have conducted 
abundant in-depth researches on metastasis-related sig-
natures in vivo and vitro, a satisfactory predictive model 
of LM for CRC in the early stage is still lacking [12–14]. 
Consequently, we aimed at developing an easy-to-use 
model to predict the risk of LM for patients in the early 
stage of CRC accurately and robustly.

Currently, there exists an upregulating and irreversible 
tendency of discipline integration between medical sci-
ence and artificial intelligence (AI) [15–17]. Besides, both 
depth and breadth of the discipline integration have been 
significantly enhanced [14, 15]. Researchers employed 
machine learning (ML) as the breaking point in solving 
the complicated issue of CRC clinical prediction and 
acquired plentiful significant breakthroughs [18–20]. 
Nevertheless, these findings simply shed light on the 
intriguing area of T1 CRC with lymph node metastasis 
which resembles a virgin land to be further explored by 
utilizing ML. Given that the majority of previous investi-
gations merely concentrated on the public database when 
studying the apparent discrepancy among diverse popu-
lations, limitations ineluctably appeared. Consequently, 
clinical data involving the real outer validation is of vital 
significance to construct a superior prediction model.

In the study, we developed a comprehensive recogni-
tion model via adopting AI and ML algorithms, which 
could remarkably promote the identification of T1 CRC 
with LM and improve the prognosis of these patients in 
clinical practice. In addition, the predictive model was 
constructed via utilizing clinically common and accessi-
ble parameters, and further validated in an independent 
CRC cohort.

Materials and methods
Clinical sample collection
An open-access and publicly available CRC cohort was 
retrieved from Surveillance, Epidemiology, and End 
Results (SEER) Program database in the U.S. National 
Cancer Institute. The CRC cohort functioned as a pow-
erful resource for investigators to comprehensively com-
prehend the natural history of CRC and significantly 

ameliorated the healthcare quality for CRC patients 
[21, 22]. An additional outer validation cohort of CRC 
patients who underwent surgery from 2010 to 2021 was 
obtained from Xijing hospital. The CRC cohort’s inclusive 
criteria were demonstrated as follows: (1) the primary 
diagnosis was CRC; (2) patients were diagnosed with T1 
CRC; (3) liver reexamination was completed within six 
months of diagnosis; (4) patients with sufficient clinical 
data. Additionally, exclusive criteria were exhibited as 
follows: (1) patients who have undergone neoadjuvant 
radiotherapy; (2) metachronous liver metastases (after 
diagnosis); (3) comorbidity with other tumors; (4) comor-
bidity with serious cardiopulmonary disease. Written and 
informed consent was obtained from all participants. All 
aspects of the clinical cohort study were evaluated by and 
included in the Institutional Ethics Committee of Xijing 
Hospital.

Study population
T1 CRC is defined as a category of tumor that invades 
only the submucosa, regardless of the presence or 
absence of lymph node metastasis (LNM). Utilizing the 
SEER database which employed the 7th cancer TNM 
stages of the American Joint Committee, we analyzed the 
data of all patients diagnosed with T1 CRC from 2010 to 
2016. Primary demographic data, tumor information and 
laboratory indexes were extracted by utilizing SEER dis-
ease codes and then employed for model construction. 
Fundamental demographic data included age at diagno-
sis, gender, race, and marital status. Tumor information 
contained primary site, size, grade, histologic category 
and TNM stage. Laboratory indexes involved carcinoem-
bryonic antigen (CEA) prior to surgery, tumor deposits, 
and perineural invasion (PNI). Survival time and status 
were collected for further clinical estimation of the pre-
dictive model. Furthermore, the information of our vali-
dation cohort was normalized via following the criteria 
of the SEER database (Additional file  1: Table  S1). And 
all clinical information underwent data transformation 
for the sake of further application in model construction 
(Additional file 2: Table S2).

Construction of the predictive model
In our research, seven ML models were employed to pre-
dict LM in patients with T1 stage CRC. To build up tree 
decision models, we adopted Light Gradient Boosting 
Decision (LGBM), Random Forest (RF), and Classifica-
tion and Regression Trees (CART). LGBM is a gradient 
boosting framework that utilizes the tree-based learn-
ing algorithm, which has been successfully applied in 
the construction of medical models in recent years [23, 
24]. RF is a universally employed ML algorithm to deal 
with classification and regression issues via the multiple 
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decision trees approach [25]. CART is a classical decision 
tree algorithm applied in either classification or regres-
sion predictive models [26]. The K-Nearest Neighbor 
(KNN) algorithm was utilized in basic prediction tech-
nique. KNN is identified as a vital classification algorithm 
in the supervised ML domain and is extensively applied 
in pattern recognition, data mining and intrusion detec-
tion [27]. To construct the kernel-based model, the Sup-
port Vector Machine (SVM) was selected and put into 
use. SVM is a supervised ML model that employs classi-
fication algorithms for the two-group categorization [28]. 
Gaussian Naive Bayesian (GNB) algorithm was included 
in the linear model for specific utilization under the cir-
cumstance where the features manifested continuous val-
ues [29]. Multilayer Perceptron (MLP) is a feed-forward 
neural network supplement and has been extensively 
applied in distinct prediction models [30]. In the wake 
of employing the Bootstrap aggregating (Bagging) algo-
rithm to optimize the performance of established mod-
els, stacked regression was utilized to obtain a stacking 
model via integrating seven models to output a desirable 
outcome [31, 32].

To polish up performance of the model and retain 
maximum authenticity of the data, we strictly employed 
the Synthetic Minority Over-sampling technique in the 
inner training dataset to solve the issue of data imbalance 
[33]. To begin with, patients in the SEER database were 
randomly assigned to the training set (80%) and testing 
set (20%) respectively while the proportion of LM ( +) 
(patients with LM) subgroup was approximately identi-
cal to that of the LM (−) (patients without LM) subgroup 
(Additional files 12 and 13). In the training set, k-fold 
cross validation (k = 10) was performed, and grid search 
was adopted to figure out the best combination of param-
eters. For each set of parameters, the model was in turn 
fitted and validated with 8/10 and 2/10 of data respec-
tively. Subsequently, our T1 CRC cohort in the Chinese 
population was utilized as an extra outer validation set 
further to examine both applicability and efficiency of the 
model (Additional file 14). The overall workflow is elabo-
rately demonstrated in Fig. 1.

Assessment of model performance
To ensure rational comparison of the models and assess 
their performance, a multitude of indicators were 
employed involving confusion matrix, the area under 
the curve (AUC), sensitivity, specificity, precision, nega-
tive predictive value (NPV), false discovery rate (FDR), 
accuracy, and average precision (AP). In addition, the 
area under receiver operating characteristic curves (AU-
ROC) was utilized as a performance index while the AP 
value was employed as the criterion for the precision-
recall (PR) curve [34]. The average value of parameters 

was ultimately executed on the testing set and addi-
tional outer validation one. Survival analysis was further 
adopted in the model to evaluate whether it was capable 
of accurately predicting CRC patients’ outcomes.

In light of the fact that neoplastic size was widely rec-
ognized as an effective predictor of CRC outcome, we 
tested nonlinearity of the model via analysis of 5-knot 
restricted cubic splines (RCS) and evaluated potential 
correlation of model with the hazard of LM [35]. In order 
to estimate the performance of models in patients with 
small CRC sizes, we stratified the testing set into 4 sub-
groups, tumor sizes of which being 1–10 mm, 1–20 mm, 
1–50 mm and > 50 mm respectively. Their AUC and AP 
values were then calculated.

Moreover, to make the real clinical decision process 
more reliable, training samples were adopted prior to 
utilization of over-sampling strategy. Subsequently, to 
exhibit the specific decision process of how CRC patients 
with LM were discriminated from the model, regression 
tree analysis was conducted via CART algorithm.

Statistical analysis
SEER*Stat software (8.3.6 version) was adopted to 
acquire targeted CRC patients from the SEER database. 
Python (version 3.6.9) and R software (version 4.0.5) were 
utilized to perform statistical analyzes. Python packages 
were listed: ‘imblearn’, ‘sklearn’, ‘lightgbm’, and ‘mlxtend’. 
R packages were vividly demonstrated as follows: ‘table-
one’, ‘survival’, ‘mice’, and ‘dplyr’. Demographic differences 
between the two subgroups were tested utilizing either 
Student’s t-test or Pearson chi‐square test. Results were 
considered statistically significant when P ≤ 0.05.

Results
Case structures and clinical baselines
Included CRC data in our study from SEER database 
ranged from 2010 to 2016. In the aggregate, 262,285 CRC 
patients were initially enrolled. According to the inclu-
sive and exclusive criteria, a totality of 16,785 patients 
were enrolled in the inner dataset and 326 out of 8226 
CRC patients in Xijing hospital were recruited ultimately 
(Fig. 1). Baseline clinical characteristics of the SEER CRC 
cohort (Training dataset) and Xijing CRC cohort (Valida-
tion dataset) were exhibited in detail (Table 1).

Eleven independent clinical factors were included in 
our established model, incorporating age at diagnosis, 
gender, marital status at diagnosis, primary site, tumor 
size, tumor grade, tumor type, N stage, CEA level, tumor 
deposits, and PNI. Patients from the SEER database were 
categorized into LM (−) subgroup (16,023 patients with-
out LM, 95.5%) and LM (+) (762 patients with LM, 4.5%) 
subgroup respectively. For diagnosed age, we found that 
the proportion of patients under 60  years of age in LM 
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(+) subgroup (333/762; 43.7%) significantly surpassed 
that in LM (−) subgroup (6553/16,023; 40.9%; P < 0.001). 
Notably, the ratio of male CRC was significantly higher 
in LM (+) subgroup than in its counterpart (P = 0.001). 
Intriguing, there demonstrated no statistical difference 
in terms of race between the two subgroups. In line with 
our anticipation, an upregulated occurrence rate was 
observed in the single (167/2611, 6.4%) than the mar-
ried (376/8918, 4.2%; P < 0.001). Regarding tumor sites, 
rectum was the most common primary site in both sub-
groups, and the proportion is comparatively higher than 
other T stages CRC patients (P < 0.001). In respect to pro-
gression of CRC, the average tumor size of LM (+) sub-
group (52.1 mm) was considerably larger than that of LM 
(−) one (17.5 mm; P < 0.001). Analogously, LM (+) sub-
group demonstrated significantly higher proportions of 
both Grade II-IV (92.8% vs 68%; P < 0.001) and advanced 
N stage CRC than LM (−) subgroup (P < 0.001). Further-
more, we observed upregulated levels of tumor deposits, 

PNI and positive rate of CEA in LM (+) subgroup than 
its counterpart (P < 0.001). As for tumor differentiation, 
Adenocarcinoma (Adenocarcinoma, NOS, Adenocarci-
noma in tubulovillous adenoma and Adenocarcinoma in 
adenomatous polyp; 12714/16785, 75.7%) was confirmed 
as the most common neoplastic category among T1 
patients (Table 2).

Parameters tuning in our models
We trained the LGBM with a depth of five, a learning 
rate of 0.01, basic learners of 240, leaves of 16, and max 
bins of 128. For RF and CART, we also elected 5 as the 
maximum depth of the basic trees. The number of neigh-
bors 200 for KNN was the best. In MLP, we ultimately 
selected the learning rate of 0.01, epochs of 300, hidden 
layer of 1, and utilized the Adam Optimizer and ReLU 
activation function. For SVM, a combination of a C value 
of 0.01 and kernel smoothing parameters of 0.0001 was 

Fig. 1  The workflow of selection procedure for colorectal cancer patients
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Table 1  Clinical baseline features of SEER and Xijing hospital database

Variables SEER database Xijing CRC cohort

Training set Testing set Outer validation set

Age at diagnosis, n (%)

 0–9 14 (0.1) 0(0) 0(0)

 10–19 128 (1.0) 31 (0.9) 0(0)

 20–29 265 (2.0) 67 (2.0) 4 (1.2)

 30–39 390 (2.9) 79 (2.4) 5 (1.5)

 40–49 1084 (8.1) 251 (7.5) 35 (10.7)

 50–59 3632 (27.0) 945 (28.2) 104 (31.9)

 60–69 3649 (27.2) 911 (27.1) 92 (28.2)

 70–79 2659 (19.8) 670 (20.0) 65 (19.9)

 80–89 1403 (10.4) 354 (10.5) 21 (6.4)

90–99 204 (1.5) 49 (1.5) 0(0)

Gender, n (%)

 Female 6982 (52.0) 1695 (50.5) 189 (58.0)

 Male 6446 (48.0) 1662 (49.5) 137 (42.0)

Race, n (%)

 White 10,226 (76.2) 2552 (76.0) 0(0)

 Black 1754 (13.1) 466 (13.9) 0(0)

 Asian or Pacific Islander 1354 (10.1) 319 (9.5) 326 (100.0)

 American Indian/Alaska Native 94 (0.7) 20 (0.6) 0(0)

Marital status at diagnosis, n (%)

 Married and separated 7615 (56.7) 1855(55.2) 322 (98.8)

 Divorced 1207 (9.0) 293 (8.7) 2 (0.6)

 Unmarried 2219 (16.5) 559 (16.7) 2 (0.6)

 Other 2387(17.8) 650(19.3) 0(0)

LM, n (%)

 Yes 12,821 (95.5) 3202 (95.4) 318 (97.5)

 No 607 (4.5) 155 (4.6) 8 (2.5)

Primary site, n (%)

 Rectum, NOS 3786 (28.2) 955 (28.4) 228 (69.9)

 Sigmoid colon 2925 (21.8) 777 (23.1) 35 (10.7)

 Ascending colon 1646 (12.3) 413 (12.3) 24 (7.4)

 Cecum 1586 (11.8) 393 (11.7) 6 (1.8)

 Appendix 868 (6.5) 216 (6.4) 0(0)

 Rectosigmoid junction 846 (6.3) 215 (6.4) 7 (2.1)

 Transverse colon 723 (5.4) 166 (4.9) 9 (2.8)

 Descending colon 481 (3.6) 106 (3.2) 1 (0.3)

 Hepatic flexure of colon 303 (2.3) 70 (2.1) 7 (2.1)

 Splenic flexure of colon 172 (1.3) 31 (0.9) 3 (0.9)

 Colon, NOS 50 (0.4) 9 (0.3) 4 (1.2)

 Overlapping lesion of colon 42 (0.3) 6 (0.2) 2(0.6)

 Tumor size, mm, mean (SD) 19.16 (25.1) 18.82 (22.3) 24.6 (14.0)

Tumor grade, n (%)

 Well differentiated; Grade I 4171 (31.1) 1015 (30.2) 69 (21.2)

 Moderately differentiated; Grade II 8306 (61.9) 2114 (63.0) 240 (73.6)

 Poorly differentiated; Grade III 827 (6.2) 191 (5.7) 15 (4.6)

 Undifferentiated; anaplastic; Grade IV 124 (0.9) 37 (1.1) 2 (0.6)

Tumor type, n (%)

 Adenocarcinoma, NOS 4368 (32.5) 1099 (32.7) 91 (27.9)
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determined as the ultimate choice. Additionally, every 
Bagging model, in possession of 10 basic models, was 
trained with identical algorithms but various data. The 
ultimate stacking model incorporated seven bagging 
models, probability and GNB output by which were rec-
ognized as meta classifier.

Evaluation of models
Via internal verifying, all models were observed to reveal 
superior predictive abilities (AUC values > 0.94). Moreo-
ver, by incorporating seven other single models, the 
stacking model demonstrated a favorable AUC of up to 
0.9631 (Fig.  2a). Except for GNB models, AP values of 

approximately all models attain comparatively preferable 
levels. Noticeably, the ultimate AP of the stacking mode 
reached 0.693 (Additional file 3: Figure S1a). Expectedly, 
the external validation set demonstrated satisfying per-
formance. All models exhibited dramatically high pre-
dictive value except the MLP model, and the stacking 
model contained a final AUC value of 0.992 and an ulti-
mate AP value of 0.811 (Fig. 2b and Additional file 3: Fig. 
S1b). Additionally, via employing the confusion matrix 
to appraise the value of models, predictive outcomes of 
both the inner testing set and outer validation set were 
displayed in Table  3. LGBM produced fewer quantities 
of FN (False Negative) and FP (False Positive) than other 

Table 1  (continued)

Variables SEER database Xijing CRC cohort

Training set Testing set Outer validation set

 Adenocarcinoma in tubulovillous adenoma 2969 (22.1) 743 (22.1) 76 (23.3)

 Adenocarcinoma in adenomatous polyp 2827 (21.1) 708 (21.1) 125 (38.3)

 Carcinoid tumor, NOS 1837 (13.7) 454 (13.5) 0(0)

 Adenocarcinoma in villous adenoma 483 (3.6) 126 (3.8) 9 (2.8)

 Neuroendocrine carcinoma, NOS 409 (3.0) 93 (2.8) 0(0)

 Mucinous adenocarcinoma 238 (1.8) 61 (1.8) 7 (2.1)

 Squamous cell carcinoma, NOS 52 (0.4) 8 (0.2) 0(0)

 Atypical carcinoid tumor 38 (0.3) 11 (0.3) 0(0)

 Signet ring cell carcinoma 28 (0.2) 6 (0.2) 0(0)

 Mucin-producing adenocarcinoma 26 (0.2) 6 (0.2) 0(0)

 Tubular adenocarcinoma 22 (0.2) 8 (0.2) 18 (5.5)

 Gastrointestinal stromal sarcoma 17 (0.1) 0(0) 0(0)

 Carcinoma, NOS 14 (0.1) 5 (0.1) 0(0)

 Villous adenocarcinoma 10 (0.1) 2 (0.1) 0(0)

 Other 90 (0.7) 27 (0.8) 0(0)

N, n (%)

 N0 12,142 (90.4) 3031 (90.3) 295 (90.5)

 N1 1150 (8.6) 296 (8.82) 30 (9.2)

 N2 136 (1.0) 30 (0.9) 1 (0.3)

CEA, n (%)

 Positive 1223 (9.1) 300 (8.9) 110 (33.7)

 Borderline 25 (0.2) 6 (0.2) 0(0)

 Negative 3974 (29.6) 993 (29.6) 200 (61.3)

 Unknown 8206 (61.1) 2058 (61.3) 16 (4.9)

Tumor deposits, n (%)

 No tumor deposits 8777 (65.4) 2213 (65.9) 325 (99.7)

 Tumor Deposits identified 95 (0.7) 27 (0.8) 1 (0.3)

 Unknown 4556 (33.9) 1117 (33.3) 0(0)

Perineural invasion, n (%)

 Yes 9104 (67.8) 2246 (66.9) 169 (51.8)

 No 105 (0.8) 48 (1.4) 157 (48.2)

Unknown 4219 (31.4) 1063 (31.7) 0(0)

SEER Surveillance, Epidemiology, and End Results, CRC​ colorectal cancer, LM liver metastasis, NOS not otherwise specified, SD standard deviation, CEA 
carcinoembryonic antigen
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Table 2  Distributions of clinicopathological characteristics in two groups

Variables LM (−) LM (+) P value
N = 16,023 N = 762

Age at diagnosis, n (%)  < 0.001

 0–9 14 (0.1) 0 (0.0)

 10–19 158 (1.0) 1 (0.1)

 20–29 324 (2.0) 8 (1.0)

 30–39 447 (2.8) 22 (2.9)

 40–49 1238 (7.7) 97 (12.7)

 50–59 4372 (27.3) 205 (26.9)

 60–69 4363 (27.2) 197 (25.9)

 70–79 3185 (19.9) 144 (18.9)

 80–89 1679 (10.5) 78 (10.2)

 90–99 243 (1.5) 10 (1.3)

Gender, n (%)

 Female 7784 (48.6) 324 (42.5) 0.001

 Male 8239 (51.4) 438 (57.5)

Race, n (%) 0.215

 White 12,213 (76.2) 565 (74.1)

 Black 2100 (13.1) 120 (15.7)

 Asian or Pacific Islander 1601 (10.0) 72 (9.4)

 American Indian/Alaska Native 109 (0.7) 5 (0.7)

Marital status at diagnosis, n (%)  < 0.001

 Married 8918 (55.7) 376 (49.3)

 Single 2611 (16.3) 167 (21.9)

 Widowed 1740 (10.9) 90 (11.8)

 Divorced 1417 (8.8) 83 (10.9)

 Unknown 1131 (7.1) 36 (4.7)

 Separated 166 (1.0) 10 (1.3)

 Unmarried or Domestic Partner 40 (0.2) 0 (0.0)

Primary site, n (%)  < 0.001

 Rectum, NOS 4502 (28.1) 239 (31.4)

 Sigmoid colon 3540 (22.1) 162 (21.3)

 Ascending colon 1969 (12.3) 90 (11.8)

 Cecum 1884 (11.8) 95 (12.5)

 Appendix 1081 (6.7) 3 (0.4)

 Rectosigmoid junction 967 (6.0) 94 (12.3)

 Transverse colon 863 (5.4) 26 (3.4)

 Descending colon 569 (3.6) 18 (2.4)

 Hepatic flexure of colon 356 (2.2) 17 (2.2)

 Splenic flexure of colon 194 (1.2) 9 (1.2)

 Colon, NOS 53 (0.3) 6 (0.8)

 Overlapping lesion of colon 45 (0.3) 3 (0.4)

 Tumor size, mm, mean (SD) 17.5 (22.5) 52.1 (39.2)  < 0.001

Tumor grade, n (%)  < 0.001

 Well differentiated; Grade I 5131 (32.0) 55 (7.2)

 Moderately differentiated; Grade II 9853 (61.5) 567 (74.4)

 Poorly differentiated; Grade III 891 (5.6) 127 (16.7)

 Undifferentiated; anaplastic; Grade IV 148 (0.9) 13 (1.7)

Tumor type, n (%)  < 0.001

 Adenocarcinoma, NOS 4859 (30.3) 608 (79.8)
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models in both testing sets. The stacking model was 
capable of screening approximately all LM (+) patients 
in both sets. Detailed values of AUC, sensitivity, speci-
ficity, precision, NPV, FDR, accuracy, AP, F1-values, 
and Matthews correlation coefficient of each model in 
inner and outer validation sets were listed respectively in 
Additional file 4: Table S3 and Additional file 5: Table S4. 
The accuracy of five single models reached 0.95, among 
which LGBM displayed the highest precision (0.9657). 
The specificity of MLP and sensitivity of GNB were the 
highest among seven single models. Taken together, the 
stacking model consistently outperformed other single 
ML models.

To further assess comprehensive performance of the 
AI model, we made comparisons between previous 
models and logistic regression ones based on our data. 
Corresponding results testified that the stack-bagging 
model outperformed other models (Additional file  6: 
Table S5).

Furthermore, by means of employing survival sta-
tus and time from the SEER database, we plotted the 
Kaplan Meier (K–M) curves of the testing set. It was 
universally acknowledged that LM functioned as an 
unfavorable prognostic indicator for CRC patients 
(Additional file 7: Figure S2a). Likewise, we found that 

Table 2  (continued)

Variables LM (−) LM (+) P value
N = 16,023 N = 762

 Adenocarcinoma in tubulovillous adenoma 3669 (22.9) 43 (5.6)

 Adenocarcinoma in adenomatous polyp 3495 (21.8) 40 (5.2)

 Carcinoid tumor, NOS 2287 (14.3) 4 (0.5)

 Adenocarcinoma in villous adenoma 596 (3.7) 13 (1.7)

 Neuroendocrine carcinoma, NOS 495 (3.1) 7 (0.9)

 Mucinous adenocarcinoma 281 (1.8) 18 (2.4)

 Squamous cell carcinoma, NOS 59 (0.4) 1 (0.1)

 Atypical carcinoid tumor 49 (0.3) 0 (0.0)

 Signet ring cell carcinoma 32 (0.2) 2 (0.3)

 Mucin-producing adenocarcinoma 30 (0.2) 2 (0.3)

 Tubular adenocarcinoma 30 (0.2) 0 (0.0)

 Gastrointestinal stromal sarcoma 17 (0.1) 0 (0.0)

 Villous adenocarcinoma 12 (0.1) 0 (0.0)

 Carcinoma, NOS 11 (0.1) 8 (1.0)

 Other 101 (0.6) 16 (2.1)

N, n (%)  < 0.001

 N0 14,711 (91.8) 462 (60.6)

 N1 1179 (7.4) 267 (35.0)

 N2 133 (0.8) 33 (4.3)

CEA, n (%)  < 0.001

 Positive 999 (6.2) 524 (68.8)

 Negative 4899 (30.6) 68 (8.9)

 Borderline 28 (0.2) 3 (0.4)

 Unknown 10,097 (63.0) 167 (21.9)

Tumor deposits, n (%)  < 0.001

 No tumor deposits 10,867 (67.8) 123 (16.1)

 Tumor Deposits identified 111 (0.7) 11 (1.4)

 Unknown 5045 (31.5) 628 (82.4)

Perineural invasion, n (%)  < 0.001

 No 11,040 (68.9) 310 (40.7)

 Yes 143 (0.9) 10 (1.3)

 Unknown 4840 (30.2) 442 (58.0)

LM liver metastasis, NOS not otherwise specified, SD standard deviation, CEA carcinoembryonic antigen
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the stacking model resembled LM in predicting T1 
CRC patients’ outcomes (Additional file 7: Figure S2b).

Comparison of significance of each factor
In all single models, tumor size, preoperative CEA levels, 
tumor deposits, N stage, histology, and PNI all revealed 

equally fundamental significance in predicting for LM in 
T1 CRC. Despite the fact that the AI model manifested 
desirable performance, the individualized influence of 
each factor on the result and underlying relationships 
between these factors remained largely unknown. Hence, 
we calculated and digitized the significance of each factor 

Fig. 2  Predictive value of overall models after optimization. Inner validation in SEER database: a ROC curves of seven individual models and 
stacking model. Outer validation in our Chinese cohort: b ROC curves of seven individual models and stacking model. SEER: Surveillance, 
Epidemiology, and End Results; and ROC: receiver operating characteristic

Table 3  Confusion matrices of developed models

LM liver metastasis, LGBM Light Gradient Boosting Decision, RF Random Forest, GNB Gaussian Naive Bayesian, KNN K-Nearest Neighbor, MLP Multilayer Perceptron, 
CART​ Classification and Regression Trees, SVM Support Vector Machine

Confusion matrix Inner validation Outer validation

Actual Prediction Actual Prediction

LM (−) LM (+) LM (−) LM (+)

LGBM LM (+) 42 113 LM (+) 4 4

LM (−) 3123 79 LM (−) 317 1

RF LM (+) 46 109 LM (+) 3 5

LM (−) 3136 66 LM (−) 318 0

GNB LM (+) 32 123 LM (+) 0 8

LM (−) 3051 151 LM (−) 313 5

KNN LM (+) 49 106 LM (+) 4 4

LM (−) 3111 91 LM (−) 316 2

MLP LM (+) 64 91 LM (+) 5 3

LM (−) 3131 71 LM (−) 303 15

CART​ LM (+) 41 114 LM (+) 3 5

LM (−) 3100 102 LM (−) 313 5

SVM LM (+) 35 120 LM (+) 0 8

LM (−) 3059 143 LM (−) 293 25

Stacking LM (+) 26 129 LM (+) 0 8

LM (−) 3062 140 LM (−) 303 15
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used in the built-up AI models (Additional file 8: Figure 
S3 and Additional file 9: Table S6). Coinciding with pre-
vious anticipation, we found that tumor size, CEA level 
prior to surgery, tumor deposits, and N stage were the 
top four crucial predictors among all models. Particularly 
worth mentioning is the fact that tumor size standed out 
as the most critical one amidst nearly all models.

Subgroup analysis
On account of the reality that tumor size might play a 
dominant role in prediction while other parameters made 
relatively less contributions in terms of forecasting model 
performance, we determined to further investigate the 
association of tumor size with LM hazard. Firstly, RCS 
function of tumor size in the training set exhibited a 
non-linear profile (non-linearity P value < 0.001; Fig. 3a), 
indicating that this clinical feature should be encoded 
as a categorical factor and was inappropriate for being 
employed in canonical logistic regression analysis. Nota-
bly, the 50 mm tumor size demonstrated an optimal cut-
off value for subgroup analysis (Fig.  3a). Therefore, we 
utilized the representative AUC and AP value to further 
explore the model performance in disparate subgroups. 
Analysis results indicated that AUC values of 1–50 mm 
and > 50 mm subgroups reached 0.956 and 0.8772 respec-
tively (Fig. 3b).

In light of the fact that patients with tumor size larger 
than 50  mm accounted for a lower percentage than the 
1–50  mm subgroup, we further divided patients into 

1–10  mm and 1–20  mm subgroups. The AUC values 
(Bagging Stacking model) of 1–10  mm and 1–20  mm 
subgroups reached 0.8212 and 0.8608 respectively (Addi-
tional file 10: Figure S4a and b). Generally speaking, the 
stacking model was triumphantly verified to possess a 
favorable prediction capacity in T1 CRC patients with 
small tumor sizes.

Clinical application
Although the stacking model manifested both desir-
able and robust predictive power for LM in T1 CRC, the 
model was intricate in nature which could not be easily 
apprehended by clinicians. As a consequence, we devel-
oped an easy-to-use instrument (clinical decision tree) 
for the sake of supplementing clinical decision-making 
process with pragmatic guidance (Fig. 4). In this decision 
tree, target population were categorized into five groups 
according to the following four most crucial factors 
namely CEA level, tumor size, tumor deposits and age. 
The ROC of clinical decision tree archived 0.949 (Addi-
tional file  11: Figure S5), undoubtedly a demonstration 
of its remarkable discriminative and predictive ability. 
The population harboring such characteristics as CEA 
Positive or Borderline, positive tumor deposits, age ≤ 83 
and tumor size > 10 manifested high proportion of LM 
(32.4%) and could be categorized into the high-risk sub-
group of LM. On the contrary, remanent three types of 
patients uniformly demonstrated low occurrence of LM.

Fig. 3  Estimation of models’ discriminant capability for T1 CRC patients with different tumor sizes. a Restricted cubic spline of tumor size. b ROC 
curves of seven individual models and stacking model for patients with different tumor sizes (1–50 mm and > 50 mm). CRC: colorectal cancer; and 
ROC: receiver operating characteristic
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Discussion
Liver is generally identified as one of the most commonly 
seen metastasis sites for CRC while LM is universally 
recognized as the most lethal factor of CRC patients 
[36, 37]. Early diagnosis of LM could assist clinicians in 
taking prompt and timely intervention to improve the 

prognosis of patients, especially for CRC T1 patients [38, 
39]. CRC patients in T1 stage could select either surgical 
or endoscopic treatment, partly depending on the status 
of distant metastasis. Hence, a convenient and accurate 
predictive model of LM is urgently demanded to offer 
guidance on personalized therapeutic strategies.

Fig. 4  Decision tree tool to discriminate liver metastasis in T1 colorectal cancer patients
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In the study, we established an innovative and conveni-
ent model to predict early LM by incorporating 11 clin-
icopathologic parameters in T1 CRC utilizing seven AI 
methods. We firstly combined our real-world researches 
with public data online on a large scale to comprehen-
sively construct and assess LM predictive models in T1 
CRC. Given that the AUC of these models was more 
extensive than 0.94 and model accuracy was approxi-
mately as 100% as possible, we came to the conclusion 
that above-established models were desirable and robust 
in yielding favorable clinical benefits, which might be of 
tremendous assistance to clinicians in the selection pro-
cess of underlying LM CRC patients. More intriguingly, 
our model manifested extraordinary competence indis-
criminating the LM in T1 CRC patients with small tumor 
size (1–50  mm) from others. Ultimately, to develop an 
easy-to-use instrument in clinical practice, we plotted a 
decision tree to screen out the high-risk population of 
LM. The visualized decision tree was not only precise but 
also easy to comprehend for clinicians.

Our real-world research incorporated 326 cases of T1 
CRC, amidst which LM occurred in merely eight patients 
(8/326), significantly lower than that of the SEER data-
base (762/16785, P < 0.001). The discrepancy in the LM 
ratio might be attributed to low diagnostic efficacy in 
developing countries [40, 41]. Interestingly, compared 
with more advanced T stage CRC patients (169/326), 
PNI was more frequently appeared in T1 CRC patients 
of our hospital (1266/8226), consistent with results of 
the SEER database (11350/16785). Abundant evidence 
has demonstrated that the percentage of PNI occurring 
in all T stages is approximately 10–15%. Moreover, PNI 
is an independent biomarker that indicates aggressive 
behavior and unfavorable prognosis of CRC [42–45]. 
Nonetheless, scarcely explained by published literature 
were underlying causes behind the high ratio of PNI in 
T1 CRC which deserved further investigation. In addi-
tion, serum CEA was confirmed to have a positive rela-
tionship with LM. Accumulating evidence has suggested 
that the expression level of CEA could function as an 
independent indicator for the prognosis of CRC patients 
[46]. Therefore, it was not surprising that the concen-
tration of preoperative plasma CEA was significantly 
higher in CRC patients with LM compared with those 
with primary CRC [47–49]. Besides, among all indica-
tors, tumor size has been regarded as one of the most sig-
nificant biomarkers in predicting LM status. It has been 
reported that tumor size was intimately associated with 
both lymph and hepatic metastases of CRC [50]. Further-
more, scientists have verified that age might play a non-
negligible role in the advancement and prognosis of CRC 
[51]. Despite increment in young CRC patients, com-
pelling evidence revealed that the young tended to have 

more favorable outcomes than the old [51]. Contradic-
torily, our research indicated that CRC patients younger 
than 60 years of age were more apt to experience risk of 
LM than their counterparts, which was consistent with 
several other researchers [52–54]. The probable reason 
might have something to do with frequently occurred 
mismatch repair gene mutation and upregulated aggres-
sive neoplastic biology in younger patients [55].

To date, multitudes of investigators have constructed 
diverse models to predict the metastatic capability of 
CRC. For instance, Tang et al. [14] built up a novel nomo-
gram to forecast LM in all T stages CRC patients via uti-
lizing multivariable Cox regression. They also found that 
synchronous LM was an independent prognostic factor 
for CRC patients. Analogously, Li et al. [56] employed the 
SEER database to construct a T1 CRC all distant metasta-
sis model by virtue of the conventional logistic regression. 
Howbeit, due to the limitation of the algorithm and the 
approach to process data, they acquired a passable model 
(AUC = 0.879) with ineluctable overfitting. Recently, with 
enormous technical advancement of AI, the application 
of ML model in neoplastic diagnosis and prognostic 
assessment has become increasingly prevalent [57, 58]. 
Numerous novel ML algorithms have remedied deficien-
cies of canonical statistical methods, such as overfitting, 
unbalanced data distribution and so on. Ji Hyun Ahn 
et al. [19] developed an innovative model (AUC = 0.96) to 
predict LNM in the early stage of CRC patients via utiliz-
ing the SEER database and adopting seven AI methods. 
Nevertheless, these studies were retrospective, single-
center, and with small quantities of patients. Additionally, 
Ichimasa et al. [59] testified that AI could downregulate 
unnecessary surgery after endoscopic resection of LNM 
(−) T1 CRC compared with current guidelines. None-
theless, few models for predicting the incidence of LM 
in T1 CRC patients were developed and assessed utiliz-
ing AI methods. In the current study, we established 
nine models and then validated them in our own data-
set. Besides, their efficacy of predicting LM in early CRC 
was also compared by dint of easily available clinical and 
histopathological features. Moreover, we found that our 
constructed AI models could not only assist clinicians 
in selecting patients with a high risk of LM, but also 
resemble LM in accurately predicting T1 CRC patients’ 
outcomes. Our models still exhibited a superior ability 
to discriminate the LM in T1 CRC patients with small 
tumor size from others (1–50 mm).

So far, only surgical resection has been verified as a 
curative therapeutic approach for CRC patients with 
early and resectable LM [60, 61]. For patients with untest-
able LM, early application of systemic chemotherapy 
might ameliorate the prognosis and enhance the median 
survival ratio [62]. Integrating entire above-mentioned 
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results, we believed that further utilization of T1 CRC 
LM models would contribute to the clinical decision 
making and improve the present therapeutic status.

Admittedly, there still exists several limitations and 
weaknesses in the study. Firstly, in light that the SEER 
database is an open and available national program of 
America, these newly established models might not 
work in other countries. Secondly, quantities of enrolled 
patients in our hospital were far from sufficient, and 
merely eight patients manifested LM status. These short-
comings might lead to a limited verification outcome. In 
the future, more in-depth and extensive studies will be 
urgently needed. In addition, we intend to package the 
stacking model and decision tree to a novel software or 
website and validate them clinically afterwards in our 
next work.

Conclusions
In the present study, we successfully established an inno-
vative and stacking bagging model which incorporates 
11 clinicopathologic features to predict the incidence of 
LM in T1 CRC. Our findings indicated that age, gender, 
married status, primary site, tumor size, CEA, tumor 
type, grade, N stage and PNI were crucial factors for fore-
casting LM, amidst which tumor size mattered most. As 
expected, the stacking bagging model, which integrated 
strengths of seven single models, demonstrated the 
strongest predictive power in both databases of SEER and 
our hospital. Moreover, we found that the stacking model 
resembled LM when it came to accurate prediction of T1 
CRC patients’ outcomes. A novel easy-to-use tool (deci-
sion tree) was developed to guide clinicians in screening 
out high-risk patients of LM and exposing them to more 
aggressive therapeutic strategies.
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