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Abstract 

Background:  Molecular markers play an important role in predicting clinical outcomes in pancreatic adenocarci-
noma (PAAD) patients. Analysis of the ferroptosis-related genes may provide novel potential targets for the prognosis 
and treatment of PAAD.

Methods:  RNA-sequence and clinical data of PAAD was downloaded from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) public databases. The PAAD samples were clustered by a non-negative matrix 
factorization (NMF) algorithm. The differentially expressed genes (DEGs) between different subtypes were used by 
“limma_3.42.2” package. The R software package clusterProfiler was used for functional enrichment analysis. Then, a 
multivariate Cox proportional and LASSO regression were used to develop a ferroptosis-related gene signature for 
pancreatic adenocarcinoma. A nomogram and corrected curves were constructed. Finally, the expression and func-
tion of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, migration 
and invasion assays.

Results:  The 173 samples were divided into 3 categories (C1, C2, and C3) and a 3-gene signature model (ALOX5, 
ALOX12, and CISD1) was constructed. The prognostic model showed good independent prognostic ability in PAAD. 
In the GSE62452 external validation set, the molecular model also showed good risk prediction. KM-curve analysis 
showed that there were significant differences between the high and low-risk groups, samples with a high-risk score 
had a worse prognosis. The predictive efficiency of the 3-gene signature-based nomogram was significantly better 
than that of traditional clinical features. For comparison with other models, that our model, with a reasonable number 
of genes, yields a more effective result. The results obtained with qPCR and IHC assays showed that ALOX5 was highly 
expressed, whether ALOX12 and CISD1 were expressed at low levels in tissue samples. Finally, function assays results 
suggested that ALOX5 may be an oncogene and ALOX12 and CISD1 may be tumor suppressor genes.

Conclusions:  We present a novel prognostic molecular model for PAAD based on ferroptosis-related genes, which 
serves as a potentially effective tool for prognostic differentiation in pancreatic cancer patients.
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Background
Pancreatic cancer has a low 5-year survival rate and is 
one of the cancers that have high mortality [1]. There 
were 458,918 new pancreatic cancer cases and 432,242 
deaths due to it, reported globally in 2018 [2]. Adeno-
carcinoma is the most common type of pancreatic can-
cer and accounts for > 90% of the diagnosed pancreatic 
cancer cases. Although adjuvant chemotherapy and 
other multimodal treatments have been developed, 
surgery is still the most effective method for treating 
this disease [3]. Despite advances in the treatment of 
pancreatic adenocarcinoma (PAAD), the 5-year sur-
vival rate remains only 9% [4]. To tackle this, there is 
an urgent need to identify the prognostic biomarkers of 
PAAD. This would aid clinicians to predict the clinical 
outcomes promptly and accurately as well as initiate a 
protocol for a personalized treatment regimen.

Ferroptosis, a type of cell death, plays a vital role in 
inhibiting tumorigenesis by removing cells that either 
has a deficiency or overabundance of key nutrients or 
cells damaged by environmental pressure [5]. Unlike 
autophagy and apoptosis, ferroptosis is an iron (Fe) and 
reactive oxygen species (ROS)-dependent form of cell 
death, [6]. It regulates cell death through the overpro-
duction of phospholipid hydroperoxides in a mecha-
nism different from that of autophagy and apoptosis. It 
is induced in abnormal cells due to loss of the selective 
permeability of the plasma membrane and oxidative 
stress caused by intense membrane lipid peroxidation 
[7]. Ferroptosis plays an important regulatory role in 
the occurrence and progression of tumors and provides 
a promising therapeutic strategy for PAAD [8, 9].

Recently, research has focused on the immune infil-
tration and its role in cancer. Previous studies have 
demonstrated that infiltrating immune cells can be iso-
lated from tumors suggesting that tumor immune infil-
tration is a crucial biological process of cancers [10]. 
Further, many studies indicate that ferroptosis regula-
tors play an important role in immune environment 
of cancers including breast cancer [11], hepatocellular 
carcinoma [12], and others. However, the ferroptosis 
related genes of tumor immune infiltration in PAAD 
remain largely unknown. Based on the essential roles of 
the ferroptosis related genes within the tumor immune 
infiltration in carcinogenesis and progression could 
have major potential as biomarkers in PAAD.

With the development of next-generation sequencing 
technology, gene transcription profiles in PAAD can 
be better understood. Based on The Cancer Genome 

Atlas (TCGA) and the comprehensive Gene Expres-
sion Omnibus (GEO) databases, many genes be found 
contribute to the development of PAAD. Recent stud-
ies have shown that CA9, CXCL9, and GIMAP7 genes 
specifically regulate the expression of FoxO1, thereby 
regulating immune infiltration in PAAD [13]. Further, 
FOXP4-AS1 exerts oncogenic activity in PAAD [14] 
and COL11A1 as an immune infiltrates correlated 
prognosticator in pancreatic adenocarcinoma [15].

In this study, we identified ferroptosis-associated 
genes and constructed molecular subtypes of PAAD 
based on TCGA and GEO databases. Finally, we estab-
lished a 3-gene signature prognostic model and verified 
its ability to predict the prognostic risk and immune 
infiltrates of PAAD. This serves as a potentially effec-
tive tool for prognostic risk prediction in patients with 
pancreatic cancer.

Methods
Data source and processing
Expression data and corresponding clinical follow-
up information from the TCGA-PAAD data set were 
downloaded using the UCSC genome browser data-
base. GSE62452 chip data sets with survival time were 
selected from Gene Expression Omnibus (GEO) data-
base. The GSE62452 data set is Microarray gene-expres-
sion profiles of 69 pancreatic tumors and 61 adjacent 
non-tumor tissue from patients with pancreatic ductal 
adenocarcinoma. ([HuGene-1_0-st] Affymetrix Human 
Gene 1.0 ST Array [transcript (gene) version]). Hence-
forth, samples that lacked clinical follow-up informa-
tion were removed and the expression of multiple gene 
symbols was considered the median value.

Molecular subtype identification using the non‑negative 
matrix factorization algorithm
Firstly, 60 ferroptosis-related genes were retrieved from 
the literature [15–18] (Table  1). Next, 58 ferroptosis-
related genes with gene expression data were matched 
with the TCGA-PAAD data set, and PAAD samples 
were clustered by non-negative matrix factorization 
(NMF). The standard "Lee" was selected in the NMF 
method, and ten iterations were performed. The cluster 
number ‘k’ was set at 2–10, the average contour width 
of the common member matrix was determined by the 
R package "NMF", and the samples were divided into 
three categories.

Keywords:  Pancreatic adenocarcinoma, Ferroptosis, Prognosis, Bioinformatics, Genes
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Identification and functional analysis of differentially 
expressed genes (DEGs)
The limma_3.42.2 package [19] was used to analyze the 
differentially expressed genes (DEGs) in cluster 1, clus-
ter 2, and cluster 3 among the molecular subtypes, based 
on the threshold false discovery rate (FDR) < 0.05 and 
|log2FC|> 0.5 filters. The DEGs shared by the three clus-
ters were identified, and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis and gene ontology 
(GO) functional enrichment analysis were performed on 
them through the R package clusterProfiler (v3.16.1) (Addi-
tional file 1).

Comparative analysis of immune scores among molecular 
subtypes
The single-sample gene set enrichment analysis 
(ssGSEA) method of the GSVA (Gene Set Variation 

Analysis) package was used to identify the immune 
score-based relationships among the molecular sub-
types in the TCGA-PAAD data set. The scores of 28 
immune cells were assessed [20] and then the differ-
ences in immune scores among the molecular subtypes 
were compared.

Training set and internal test set construction
A total of 173 samples in the TCGA-PAAD data set 
were divided into a training set and a test set. To pre-
vent the random allocation bias from affecting the sta-
bility of subsequent modeling, all samples were put 
back into random grouping, two hundred times in 
advance. Using the training data set, a univariate Cox 
proportional risk regression model was constructed 
for ferroptosis-related genes (n = 60) and survival data 
was constructed using the coxph function with sur-
vival R package. Since 58 ferroptosis-related genes had 
expression profile data in our data set, only these were 
selected for the univariate Cox regression analysis, and 
P < 0.05 was selected as the threshold for filtering. The 
R software package “glmnet_4.10–1” [21] was used to 
carry out the LASSO Cox regression analysis. We first 
analyzed the changing trajectory of each independent 
variable, and later used the fivefold cross-validation 
to build a model and analyze the confidence interval 
under each lambda. The target genes were selected by 
multivariate Cox regression analysis, and a prognostic 
Kaplan–Meier (KM) curve was established.

3‑Gene signature robustness in different data sets
The risk scores of each sample were calculated sepa-
rately based on the expression level of the sample. KM-
curve analysis showed significant differences between 
the high and low expression groups. Furthermore, we 
used the R software package timeROC_0.4 [22] to con-
duct ROC analysis of the prognostic classification of 
the risk score and analyze the prognostic classification 
efficiency at 1-year, 3-years, and 5-years. The model 
and the survival coefficient, developed using the train-
ing dataset, were adopted to evaluate the entire TCGA-
PAAD data set, calculate the risk score of each sample 
and establish the risk score distribution of the samples. 
The independent GSE62452 data set was used to ana-
lyze the robustness of the model.

Univariate and multivariate analyses of the 3‑gene 
signature
To identify the independence of the 3-gene signa-
ture model in clinical applications, we performed Cox 
regression analysis on the TCGA-PAAD training data-
set. Based on the results of univariate and multivariate 

Table 1  The clinical statistical information of the samples

Clinical features Train Test GSE15048

OS

 0 39 43 16

 1 49 42 50

Grade

 G1 16 11

 G2 48 44

 G3 23 27

 G4 1 3

Gender

 Male 39 40

 Female 49 45

Age

 ≤ 48 6 6

 > 48 82 79

M_stage

 M0 38 38

 M1 5 0

 MX 45 44

N_stage

 N0 25 24

 N1 63 61

T_stage

 T1 3 3

 T2 12 11

 T3 72 69

 T4 1 2

Stage

 Stage i 10 9

 Stage ii 74 72

 Stage iii 1 2

 Stage iv 3 2
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analyses, we used the TCGA-PAAD training dataset to 
construct a histogram. In addition, corrected curves 
were used to analyze the prediction accuracy of nomo-
gram at 1, 3, and 5 years.

Tissue samples
PAAD tissues were derived from surgically resected 
specimens and snap-frozen in liquid nitrogen until RNA 
extraction. None of the patients received chemotherapy 
or radiation therapy before surgery. All patients signed 
informed consent forms provided by the Eastern Hepato-
biliary Surgery Hospital. This study was approved by the 
Ethics Committee of the Eastern Hepatobiliary Surgery 
Hospital.

RNA isolation and RT‑qPCR analysis
RNA was extracted from tissues using the TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) and was reverse-tran-
scribed into cDNA using the QuantiTect Reverse Tran-
scription Kit (Qiagen, Valencia, CA, USA). Quantitative 
PCR (qPCR) uses real-time fluorescence to measure the 
quantity of DNA present at each cycle during a PCR. 
Real-time qPCR analyses were quantified with SYBR-
Green (Takara, Otsu, Shiga, Japan), and expression levels 
were normalized to GAPDH levels.

Immunohistochemistry
Immunohistochemistry was performed by two-step 
method according to the instructions (PV-9000; ZSGB-
BIO, Beijing, China). Pancreatic cancer samples were 
fixed in 10% formalin, embedded in paraffin, and pro-
cessed into 5-µm sequential sections. The samples were 
de-waxed with ethanol and blocked to inhibit the endog-
enous peroxidase activity. After this, samples were heated 
in a microwave for antigen retrieval, cooled to room 
temperature, and blocked using goat serum for 30  min 
at 37  °C. The samples were incubated overnight at 4  °C 
with rabbit anti-ALOX5 (ab169755), anti-ALOX12 
(ab211506), and anti-CISD1 (ab203096) (Abcam, USA) 
(1:200), followed by incubation with horseradish perox-
idase-coupled goat anti-rabbit secondary antibody (PV-
9000; ZSGB-BIO, Beijing, China) at 37 °C for 30 min. The 
samples were then stained with 3,3′-Diaminobenzidine 
(DAB). Cell nuclei were stained blue with hematoxylin. 
The sections were then dehydrated, cleared with xylene, 
and mounted. ALOX5, ALOX12, and CISD1 expressions 
were determined by immunohistochemistry (IHC) using 
the streptavidin peroxidase method, with adjacent tissues 
serving as the controls. The experimental procedure was 
performed as per the manufacturer’s instructions. Image-
Pro Plus 6.0 Software (Media Cybernetics, USA) was 

used to analyze protein expression and perform statisti-
cal analysis of the results obtained by IHC.

Cell culture and transfection
The human PAAD cell line T3M4 and Panc 02.03 were 
provided by the National Collection Authenticated Cell 
Cultures (Shanghai, China). The T3M4 cell lines are 
derived from the metastatic lymph node tissue of human 
pancreatic cancer and are epithelial-like cells. The T3M4 
cell lines were cultured in DMEM (Dulbecco’ modified 
eagle medium) (Gibco, Grand Island, NY, USA). Sup-
plemented with 10% fetal bovine serum (Invitrogen, San 
Diego, CA, USA) at 37  °C under 5% CO2 in a humidi-
fied incubator. The Panc 02.03 cell lines are derived 
from human primary pancreatic cancer and are epithe-
lial-like cells. The Panc 02.03 cell lines were cultured in 
RPMI-1640 (Gibco, Grand Island, NY, USA) with 15% 
fetal bovine serum at 37  °C under 5% CO2 in a humidi-
fied incubator. Si-ALOX5 (No: CAT#: SR319325) was 
purchased from Origene (Beijing, China). Transfection 
was performed using Lipofectamine 3000 reagent (No. 
L3000015, Invitrogen, China) according to the instruc-
tions and cell transfection efficiency was 82%.The human 
ALOX12 and CISD coding sequences were cloned into 
the pEZ-M03 Vector.

Cell viability assays
The si-ALOX5 transfected in T3M4 cell lines, and 
ALOX12 or CISD transfected in Panc 02.03 cell lines. 
Forty-eight hours post infection, the cells were collected 
and seeded into 96-well plates at a concentration of 2000 
cells per well. Cell viability was detected by Cell Count-
ing Kit-8 assay (CCK-8, Dojindo, Japan) according to 
the manufacturer’s protocol after 48  h. Te absorbance 
at 450 nm was measured using an automatic microplate 
reader (BioTek, Winooski, VT, USA). All Cell Counting 
Kit-8 assay were performed in five times.

Cell migration and invasion assays
The si-ALOX5 transfected in T3M4 cell lines, and 
ALOX12 or CISD transfected in Panc 02.03 cell lines. 
Forty-eight hours post infection, the cells were collected. 
For the migration assay, 800 μl DMEM with 20% serum 
was added to the lower chamber of a Transwell plate 
(Corning, NY, USA), and 1.5 × 105 cells were added in the 
upper chamber. The cells were harvested, resuspended 
in serum-free media and placed into the upper chamber 
of a Transwell membrane filter (Corning, NY, USA) for 
the migration assays or in the upper chamber of a tran-
swell membrane filter coated with Matrigel (Corning) 
for the invasion assays.The T3M4 and Panc 02.03 cells 
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were added in the upper chamber. After incubation for 
24 h at 37 °C, the Transwell chamber was removed. The 
cells were stained with methanol and 0.1% crystal vio-
let, imaged, and the relative cell density was measured 
by ImageJ (National Institute of Health, USA). ImageJ 
software was used to analyze and calculate the migration 
and  invasion area of the cells. The migration and  inva-
sion index (%) depicts a proportion of an area where cells 
have invaded in percentage and is calculated as epithe-
lium area divided by the total area of invaded cells area. 
The area describes the overall area (μm2) of invaded cells. 
Evaluation of invasive capacity was performed by count-
ing invading cells under a microscope (40 × 10). Five ran-
dom fields of view were analyzed for each chamber. All 
cell migration and invasion assays were performed in five 
times.

Statistical analysis
All data were analyzed using the SPSS 21.0 statisti-
cal software program (IBM Corporation, Armonk, NY, 
USA). Graphs were generated with GraphPad Prism 8.0 
software (GraphPad Software, Inc., San Diego, CA, USA). 
Student’s t-tests were performed. For a two-tailed t-test, 
P < 0.05 was essential for considering the results to be sta-
tistically significant.

Results
Sample information statistics
After data preprocessing, there were 173 samples in 
TCGA-PAAD, with 88 samples in the training set and 
85 samples in the test set. GSE62452 included 66 sam-
ples. The clinical statistical information of the samples is 
shown in Table 1.

Identification of three molecular subtypes
The 173 samples were divided into 3 categories: C1, C2, 
and C3. The expression of prognostic ferroptosis-related 
genes in the three categories is shown in Fig.  1A. The 
expression levels of these genes are different in the 3 sub-
types and that most of the genes are highly expressed 
in the C1 subgroup. Further analysis of the prognostic 
relationships between the two groups showed signifi-
cant differences in C1, C2, and C3 (Fig. 1B, log-rank test, 
P < 0.05). We analyzed the expression patterns of ferrop-
tosis-related genes in TMN staging, Stage, Grade, Age 
and different Clusters, as shown in heat map (Fig. 1C).

Analysis of DEGs among subtypes
With the help of the limma_3.42.2 package, 4,903 DEGs 
were identified between Cluster 1 and Cluster 2, among 
which 2,717 genes were up-regulated and 2,186 genes 
were down-regulated (Fig.  2A, D). There were 6,572 

DEGs between Cluster 1 and Cluster 3, among which 
4,963 genes were up-regulated and 1,609 genes were 
down-regulated (Fig. 2B, E). Between Cluster 2 and Clus-
ter 3 there were 3,473 DEGs, among which 2633 genes 
were up-regulated and 840 genes were down-regulated 
(Fig. 2C, F) (Additional file 1: Table S1). After taking the 
intersection of all three clusters 230 genes were obtained.

KEGG pathway analysis and GO functional enrich-
ment analysis were performed on the 230 DEGs in the 
PAAD subtype group. A total of 179 GO-BP pathways, 47 
GO-CC pathways, and 67 GO-MF pathways were anno-
tated (Fig. 3A). 14 KEGG pathways were identified, 6 of 
which were significant (FDR < 0.05) (Fig. 3B). The detailed 
information is shown in Additional file 2.

Comparative analysis of immune scores among molecular 
subtypes
In order to identify the relationship of the immune scores 
between the molecular subtypes in the TCGA-PAAD 
data set, we used the ssgsea method of the GSVA pack-
age to score 29 immune cells (16 are immune cells and 13 
are immune-related pathways) (cell markers are from the 
reference [23]) and then compare the differences between 
immune cells and immune-related pathways in molecu-
lar subtypes. The results shown that: the immune score of 
subtype C1 is lower than that of subtype C2 (Fig. 4A); the 
immune score of subtype C1 is lower than the C3 subtype 
(Fig.  4B); the immune score of the C2 subtype is lower 
than the immune score of the C3 subtype (Fig.  4C). At 
the same time, we have drawn a box plot of differences in 
the scores of immune-related pathways among the three 
subtypes (Fig. 4D–F). Combined with the prognostic sur-
vival curve in Fig. 1B, it can be seen that the C1 subtype 
has the worst prognosis, and the C3 subtype has the best 
prognosis. A higher immune infiltration score is often 
accompanied by a better prognosis.

Construction of a 3‑gene signature
The R package survival coxph function is used to perform 
a univariate Cox proportional hazard regression model 
for ferroptosis-related genes (n = 60) and survival data in 
training set. Because only 58 ferroptosis-related genes are 
expressed in our expression profile data and we selected 
these genes for single-factor cox regression analysis, and 
selected P < 0.05 as the threshold for filtering. Finally, 
there were 10 genes related to prognosis. Next, LASSO 
regression was used to further compress the 10 genes to 
reduce the number of genes in the risk model. The chang-
ing trajectory of each independent variable is shown in 
Fig.  5A, which indicates that with a gradual increase 
in lambda, the number of independent variable coef-
ficients approaching zero gradually increases. We used 
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Fig. 1  The samples were divided into 3 categories. A The expression of prognostic ferroptosis-related genes in the three categories. B The 
prognostic relationships showed significant differences in C1, C2, and C3. C Ferroptosis-related genes in TMN staging, stage, grade, age and different 
clusters
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fivefold cross-validation to construct a model and ana-
lyze the confidence interval under each lambda (Fig. 5B). 
The figure indicates that the model reached the optimal 
value at lambda = −  3.75. Hence, we selected 5 genes 
at lambda = −  3.75 as target genes and further selected 
3 genes (ALOX5, ALOX12, and CISD1) by multivariate 

Cox regression analysis. Prognostic KM-curves of the 
three genes are shown in Fig. 5C–E, and all three genes 
could significantly improve the performance of distin-
guishing between the low-risk groups (LRG) and high-
risk groups (HRG) in the training sample (P < 0.05). The 
final model based on the 3-gene signature was as follows:

Fig. 2  The differentially expressed genes among subtypes. A, D 4903 DEGs were identified between Cluster 1 and Cluster 2. B, E 6572 DEGs 
between Cluster 1 and Cluster 3. C, F Between Cluster 2 and Cluster 3 there were 3473 DEGs

Fig. 3  KEGG pathway analysis and GO functional enrichment analysis. A A total of 179 GO-BP pathways, 47 GO-CC pathways, and 67 GO-MF 
pathways were annotated. B 14 KEGG pathways were identified, 6 of which were significant
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Fig. 4  The relationship of the immune scores between the molecular subtypes. A, B The immune score of subtype C1 is lower than that of subtype 
C2 and C3. C The immune score of the C2 subtype is lower than the C3 subtype. D–F The box plot of differences in the scores of immune-related 
pathways among the three subtypes

Fig. 5  Constructed a 3-gene signature. A The changing trajectory of each independent variab. B The confidence interval under each lambda. C–E 
Prognostic KM-curves of the three genes
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RiskScore = 0.289* ALOX5 + (− 1.359)*ALOX12 + (− 1
.053)* CISD1.

Further, we calculated the risk score of each sam-
ple based on the expression level of the sample. In 
TCGA-training set, KM-curve analysis showed that 
there were significant differences between the high and 
low-risk groups (Fig. 6A, P = 0.006). The Fig. 6B indi-
cates that the risk of death for a patient with a high-
risk score was significantly higher than that of a patient 

with a low-risk score. This suggests that a sample with 
a high-risk score shows a worse prognosis. The model 
had a very high AUC (AUC for 1  year = 0.547, AUC 
for 3 years = 0.815, AUC for 5 years = 0.976) (Fig. 6C). 
The risk score distribution of the entire TCGA-PAAD 
dataset is shown in Fig. 6D–F, which also indicates that 
samples with a high-risk score had a worse prognosis.

Analysis of the GSE62452 showed that the risk score 
distribution was consistent with that of the training 
set and that the high-risk score samples had a worse 

Fig. 6  Calculated the risk score in three databases. A–C In TCGA-training set, KM-curve analysis; the risk of death for patients and ROC analysis were 
used for test the model. D–F In entire TCGA-PAAD dataset, KM-curve analysis; the risk of death for patients and ROC analysis were used for test the 
model. G–I In GSE62452 dataset, KM-curve analysis; the risk of death for patients and ROC analysis were used for test the model
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prognosis (Fig.  6G–I). KM-curve analysis showed that 
there were significant differences between the high and 
low-risk groups. Analysis of the 1-year, 3-years, and 
5-years prognostic prediction classification efficien-
cies indicated that the model had relatively high AUC at 
3 years and 5 years (0.718 and 0.743, respectively).

Risk model analysis and model comparison
Based on the 3-gene signature model, samples could be 
divided into low- and high-risk groups according to age, 
sex, grade, N stage, T stage, or clinical stage (Fig. 7A–L, 
P < 0.05). This further indicated that our model had good 
predictive power in different clinical subgroups. The risk 
score had a significant correlation with age, sex, grade, 
T stage, and clinical-stage but no significant correlation 
was with the N stage (Fig. 8A–F, P < 0.05). By univariate 
and multivariate Cox regression analyses, indicated that 
our model based on the 3-gene signature is an independ-
ent risk factor for prognosis in pancreatic cancer patients 
(Fig.  9A, B). Further, the TCGA-PAAD training set was 
used to construct a nomogram (Fig. 9C), which indicated 
that the risk model based on the 3 genes can accurately 
predict the prognosis of pancreatic cancer. In addition, 
we used corrected curves to analyze the prediction accu-
racy of the nomogram at 1, 3, and 5  years. The results 
indicated that the histogram had good prediction perfor-
mance (Fig. 9D). Moreover, the results of decision curve 

analysis (DCA) at 1-year, 3-years, and 5-years (Fig.  9E) 
also indicated that the prediction efficiency of the histo-
gram was good.

For comparison with our model, we selected two 
prognostic risk models: 20 gene signatures [21] and 36 
gene signatures [24]. Survival analysis indicated that the 
PAAD prognosis of the high-risk score and low-risk score 
groups was different except for the 20-gene signature 
(Fig. 10A, B) and 36-gene signature models (Fig. 10C, D) 
(log-rank P < 0.05). For the 36-gene signature model, the 
1-, 3-, and 5-year AUC values were lower than our model. 
Moreover, the 1- and 3-year AUC values in the 20-gene 
signature were lower than our model. This proves that 
our model, with a reasonable number of genes, yields a 
more effective result.

The expression and biological function of signature genes 
in PAAD
To verify that ALOX5 expression is upregulated and 
investigate whether ALOX12 and CISD1 are downregu-
lated in pancreatic cancer tissue, 10 pancreatic cancer 
tissue specimens were tested. The results obtained with 
qPCR (Fig. 11A–C) and IHC (Fig. 11D–F) assays showed 
that ALOX5 was highly expressed regardless of whether 
ALOX12 and CISD1 were expressed at low levels in these 
pancreatic cancer tissue samples. Clinical details of these 
10 patients are contained in the Additional file. To clarify 

Fig. 7  The low- and high-risk groups according to (A, B) age, (C, D) sex, (E, F) grade, (G, H) N stage, (I, J) stage, or (K, L) T stage
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the functional role of signature genes in PAAD cells, we 
used Cancer Cell Line Encyclopedia (CCLE) database to 
analyze the expression of ALOX5, ALOX12 and CISD1 
in pancreatic cancer cells, and found that the expres-
sion of ALOX5 was relatively highly expressed in T3M4 
cells. Further, in order to explore the biological func-
tion of ALOX5 (Fig. 12). siRNA was used to reduce the 
expression of ALOX5 in T3M4 cells and we used over-
expression strategy for ALOX12 and CISD1 to check 
the proliferation, invasion, and migration of Panc 02.03 
cells. CCK8 and transwell assays were used to deter-
mine the proliferation, invasion and migration ability of 
T3M4 cells and Panc 02.03 cells. The results showed that 
reduced ALOX5 (Fig. 13A, D, G) expression significantly 
inhibited the proliferation, invasion and migration ability 
of T3M4 cells, and up-regulation of ALOX12 (Fig. 13B, E, 
H) and CISD1 (Fig. 13C, F, I) expression suppressed the 
proliferation, migration and invasion of Panc 02.03 cells.

Discussion
Ferroptosis is an iron oxide-dependent form of regulated 
cell death (RCD). It is the link that connects metabolism, 
redox biology, and human health. Accumulating evidence 
indicates that ferroptosis can be triggered to treat cancer 
to eradicate aggressive malignancies that are resistant 
to conventional therapies [25]. It is characterized by the 
accumulation of ROS and lipid peroxidation products to 
lethal levels. Although ferroptosis plays an important role 

in maintaining the survival of normal cells and tissues, it 
has been increasingly recognized that some carcinogenic 
pathways are related to ferroptosis, making cancer cells 
vulnerable to ferroptosis death [26, 27]. In recent years, 
ferroptosis death were reported to be associated with 
antitumor immunity, which is introduced in the follow. 
Wang et al. reported that CD8 + T cells induce ferropto-
sis in tumor cells in vivo which shown the direct evidence 
of the connection between ferroptosis and antitumor 
immunity [28]. Tumor cells undergoing ferroptosis might 
conceivably function as arachidonic acid (AA) donors for 
the transcellular biosynthesis of eicosanoids, thereby par-
ticipating in the generation of biologically active immu-
nomodulatory AA metabolites that affect antitumor 
immunity [29]. In pancreatic cancer, the process of iron 
death significantly promotes disease progression and may 
be a potential strategy for inhibiting pancreatic cancer 
development. For example, GOT1 inhibition promotes 
pancreatic cancer cell death by ferroptosis. In this study, 
we identified a ferroptosis related gene signature for 
predicting the prognosis of pancreatic adenocarcinoma 
patients.

Due to the insidious and aggressive nature of PAAD, 
it is difficult to detect and prevent PAAD at an early 
stage. At the time of consultation, approximately 80% of 
patients have locally advanced or metastatic cancer [30]. 
Although multimodal therapy has been improved, sur-
gery remains an effective therapeutic strategy for this 

Fig. 8  The risk score had a significant correlation with (A) age, (B) sex, (C) grade, (D) N stage, (E) stage, or (F) T stage
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disease. Even in conjunction with adjuvant therapy, pan-
creatic surgery can improve 5-year survival by only 20% 
[31]. Therefore, prognostic signatures for PAAD patients 
are urgently needed. With the advancement in the field 
of bioinformatics and sequencing technology, several 
potential prognostic evaluation methods for PAAD 

patients have been developed [32–34]. However, mostly 
genome or transcriptome parameters are analyzed in 
these methods, with no consideration of biological pro-
cesses. Therefore, these models do not analyze the char-
acteristics features of PAAD. Ferroptosis is a significant 
biological hallmark of tumors and has been demonstrated 

Fig. 9  The 3-gene signature is an independent risk factor for prognosis in PAAD. A univariate and (B) multivariate Cox regression analyses. C, D The 
TCGA-PAAD training set was used to construct a nomogram. E The results of decision curve analysis (DCA) at 1-year, 3-years, and 5-years
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to be of value in evaluating the prognosis of patients with 
PAAD [36]. In this study, ferroptosis-related genes were 
collected, and gene expression data from public data-
bases such as the TCGA and GEO were used to construct 
PAAD molecular subtypes based on ferroptosis-related 
genes. Next, LASSO regression was used to further com-
press the 10 genes to reduce the number of genes in the 
risk model. We used fivefold cross-validation to construct 
a model and analyze the confidence interval under each 
lambda. Hence, we selected 5 genes at lambda = −  3.75 
as target genes and further selected 3 genes (ALOX5, 
ALOX12, and CISD1) by multivariate Cox regression 
analysis, and all three genes could significantly improve 
the performance of distinguishing between the LRG 
and HRG in the training sample (P < 0.05). The final 
model based on the 3-gene signature was as follows: 
RiskScore = 0.289 × ALOX5 + (−  1.359) ×  ALOX12 + (
− 1.053) × CISD1. We found that the constructed 3-gene 

signature model achieved an accurate prognostic assess-
ment of PAAD samples relative to the other methods. We 
also compared with previously developed gene-based sig-
natures for PAAD, with two prognostic risk models: 20 
and 36 gene signature which result showed our model 
obtained a more effective result with the reasonable 
number of genes. The performance of our prognostic risk 
model was further verified by using validation set data 
and qPCR and IHC experiments, also with pancreatic 
cancer cell lines in vitro validation. The functional study 
shown that expression of ALOX5, ALOX12, and CISD1 
can regulate the migration and invasion ability of PAAD 
cells. Our 3-gene signature model, with fewer genes, is 
more accurate, reasonable, and efficient as compared to 
other established models.

The signature we constructed contained three genes, 
namely, ALOX5, ALOX12, and CISD1, all of which 
are closely related to tumors genesis and development. 

Fig. 10  Comparison with other models. The PAAD prognosis of the high-risk score and low-risk score groups was more effective for (A, B) the 
20-gene signature and (C, D) 36-gene signature models
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5-Lipoxygenase (ALOX5) is a non-heme iron-contain-
ing dioxygenase that catalyzes the peroxidation of poly-
unsaturated fatty acids, such as arachidonic acid [37]. 
ALOX5 is a key enzyme that mediates lipid peroxidation 
and thereby leads to cell death [38]. Available evidence 
shows that lipid peroxidation evokes multiple types of 
cell death including apoptosis, pyroptosis, and ferrop-
tosis [39]. It has also been reported that high ALOX5 
expression is significantly associated with a poor prog-
nosis in colorectal cancer, gastric cancer, clear cell renal 
cell carcinoma, papillary thyroid carcinoma, and other 
tumors [40–43]. ALOX12 gene encodes the enzyme ara-
chidonate 12-lipoxygenase. This enzyme acts on various 
polyunsaturated fatty acid substrates to produce biologi-
cally active lipid intermediates, including eicosanoids and 
lipoxins. The ALOX12 protein plays an important role in 

inflammation and oxidation. Abnormal DNA methyla-
tion and genetic variation in ALOX12 are associated with 
various human diseases and pathological phenotypes, 
such as cardiovascular disease, diabetes, neurodegen-
erative disease, respiratory disease, cancer, and infection 
[44]. Many studies indicate the abnormal expression of 
ALOX12 in tumors, suggesting that ALOX12 may be a 
potential marker for many varieties of cancers. Studies 
in xenotransplantation models show that ALOX12 inac-
tivation reduces the p53-mediated ferroptosis induced 
by ROS stress, and thus eliminates the p53-dependent 
tumor growth inhibition [45]. Compared with pancre-
atic cancer precursors and normal pancreatic ducts, the 
expression of ALOX12 in pancreatic cancers is signifi-
cantly down-regulated and inhibits the proliferation of 
PAAD cells [46]. CISD1 (mitoNEET) belongs to a newly 

Fig. 11  The expression of signature genes in PAAD.The results obtained with (A–C) qPCR and (D–F) IHC assays showed that ALOX5 was high 
expressed, ALOX12 and CISD1 were expressed at low levels in PAAD tissues
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discovered class of iron-thionine (2Fe–2S). It is essen-
tial for regulating iron and ROS homeostasis in cells and 
plays a key role in promoting cancer cell proliferation and 
supporting tumor growth and metastasis [47]. Addition-
ally, CISD1 is overexpressed in both lung adenocarci-
noma and breast cancer [48, 49].

In this study, we present evidence that ALOX5, 
ALOX12, and CISD1 may have prognostic value in 
PAAD. Specifically, our in  vitro results suggest that 
ALOX5 may be an oncogene, while ALOX12 and 
CISD1 may be tumor suppressor genes in PAAD. The 
results of our study indicate that the established 3-gene 
signature model could be an effective prognostic tool 
for patients with PAAD. However, the limitations asso-
ciated with this study emphasize the need for addi-
tional analysis before the clinical application of this 
signature. The samples used in our study were obtained 

retrospectively and the study solely focused on the 
prognostic value and clinical significance of ferropto-
sis. To validate our findings for clinical applications, we 
need to include prospective samples and evaluate the 
prognostic values of other biological processes charac-
teristic to the development of cancer.

Conclusion
In conclusion, we propose a 3-gene signature (ALOX5, 
ALOX12, and CISD1) predictive model based on fer-
roptosis-related genes in PAAD. Despite the many 
drawbacks of the current analysis, this model may serve 
as an interesting molecular diagnostic tool to assess the 
prognosis and possible risk factors of PAAD.

Fig. 12  Cancer Cell Line Encyclopedia (CCLE) database to analyze the expression of ALOX5, ALOX12 and CISD1 in pancreatic cancer cells
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