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Abstract 

Background:  Epigenetic reprogramming reportedly has a crucial role in prostate cancer (PCa) progression. RNA 
modification is a hot topic in epigenetics, and N6-methyladenosine (m6A) accounts for approximately 60% of RNA 
chemical modifications. The aim of this study was to evaluate the m6A modification patterns in PCa patients and 
construct a risk prediction model using m6A RNA regulators.

Materials and methods:  Analyses were based on the levels of 25 m6A regulators in The Cancer Genome Atlas 
(TCGA). Differentially expressed gene (DEG) and survival analyses were performed according to TCGA-PRAD clinico-
pathologic and follow-up information. To detect the influences of m6A regulators and their DEGs, consensus cluster-
ing analysis was performed, and tumor mutational burden (TMB) estimation and tumor microenvironment (TME) cell 
infiltration were assessed. mRNA levels of representative genes were verified using clinical PCa data.

Results:  Diverse expression patterns of m6A regulators between tumor and normal (TN) tissues were detected 
regarding Gleason score (GS), pathological T stage (pT), TP53 mutation, and survival comparisons, with HNRNPA2B1 
and IGFBP3 being intersecting genes. HNRNPA2B1 was upregulated in advanced stages (GS > 7, pT3, HR > 1, and TP53 
mutation), as verified using clinical PCa tissue. Three distinct m6A modification patterns were identified through 
consensus clustering analysis, but no significant difference was found among these groups in recurrence-free survival 
(RFS) analysis. Six DEGs of m6A clusters (m6Aclusters) were screened through univariate Cox regression analysis. 
MMAB and PAIAP2 were intersecting genes for the five clinical factors. MMAB, which was upregulated in PCa com-
pared with TN, was verified using clinical PCa samples. Three distinct subgroups were established according to the 6 
DEGs. Cluster A involved the most advanced stages and had the poorest RFS. The m6A score (m6Ascore) was calcu-
lated based on the 6 genes, and the low m6Ascore group showed poor RFS with a negative association with infiltra-
tion for 16 of 23 immune-related cells.

Conclusion:  We screened DEGs of m6Aclusters and identified 6 genes (BAIAP2, TEX264, MMAB, JAGN1, TIMM8AP1, 
and IMP3), with which we constructed a highly predictive model with prognostic value by dividing TCGA-PRAD into 
three distinct subgroups and performing m6Ascore analysis. This study helps to elucidate the integral effects of m6A 
modification patterns on PCa progression.
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Introduction
Prostate cancer (PCa) is a leading malignant tumor 
among men [1]. PCa has primarily been treated with 
surgical prostatectomy or androgen deprivation therapy 
(ADT). However, it can become castration-resistant 
PCa (CRPC), and biochemical recurrence or metastasis 
may occur during traditional therapy, which is the main 
cause of cancer-specific death. Therefore, elucidating the 
molecular mechanisms related to PCa progression is cru-
cial in the discovery of diagnostic biomarkers and thera-
peutic targets.

Epigenetic reprogramming is reported to serve a cru-
cial role in the progression of PCa [2]. Recently, RNA 
modification has been regarded as a hot topic in epige-
netic research, and nearly 172 different RNA modifica-
tions are present in MODOMICS [3]. Among them, 
N6-methyladenosine (m6A) is widespread throughout 
the transcriptome; indeed, m6A comprises approximately 
60% of RNA chemical modifications and is present on 
0.1% to 0.4% of total adenosine residues, including > 300 
noncoding RNAs and 7600 mRNAs, in eukaryotes [4–
6]. RNA m6A methylation regulates mRNA alternative 
splicing, stability, and intracellular localization, constitut-
ing the major posttranscriptional modification [7]. The 
formation of m6A is regulated by three categories of pro-
teins: readers (which recognize m6A-modified sites, such 
as YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 
HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP1, 
IGFBP2, IGFBP3, RBMX, and ELAVL1), writers (meth-
yltransferases, such as METTL3, METTL14, METTL16, 
WTAP, VIRMA (also called KIAA1429), ZC3H13, 
RBM15, RBM15B, and CBLL1), and erasers (demethyl-
ases, such as FTO and ALKBH5).

m6A regulatory genes are reported to participate in 
various carcinogenic and tumor progression processes 
[8, 9]. METTL3 is reported to advance PCa progression 
and is associated with poor prognosis by stabilizing the 
mRNAs of MYC, LEF1, and integrin β1 (ITGB1) by m6A 
methylation [10–12]. However, one study suggested that 
low expression of METTL3 is associated with resistance 
to therapy with androgen receptor antagonists via upreg-
ulation of NR5A2/LRH-1 [13]. This finding indicates the 
controversy and opposing functions of METTL3 in PCa. 
YTHDF2-induced AKT phosphorylation and MDB3B 
m6A modification may also promote PCa proliferation, 
migration, and invasion [14, 15]. FTO, an m6A dem-
ethylase, inhibits the invasion and migration of PCa cells 
by regulating total m6A levels [16]. Nevertheless, there 

are insufficient data on m6A regulators in PCa, and the 
role of m6A regulators remains controversial; in general, 
comprehensive transcriptome and genomic analysis is 
needed. This study fully analyzed m6A-related genes in 
PCa progression and prognosis.

Materials and methods
Data acquisition
Transcriptome profiling and single nucleotide variation 
data for prostate adenocarcinoma in The Cancer Genome 
Atlas (TCGA) were downloaded from the GDC Data 
Portal (https://​portal.​gdc.​cancer.​gov/). Copy number 
and clinical phenotype data were downloaded from the 
University of California Santa Cruz Xena (https://​xena.​
ucsc.​edu/). Gene expression matrices were extracted and 
obtained through Practical Extraction and Report Lan-
guage (Perl) (version 5.34.0) and R software (4.0.3) (R 
Development Core Team, Vienna, Austria). The R pack-
age “RCircos” was used to generate Circos plots.

Differentially expressed gene (DEG) analysis
mRNA levels were analyzed with TPM (transcripts per 
kilobase of exome per million mapped reads) data, which 
were transformed from the HTSeq-FPKM transcriptome 
profiling data of TCGA-PRAD. The R packages “limma” 
and “ggpurb” were then used to identify DEGs between 
the normal and tumor groups and for further statisti-
cal analysis. The Wilcoxon or Kruskal−Wallis test was 
performed to determine DEG levels, and P < 0.05 was 
identified as statistically significant. The R packages “clus-
terProfiler” and “enrichplot” were used to analyze Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment.

Survival and correlation analyses
Survival data for “biochemical_recurrence”, “days_to_
first_biochemical_recurrence”, and “days_to_last_follow_
up.diagnoses” were obtained from clinical phenotype 
data. When “days_to_first_biochemical_recurrence” was 
indicated, we regarded these patients as having “recur-
rence status”, and the time notated was used as the 
“recurrence follow-up time”. Other cases were regarded 
as having “no recurrence”, and “days_to_last_follow_
up.diagnoses” was used as “recurrence_follow_up_time”. 
The R packages “survival” and “survminer” were used for 
survival analysis. Survival curves were evaluated through 
Kaplan–Meier and log-rank tests. Correlation analysis 
was performed through Pearson or Spearman correlation 
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analysis, and a prognostic network map was drawn using 
the R packages “igraph”, “psych”, “reshape2”, and “RColor-
Brewer”. To build a PCa prognostic model using DEGs 
of m6A clusters, univariate Cox regression analysis was 
conducted, and P < 0.05 was used for later gene consen-
sus clustering analysis.

Consensus clustering analysis and principal component 
analysis (PCA)
To determine whether m6A regulators are related to PCa 
prognosis, the cohort from TCGA was allocated into dif-
ferent groups based on the consensus level of m6A regu-
lators. The process was performed using the R package 
“ConsensusClusterPlus” and resulted in cluster consen-
sus and item-consensus results. The graphical output 
consisted of heatmaps, consensus cumulative distribu-
tion function (CDF) plots and delta area plots. The clus-
ter number was determined through a high consistency 
of clusters, a low coefficient of variation, and no signifi-
cant increase in the CDF curve. The chi-square test or 
Fisher’s exact test was used to analyze clinicopathological 
characteristics and clustering. The heatmap was gener-
ated through the R package “pheatmap”. Recurrence-free 
survival (RFS) was detected among groups using Kaplan–
Meier and log-rank tests. PCA was performed to judge 
the fitness of the classification with the prcomp function 
of R software.

Gene set variation analysis (GSVA)
GSVA is used for assessing KEGG gene set enrichment, 
which is a nonparametric and unsupervised method 
[17]. GSVA could comprehensively score the gene sets 
of interest and translate them into the pathway level. In 
this study, to evaluate the potential pathway changes of 
different clusters, we downloaded “KEGG gene sets as 
Gene Symbols” from the GSEA website (http://​www.​
gsea-​msigdb.​org/​gsea/) and used the GSVA algorithm to 
comprehensively score each gene set.

Tumor mutational burden (TMB) estimation
TMB was calculated by the total number of mutated/total 
covered bases [18]. PCa was classified into two groups 
based on the optimum threshold segmentation of TMB 
status population. We analyzed the relationship between 
the m6A score (shown as m6Ascore below) and the TMB 
and then performed survival analysis comparing progno-
sis between the high TMB and low TMB groups.

Tumor microenvironment (TME) cell infiltration
TME infiltration levels were calculated through single-
sample gene set enrichment analysis (ssGSEA) and quan-
tified using enrichment scores [17]. The gene set of each 

TME infiltrating immune cell type was obtained as previ-
ously reported [19]. Correlation analysis between m6As-
core and immune-associated genes was performed to 
illustrate the relationship.

Clinical PCa samples
Forty-five pathologically diagnosed PCa patients (15 
with Gleason score (GS) < 7, 15 with GS = 7, and 15 with 
GS > 7) were recruited from Beijing Tongren Hospital 
and Beijing Chaoyang Hospital in accordance with the 
Ethics Committee of Beijing Tongren Hospital and Bei-
jing Chaoyang Hospital, affiliated with Capital Medi-
cal University. All patients underwent prostatectomy 
between 2016 and 2021; PCa and adjacent normal tissues 
were removed and stored in liquid nitrogen. The clinico-
pathological characteristics of PCa patients are shown in 
Table 1.

Quantitative real‑time PCR (qPCR) analysis
qPCR analysis was performed as previously described by 
our group [20, 21]. Total RNA was isolated using TRIzol™ 
reagent (Invitrogen), and complementary DNA (cDNA) 
was synthesized through One-Step gDNA Removal and 
cDNA Synthesis SuperMix (TransGen Biotech, Beijing, 
China). qPCR was performed using Top Green qPCR 
SuperMix (TransGen Biotech) on an SDS 7500 FAST 
Real-Time PCR system (Applied Biosystems, Foster City, 
CA, USA). GAPDH or 18S ribosomal RNA was used 
as an endogenous reference gene. The relevant primer 
sequences are shown in Additional file 1: Table S1.

Immunophenoscore (IPS) analysis
IPS analysis was performed as previously reported [22]. 
IPS determines immunogenicity by referring to effec-
tor cells, immunosuppressive cells, MHC molecules and 
immunomodulators. IPS (ranging from 0 to 10) was cal-
culated according to the gene expression of the repre-
sentative cell types without bias using machine learning 
methods. The IPS results of TCGA-PRAD patients were 
downloaded from The Cancer Immunome Atlas (TCIA) 
(https://​tcia.​at/​home).

Statistical analysis
Statistical analyses were conducted using R software 
(4.0.3), SPSS software version 23 (IBM, Armonk, New 
York, USA), and GraphPad Prism 7.0 (GraphPad Soft-
ware, La Jolla, CA, USA). Incomplete data were excluded. 
Chi-square or Fisher’s exact tests were used for categori-
cal variables, and Wilcoxon or Kruskal–Wallis tests were 
used for continuous data. Correlations between two lev-
els were assessed through Pearson or Spearman correla-
tion analysis. Survival analysis was applied through the 

http://www.gsea-msigdb.org/gsea/
http://www.gsea-msigdb.org/gsea/
https://tcia.at/home


Page 4 of 19Quan et al. Cancer Cell International           (2022) 22:33 

log-rank test of Kaplan–Meier survival analysis and haz-
ard ratio (HR) with the 95% confidence interval (CI) of 
univariate Cox proportional hazard models. P < 0.05 was 
indicated as significant.

Results
Characteristics of m6A regulators in PCa
In the TCGA-PRAD dataset, we analyzed copy num-
ber variation (CNV) analysis alterations, DEGs, and the 
mutation frequency of m6A regulators of PCa through 
comparison with normal samples. For CNV events, 
approximately 76% (19/25) of m6A regulators lost DNA 
copy number, with ZC3H14 having the highest degree of 
copy number loss (28.49%) (Fig. 1A). Six m6A regulators 
gained copy number, among which VIRMA had the high-
est such percentage (3.19%) (Fig.  1A). The m6A regula-
tor CNV alterations and locations on chromosomes are 
shown in the lower panel of Fig.  1A. Of the 499 tumor 
and 52 normal samples in the dataset from TCGA, DEGs 
of m6A regulators were statistically estimated using TPM 
data. The levels of METTL3, HNRNPA2B1, RBM15B, 
and IGFBP2 were higher, while those of ZC3H13, FTO, 
and IGFBP3 were lower in PCa tissues than in normal 
tissues (P < 0.001) (Fig. 1B and Table 2). In mutation fre-
quency analyses, 16 m6A-related genes were mutated 
among 19 of 484 (3.93%) samples; mutations in VIRMA 
(KIAA1429), YTHDC2, RBM15B, YTHDF2, and IGFBP1 
were detected in one sample (Fig.  1C). ZC3H14 exhib-
ited the highest mutation rate (4/484), and all 25 m6A 
regulators exhibited low mutation rates (< 1%) in TCGA 
samples. This suggests the relatively conserved and stable 
expression of m6A regulators during PCa progression.

Expression of m6A regulators in PCa prognosis 
and different clinicopathological characteristics
The expression of m6A regulators in different GSs and 
pathological T (pT) stages was estimated using TCGA-
PARD TPM data. As PCa with GS ≥ 7 is associated with 
worse prognosis [23, 24], the PCa samples were divided 
into three groups: GS < 7, GS = 7, and GS > 7. Compared 
with the GS < 7 group, IGFBP3, HNRNPA2B, RBMX, 
RBM15B, YTHDF1, HNRNPC, VIRMA, and FMR1 
were significantly highly expressed in the GS > 7 group 
(P < 0.001) (Fig.  2A and Table  3). In addition, T2 (188), 
T3 (295), and T4 (10) pT stages were compared. Among 
the 25 m6A regulators, IGFBP3, HNRNPA2B1, VIRMA, 
and RBMX were more highly expressed in the T3 stage 
than in the T2 stage (P < 0.001) (Fig.  2B and Table  4). 
Based on Kaplan–Meier curves in survival analysis, high 
expression of HNRNPA2B1, IGFBP1, and ELAVL1 was 
associated with poor RFS (P < 0.001) (Fig.  2C). Moreo-
ver, TP53 mutation in PCa was associated with shorter 
radiographic progression-free survival (rPFS) and time 
to CRPC [25]. Compared with the TP53 wild-type group 
of PCa samples, the levels of VIRMA and IGFBP3 were 
higher and the level of IGFBP2 was lower in the TP53 

Table 1  Clinicopathological characteristics of PCa patients

Clinicopathological parameters Total (n = 45) (%)

Age

 Median (IQR) 65 (59.5–70.0)

 Range (Min, Max) 52–78

  < 65 22 (48.9%)

  ≥ 65 23 (51.1%)

Total PSA (t-PSA) (ng/ml)

Median (IQR) 15.28
(8.61–38.30)

Range (Min, Max) 1.05–92.21

 < 4 ng/ml 4 (8.9%)

 4–10 ng/ml 12 (26.7%)

 10–20 ng/ml 12 (26.7%)

 > 20 ng/ml 17 (37.8%)

Gleason Score (GS)

 < 7 15 (33.3%)

 = 7 15 (33.3%)

 > 7 15 (33.3%)

Clinical T-stage

 T2a 6 (13.3%)

 T2b 12 (26.7%)

 T2c 15 (33.3%)

 T3a or T3b 12 (26.7%)

Lymph node metastasis

 N0 30 (66.7%)

 N1 15 (33.3%)

Distant metastasis

 M0 or Mx 41 (91.1%)

 M1 4 (8.9%)

TNM stage

 I-II 25 (55.6%)

 III-IV 20 (44.4%)

Log0.5 MMAB expression

 Median (IQR) 13.823837
(13.254977–14.245784)

 Range (Min, Max) 11.968522–15.233100

Log0.5 IGFBP3 expression

 Median (IQR) 12.619003
(11.692416–13.321569)

 Range (Min, Max) 10.851545–14.289084

Log0.5 HNRNPA2B1 expression

 Median (IQR) 11.927719
(11.106794–12.651593)

 Range (Min, Max) 10.123230–13.496253
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mutation group (P < 0.001) (Fig.  2D  and Table  5). Risk 
factors and relationships of m6A regulators are summa-
rized in the prognosis network shown in Fig. 2E.

We analyzed DEGs of m6A regulators in GS (GS > 7 ver-
sus (vs.) GS < 7), pT (T3 vs. T2), RFS (P value of univariate 
Cox regression analysis < 0.05), TN (tumor vs. normal PCa 
tissues), and TP53 (mutation vs. wild type) comparisons. 
Intersecting genes were identified via a Venn diagram, and 
HNRNPA2B1 and IGFBP3 were differentially expressed in 
all comparisons (Fig.  2F). The level of HNRNPA2B1 was 
higher in the PCa group than in the normal group and high 
in association with advanced-stage parameters: namely, 
GS > 7, pT3, HR > 1, and TP53 mutation. However, the level 
of IGFBP3 was lower in PCa tissues but higher in the pres-
ence of the above advanced-stage indicators. This suggests 

that different molecular mechanisms and expression pat-
terns may exist in PCa and throughout progression. We 
then assessed the expression of HNRNPA2B1 and IGFBP3 
in 45 PCa tissues (including 15 with GS < 7, 15 with GS = 7, 
and 15 with GS > 7) and 15 adjacent normal prostate tis-
sues. Levels of HNRNPA2B1 and IGFBP3 were higher in 
66.7% (10/15, P < 0.05) and 40.0% (6/15, P > 0.05) of PCa 
tissues than in adjacent normal tissues, respectively, and 
the GS > 7 group exhibited elevated expression of HNRN-
PA2B1 and IGFBP3 compared with the GS < 7 group (both 
P < 0.05) (Fig. 2G).

Consensus clustering analysis according to m6A regulators
To further explore the phenotypes of m6A regula-
tors in different prognoses and clinicopathological 

Fig. 1  Characteristics of m6A regulators in prostate cancer. A (top) The CNV variation frequency of m6A regulators in TCGA-PRAD. Blue dot: 
deletion frequency; red dot: amplification frequency. (bottom) The location of CNV alterations of m6A regulators on 23 chromosomes. Blue 
dot: copy number loss, red dot: copy number gain. B Box plot of the expression of the 25 m6A regulators in PCa and normal tissues. Median 
values ± interquartile ranges are shown in the graph. ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001. C The mutation frequency of 25 m6A regulators 
in 484 TCGA-PRAD patients is shown on the waterfall plot. Columns represent individual patients, the upper bar plot shows the TMB, the right bar 
plot shows the proportion of each variant type, and the stacked bar plot below shows the transformed fraction of each patient
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characteristics of the TCGA-PRAD cohort, we per-
formed consensus clustering analysis to identify 
subgroups of 495 PARD cases according to 25 m6A regu-
lators (m6Acluster). Relatively high consistency, a low 
coefficient of variation, and an appreciable increase in the 
area under the CDF curve were determined as the crite-
ria of cluster number. With regard to the relative change 
in the area under the CDF curves for the cluster number, 
k = 3 was determined to be the best category number of 
clusters (Fig.  3A). Subclasses were evaluated via PCA, 
and all three clusters were significantly distinguished, 
especially in clusters A and C (Fig. 3B), indicating correct 
prediction of the m6Acluster (these clusters are shown as 
“clusters 1–3 or A-C”). Next, we compared different clin-
icopathological characteristics of PRAD among the clus-
ters, and the results showed relatively higher pathological 
N (pN) stage, GS 8–10, and biochemical recurrence rates 
in cluster A (Fig.  3C). The different KEGG pathways 
between clusters A and C were analyzed through GSVA 
(Fig.  3D). Cancer- and apoptosis-related pathways were 
significantly dysregulated between clusters A and C. We 

also analyzed changes in immune cell infiltration in dif-
ferent m6Aclusters and found 12 of 23 subpopulations of 
immune cells to be differentially expressed in the three 
clusters (Fig.  3E and Table  6). Kaplan–Meier survival 
curves of RFS based on the m6Aclusters demonstrated 
no significant differences among the groups (P = 0.475) 
(Fig. 3F).

Consensus clustering analysis based on DEGs 
of m6Aclusters
DEGs (P value of Bayes test < 0.001) were analyzed in 
every pairwise comparison according to the three clus-
ters based on m6A regulators, and the 74 intersecting 
genes were identified via a Venn diagram (Fig.  4A). We 
then analyzed the biological functions of these 74 genes, 
which were categorized into GO terms of biological pro-
cess (BP), cell component (CC), and molecular function 
(MF). Under the stringent threshold of P-adjust < 0.05, 
only 1 specific CC (proton-transporting V-type ATPase, 
V0 domain) was enriched (Additional file  2: Fig. S1A-
B). Additionally, KEGG signaling pathway analysis of 74 
genes indicated significant enrichment in the oxidative 
phosphorylation KEGG pathway (Additional file  2: Fig. 
S1C-D).

Univariate Cox regression analysis was also performed 
on the 74 intersecting genes, and 6 (BAIAP2, TEX264, 
MMAB, JAGN1, TIMM8AP1, and IMP3) related to PCa 
recurrence were selected (P < 0.05) (Fig. 4B). The charac-
teristics of the 6 or 5 DEGs (TIMM8AP1 was excluded 
because of being a processed pseudogene and a lack of 
copy number data) regarding CNV alterations, DEGs, 
and mutation frequency were analyzed in PCa compared 
with normal samples (Additional file  3: Fig. S2A-D and 
Additional file  1: Table  S2). We found that the levels of 
4 (BAIAP2, IMP3, JAGN1, MMAB) of the 6 genes were 
significantly upregulated in PCa tissues. Interestingly, 
JAGN1 exhibited the highest degree of copy number 
loss (5.18%), but its expression was higher in PCa tissues 
than in normal prostate tissues (P < 0.01). When assess-
ing the expression of the 6 genes with respect to the 
clinicopathological characteristics GS, pT, and TP53, we 
found that most were downregulated in advanced stages 
(GS > 7, pT3, and TP53 mutation). Survival analysis also 
indicated that low expression of these 6 genes was sig-
nificantly associated with poor RFS (Additional file 4: Fig. 
S3A-D and Additional file 1: Table S3–S5). The risk fac-
tors and relationships of the 6 genes are summarized in 
the prognosis network illustrated in Additional file 4: Fig. 
S3E.

Consensus clustering analysis was performed for these 
6 genes (geneCluster), and k = 3 was determined to result 
in the best classification with respect to the delta area 
results (cluster 1–3 or A-C) (Fig.  4C). PCA verified the 

Table 2  The expression levels of 25 m6A regulators in TCGA-
PRAD and normal tissues

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Gene Normal 
(median)

Tumor 
(median)

P value P symbola

METTL3 4.304684 4.790198 2.44E-11 ***

METTL14 3.851525 3.682336 0.03669 *

METTL16 4.198874 3.963548 0.023015 *

WTAP 5.979951 5.95777 0.740731 ns

VIRMA 4.214773 4.064446 0.255423 ns

ZC3H13 5.0224 4.529186 4.93E-08 ***

RBM15 2.901797 2.98326 0.025136 *

RBM15B 5.183314 5.548273 2.44E-09 ***

CBLL1 4.733786 4.543428 0.15531 ns

YTHDC1 5.389822 5.331527 0.261206 ns

YTHDC2 3.509213 3.550773 0.057348 ns

YTHDF1 5.819509 6.009969 0.000426 ***

YTHDF2 5.58442 5.729154 0.000836 ***

YTHDF3 5.628178 5.457101 0.396418 ns

HNRNPC 7.307854 7.455818 0.008174 **

FMR1 4.07059 3.89702 0.002945 **

LRPPRC 5.580982 5.53787 0.397438 ns

HNRNPA2B1 7.831312 8.167939 3.34E-10 ***

IGFBP1 0 0 0.187698 ns

IGFBP2 6.997535 7.466738 7.00E-07 ***

IGFBP3 6.508928 5.863846 7.73E-05 ***

RBMX 6.32992 6.408794 0.0266 *

ELAVL1 5.323377 5.421104 0.000426 ***

FTO 3.998101 3.576431 1.24E-07 ***

ALKBH5 7.08196 6.930204 0.003862 **
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significance of the three subgroups (Additional file 5: Fig. 
S4A).

A heatmap of clinicopathological features in the three 
geneClusters indicated that pT stage, N stage, GS, and 
biological recurrence were significantly higher in gene-
Cluster A than in the other clusters (Fig.  4D). Kaplan–
Meier survival analysis revealed significant differences 

between the three m6Aclusters, among which geneClus-
ter A had the poorest RFS (P = 0.012) (Fig. 4E). Next, we 
analyzed the expression of m6A regulators in different 
geneClusters and found that 21 of 25 m6A regulators 
were differentially expressed among them (Fig.  4F and 
Table 7). Moreover, 16 of 23 subpopulations of immune 
cells were differentially expressed among the three 

Fig. 2  Expression of m6A regulators in relation to different PCa clinicopathological characteristics and prognoses. A–D Distribution of 3–4 
representative m6A regulators (3–4 with the lowest P values) in TCGA-PRAD data stratified by GS (A), pT (B), RFS (C), and TP53 mutation (D). The 
box plots show the median ± interquartile range of values, and P values are presented above each pair of comparisons. E Prognosis network of 
interactions between m6A regulators in PCa. The P values of each regulator with respect to the prognosis are shown as circles of different sizes. 
Purple in the right hemisphere: risk factors for RFS; green in the right hemisphere: favorable factors for RFS. The erasers, readers, and writers of the 
m6A regulator are shown as blue, orange, and red colors, respectively on the left. Positive or negative correlations of m6A regulators are linked 
with lines of different colors (pink: positive, blue: negative), and the correlation strength between them is shown as different line thicknesses. F 
Intersecting DEGs of 25 m6A regulators in GS (GS > 7 vs. GS < 7), pT (T3 vs. T2), RFS (P value of univariate Cox regression analysis < 0.05), TN (tumor 
vs. normal PCa tissues), and TP53 (mutation vs. wild type) are shown as Venn diagrams. G PCa tissues and adjacent normal tissues were divided 
into four groups according to GS score (15 of normal tissue, 15 of GS < 7, 15 of GS = 7, and 15 of GS > 7). mRNA levels of intersecting genes were 
compared in different groups of PCa and adjacent normal tissues (PCa vs. adjacent normal; adjacent normal vs. GS < 7 vs. GS = 7 vs. GS > 7). Relative 
HNRNPA2B1 and IGFBP3 mRNA levels were assessed through qPCR analysis and normalized to adjacent normal tissues or those of endogenous 
reference genes. Means ± SEMs are shown in the graphs.  ns P > 0.05 and * P < 0.05
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clusters (Additional file 5: Fig. S4B and Additional file 1: 
Table  S6). In the GSVA of different KEGG pathways, a 
small cell lung cancer-related pathway was dysregulated 
between geneClusters A and C (Additional file  5: Fig. 
S4C).

We also analyzed DEGs of the 6 genes regarding GS, 
pT, RFS, TN, and TP53, as illustrated in Fig.  2G. The 
intersecting genes MMAB and BAIAP2 were identi-
fied via a Venn diagram (Fig. 4G), and both were highly 
expressed in PCa tissues compared with normal tissue 
but were low with respect to the four parameters, indi-
cating advanced stage. This suggests opposite expres-
sion patterns of MMAB and PAIAP2 in PCa occurrence 
and progression. The mRNA expression level of MMAB 
was analyzed through qPCR using 45 PCa tissues and 15 
adjacent normal prostate tissues, as mentioned above. It 
was upregulated in 60.0% (9/15, P < 0.05) of PCa tissues 
compared with adjacent normal tissues, with the GS > 7 
group exhibiting reduced expression compared with the 
GS < 7 group (P < 0.05) (Fig. 4H). The differential expres-
sion of MMAB in PCa occurrence and progression was 
histologically verified.

Low m6Ascore based on the 6 genes was associated 
with poor prognosis in RFS
The clustering analysis above was based on the popula-
tion of the patient and could not be used to quantitatively 
assess the patterns of m6A regulators. Considering the 
complexity of m6A regulators and individual heterogene-
ity, the m6Ascore was calculated through PCA of the 6 
gene levels in TCGA-PARD, and statistical analysis was 
performed to examine the relationship between m6As-
core and geneCluster/m6Acluster. The results revealed a 
significant difference in both clusters: geneCluster A had 
the lowest m6Ascore, and geneCluster C had the highest 
(Fig.  5A). PRAD patients were divided into two groups 
based on the optimum threshold segmentation of m6As-
core in RFS analysis, and according to Kaplan–Meier 
survival analysis, poor RFS was associated with the low 
m6Ascore group (Fig.  5B). The alluvial diagram shows 
the attribute changes in m6Acluster, geneCluster, m6As-
core, and recurrence status (fustat) (Fig. 5C). All patients 
in the low m6Ascore group were classified into gene-
Cluster A, which was relevant to the worse RFS outcome 
(recurrence rate: 27.6%). The correlation of m6Ascore 

Table 3  Expression levels of m6A regulators in TCGA-PRAD data stratified by GS

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Gene GS < 7 (median) GS = 7 (median) GS > 7 (median) P (GS < 7 vs. GS > 7) P symbola

METTL3 25.86643 26.03757 28.77871 0.012126 *

METTL14 11.3965 12.04075 11.73067 0.587863 ns

METTL16 14.60147 15.50221 14.0438 0.44366 ns

WTAP 62.4395 63.1373 57.53999 0.143969 ns

VIRMA 14.15936 15.21605 16.58136 0.000484 ***

ZC3H13 23.46752 22.64276 21.06241 0.589439 ns

RBM15 6.503603 6.872581 7.042117 0.030353 *

RBM15B 37.72488 45.43605 47.3531 0.00017 ***

CBLL1 23.24536 22.96488 21.80928 0.93803 ns

YTHDC1 38.39455 38.13983 40.96145 0.012687 *

YTHDC2 10.07219 10.39407 11.02557 0.050573 ns

YTHDF1 56.35877 63.87374 65.1596 0.000336 ***

YTHDF2 47.1231 53.60412 52.07434 0.007882 **

YTHDF3 38.58748 43.74472 44.60192 0.009576 **

HNRNPC 148.352 171.741 180.9566 0.000415 ***

FMR1 12.6015 13.62071 14.75719 0.000992 ***

LRPPRC 41.37827 44.88092 47.23535 0.009325 **

HNRNPA2B1 263.0709 271.8228 310.4768 2.31E-06 ***

IGFBP1 0 0 0.013463 0.024217 *

IGFBP2 187.1589 182.7438 161.6246 0.026865 *

IGFBP3 39.02542 48.8547 72.32879 9.45E-08 ***

RBMX 76.6101 81.48018 88.62738 4.93E-05 ***

ELAVL1 39.58125 41.91052 42.85327 0.0035 **

FTO 11.43039 11.10629 10.74576 0.705953 ns

ALKBH5 120.1901 121.221 120.7401 0.878236 ns
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and immune-associated genes was evaluated, resulting 
in 16 of 23 immune-related cell infiltrates being found to 
be negatively related to m6Ascore (Fig. 5D). This suggests 
the negative regulation of the immune reaction during 
m6Ascore elevation. A previous study showed that low 
immune infiltration was potentially related to prolonged 
survival [26]. Consistent with our results, the high m6As-
core group had a tendency toward favorable prognosis in 
terms of RFS (Fig. 5B).

Characteristics of m6Ascore status for TCGA‑PRAD tumor 
mutation and subtypes
A study suggested that the TMB score was positively 
associated with tumor-related oncogenic mutations, 
which led to tumor progression but was easier to detect 
by immune cells, making them more likely to be sensi-
tive to immunotherapy [27, 28]. As shown in Fig.  5B, 
TCGA-RRAD patients were divided into two groups (58 
in the low m6Ascore group and 437 in the high m6As-
core group), and the association of m6Ascore and TMB 
was assessed. The results showed no significant differ-
ence in TMB scores in the m6Ascore groups (P = 0.13) 

(Fig. 6A, left). Spearman correlation analysis also showed 
no significant correlation between the expression levels 
of m6Ascore and TMB (P > 0.05) (Fig.  6A, right). This 
is discordant with other study in gastric cancer, which 
showed that m6Ascore and TMB exhibited a significant 
negative correlation [19]. The PRAD patients were then 
divided into two groups based on the optimum thresh-
old segmentation of TMB value in RFS analysis (242 in 
the low TMB group and 231 in the high TMB group). 
In Kaplan–Meier analysis, a tendency toward poor RFS 
was found in the high TMB group compared with the 
low TMB group, but the difference was not significant 
(P = 0.051)  (Fig.  6B,  left). This suggests that the higher 
malignancy of PCa patients potentially correlated with 
the high TMB score group. When analyzing m6A and 
TMB together, we found a great RFS advantage for the 
combination of low TMB with high m6Ascore (Fig.  6B, 
right). Consistent with our previous result, the low TMB 
and high m6Ascore groups had better prognoses in terms 
of RFS (Fig. 5B and Fig. 6B, left).

The distribution differences of somatic mutations were 
analyzed between m6Ascore groups, and the results 

Table 4  Expression levels of m6A regulators in TCGA-PRAD data stratified by pT

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Gene pT = 2 (median) pT = 3 (median) pT = 4 (median) P (pT = 2 vs. pT = 3) P symbola

METTL3 27.06274 26.48476 26.30134 0.365576 ns

METTL14 11.67474 11.8227 13.97603 0.853312 ns

METTL16 15.01602 14.43229 17.49281 0.229372 ns

WTAP 62.01344 59.79612 53.04483 0.06393 ns

VIRMA 14.40579 16.51078 22.99954 0.000227 ***

ZC3H13 23.14228 21.01365 22.76672 0.416107 ns

RBM15 6.749674 6.883484 8.615314 0.274807 ns

RBM15B 44.14219 46.68428 55.24486 0.0486 *

CBLL1 23.00583 21.84154 30.68415 0.360921 ns

YTHDC1 38.16906 39.80338 44.09208 0.062198 ns

YTHDC2 10.47902 10.7769 17.22446 0.439427 ns

YTHDF1 61.14875 64.5393 87.48373 0.011815 *

YTHDF2 51.36317 52.29989 68.72696 0.336839 ns

YTHDF3 41.22466 44.1152 62.55585 0.148109 ns

HNRNPC 167.5473 179.2224 204.646 0.001177 **

FMR1 13.15182 14.1732 20.4288 0.001644 **

LRPPRC 44.08828 46.08805 60.92826 0.249137 ns

HNRNPA2B1 271.8575 296.6347 344.7956 1.31E-05 ***

IGFBP1 0 0 0.038231 0.100044 ns

IGFBP2 187.1589 168.3542 152.7416 0.037715 *

IGFBP3 42.2307 64.22177 83.39194 2.48E-07 ***

RBMX 78.0526 86.94696 119.5574 0.000471 ***

ELAVL1 40.91439 42.45284 49.47014 0.002996 **

FTO 10.76108 10.90775 13.05522 0.967256 ns

ALKBH5 121.6235 120.1459 132.7814 0.579113 ns
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indicated a more extensive mutation frequency of TP53 
(18% vs. 8%) but a reduced mutation frequency of SPOP 
(2% vs. 12%) in the low m6Ascore group (Fig. 6C).

For the relationship between m6Ascore and fustat, 
the low m6Ascore group experienced a higher rate of 
recurrence (Fig. 6D left), which was consistent with the 
RFS analysis in Fig. 5B. Biochemical recurrence was also 
associated with lower m6Ascore (Fig. 6D, right). We then 
analyzed prognosis in the m6Ascore groups with regard 
to different clinicopathological features through RFS 
analysis (Fig.  6E and Additional file  6: Fig. S5A-B). The 
low m6Ascore group was associated with poor RFS in GS 
8–10 and pT3 stages (P < 0.05) (Fig. 6E).

The expression of PD-L1 was detected to elucidate a 
potential response to immunotherapy, and the low m6As-
core group showed relatively high levels of expression   
(P = 0.023) (Fig.  6F). Finally, we further predicted the 
value of the risk score for immune checkpoint blockade 
(ICB). The IPS results of TCGA-PRAD were downloaded 
from the TCIA website. PD1 and CTLA4 were enrolled 
for IPS analysis and further classified into four parts: 
ips_ctla4_neg_pd1_neg (CTLA4 negative response and 

PD1 negative response), ips_ctla4_neg_pd1_pos (CTLA4 
negative response and PD1 positive response), ips_ctla4_
pos_pd1_neg, and ips_ctla4_pos_pd1_pos (Fig. 6G, Addi-
tional file 6: Fig. S5C). The average IPS in the comparison 
of the low and high m6Ascore groups showed no signifi-
cant difference in the four parts of the negative or posi-
tive response of PD1 and CTLA4 (Fig.  6G, Additional 
file  6: Fig. S5C). These results indicate that m6Ascore 
may lack efficacy in the risk score model for predicting 
the response to PD1 and CTLA4 therapy.

Discussion
In this study, we comprehensively evaluated the m6A 
modification patterns in TCGA-PRAD and found 6 
DEGs (BAIAP2, TEX264, MMAB, JAGN1, TIMM8AP1, 
and IMP3) based on m6Aclusters. A model of optimal 
clusters was established, and m6Ascore analysis was per-
formed based on the above 6 genes.

In general, elucidating the molecular mechanism of 
PCa progression remains crucial. It has been reported 
that epigenetic reprogramming is key for PCa pro-
gression [29, 30] and that inhibition of the epigenetic 

Table 5  Expression levels of m6A regulators in TCGA-PRAD data stratified by TP53 mutation

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Gene Wild type (median) Mutation (median) P value (wild vs. mut) P symbola

METTL3 26.66187 28.77871 0.155657 ns

METTL14 11.7543 11.92501 0.210393 ns

METTL16 14.83022 12.4188 0.001348 **

WTAP 61.08309 59.07833 0.694618 ns

VIRMA 15.52701 18.9505 0.000697 ***

ZC3H13 20.69471 24.60509 0.071727 ns

RBM15 6.887572 6.931969 0.381289 ns

RBM15B 46.10196 52.61076 0.008893 **

CBLL1 21.93925 24.83281 0.144508 ns

YTHDC1 38.77673 44.14293 0.01052 *

YTHDC2 10.51239 12.71358 0.008028 **

YTHDF1 62.76196 66.50237 0.045122 *

YTHDF2 51.76176 60.97605 0.011735 *

YTHDF3 42.92899 48.0619 0.037743 *

HNRNPC 175.4147 186.623 0.013856 *

FMR1 13.67919 15.39546 0.028109 *

LRPPRC 45.50271 55.43345 0.04845 *

HNRNPA2B1 285.6907 320.1461 0.005563 **

IGFBP1 0 0 0.328748 ns

IGFBP2 182.2817 130.7453 7.05E-05 ***

IGFBP3 54.82908 76.41379 0.000933 ***

RBMX 82.82156 93.84054 0.009741 **

ELAVL1 42.00761 42.3959 0.435743 ns

FTO 10.87488 9.600595 0.738732 ns

ALKBH5 119.9799 121.8514 0.551667 ns
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regulator EZH2 might effectively overcome ADT resist-
ance [2]. Our previous study found that epigenetically 
activating AR/NDRG1 signaling through histone meth-
ylation and DNA methylation significantly suppresses 
CRPC progression [20, 21].

Nevertheless, the effect of mRNA posttranscriptional 
modification in PCa is still unclear. m6A RNA methyla-
tion may be among the most extensive RNA modifica-
tions [31–33]. Yabing Chen et  al. highlighted that total 
RNA m6A modification levels are significantly increased 

Fig. 3  Consensus clustering analysis based on m6A regulators. A (left) Relative change in area under the CDF curve from k = 2 to 9. (right) 
Color-coded heatmap of the consensus matrix for k = 3. Color gradients represent values from 0–1 (white: 0, dark blue: 1). B PCA of the 
transcriptome profiles of three m6Acluster patterns, showing a marked difference in the transcriptome between different m6Aclusters. Different 
dots of red, orange, and blue in the scatter diagram represent m6Aclusters A to C. C The heatmap shows unsupervised clustering of 25 m6A 
regulators in TCGA-PRAD. PSA grade, pT, pN, GS, and biochemical recurrence were used for patient annotation. Red represents high expression, 
and blue represents low expression. D Heatmap of KEGG enrichment analysis showing the activation states of biological pathways in distinct 
m6Aclusters. Red represents activation, and blue represents inhibition. E Abundance of each infiltrating immune cell among the three m6Aclusters 
is shown in the boxplot. The median ± interquartile range of values is shown in the graph. ns P > 0.05; * P < 0.05; ***P < 0.001. F Survival analysis 
for RFS among three m6Aclusters based on 495 TCGA-PRAD patients. Kaplan–Meier curves and log-rank P values are shown in the graph, and the 
numbers at risk are shown at the bottom
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in PCa tissues due to upregulation of METTL3 [34]. In 
addition, knockdown of METTL3 significantly reduces 
PCa cell migration and invasion. YTHDF2, a reader of 
m6A modification, synergistically induces PCa progres-
sion with METTL3 by regulating AKT phosphorylation 
[15]. However, low levels of METTL3 were also found 
to lead to advanced metastatic PCa that is resistant to 
androgen receptor antagonists [35]. These controver-
sial results reveal the complexity of m6A regulators and 
individual heterogeneity of m6A regulators in PCa, and 
various m6A regulators may form a complex network 
structure and interact with each other to affect PCa 
progression.

In this study, we examined three representative groups 
of m6A regulators: 14 “readers”, 9 “writers”, and 2 “eras-
ers”. Bioinformatic analysis was then performed to com-
prehensively investigate the association between m6A 
modification patterns and PCa clinicopathological char-
acteristics and prognosis.

Compared with normal prostate tissues in TCGA data-
base, METTL3 was significantly highly expressed in PCa, 
and negligible CNV and mutation rate were found in this 
analysis. ZC3H13 exhibited the highest degree of copy 
number loss (28.49%) and highest mutation rate (4/484) 

among all 25 m6A regulators. The mRNA of ZC3H13 
was also expressed at low levels in the TN comparison 
(P < 0.001). Therefore, a potential mechanism including 
ZC3H13 mutation may exist in PCa progression. Insuf-
ficient study has been conducted to elucidate this point, 
which warrants further verification.

In survival and Cox regression analyses, we evaluated 
RFS instead of overall survival (OS) because only 10 of 
493 TCGA-PARD patients died, making it difficult to 
obtain statistically significant results by assessing OS. In 
our RFS analysis, “biochemical_recurrence” and “days_
to_first_biochemical_recurrence” data did not coincide, 
and we ultimately used the “days_to_first_biochemi-
cal_recurrence” data to confirm “recurrence status” and 
“recurrence follow-up time”.

The landscape of m6A variation in PCa was recently 
reported [26, 36–40], although no scholars have ana-
lyzed sufficient m6A regulators and verified them using 
clinical PCa tissues. To overcome these shortcomings, we 
explored all 25 widely-acknowledged m6A regulators and 
assessed relevant associations of various clinicopatho-
logical characteristics, such as TN, GS, pT, TP53 muta-
tion, and survival analysis of RFS using TCGA-PRAD 
data. Additionally, we analyzed DEGs of m6A regulators 

Table 6  Abundance of each infiltrating immune cell among the three m6Aclusters

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Immune cell infiltration Group A (median) Group B (median) Group C (median) P value P symbola

Activated.B.cellna 0.367609 0.35241 0.320044 0.035299 *

Activated.CD4.T.cellna 0.581698 0.553239 0.544626 2.04E-07 ***

Activated.CD8.T.cellna 0.741994 0.729711 0.729734 0.119033 ns

Activated.dendritic.cellna 0.566906 0.55417 0.545927 0.014999 *

CD56bright.natural.killer.cellna 0.803422 0.796865 0.786135 0.000248 ***

CD56dim.natural.killer.cellna 0.768694 0.770296 0.777682 0.468408 ns

Eosinophilna 0.452763 0.44455 0.421455 0.000297 ***

Gamma.delta.T.cellna 0.672574 0.672239 0.675783 0.999306 ns

Immature..B.cellna 0.446315 0.41228 0.424357 0.01113 *

Immature.dendritic.cellna 0.812085 0.79882 0.779721 1.15E-10 ***

MDSCna 0.734421 0.71748 0.710971 0.169041 ns

Macrophagena 0.493925 0.484737 0.485948 0.440833 ns

Mast.cellna 0.546259 0.546121 0.546628 0.844207 ns

Monocytena 0.880654 0.87941 0.879403 0.913355 ns

Natural.killer.T.cellna 0.466253 0.464513 0.456207 0.069941 ns

Natural.killer.cellna 0.74012 0.730841 0.715254 1.39E-05 ***

Neutrophilna 0.233375 0.241803 0.236327 0.692117 ns

Plasmacytoid.dendritic.cellna 0.781692 0.779419 0.777867 0.247269 ns

Regulatory.T.cellna 0.586997 0.561565 0.544363 0.000173 ***

T.follicular.helper.cellna 0.604853 0.598244 0.592525 0.029061 *

Type.1.T.helper.cellna 0.597887 0.585768 0.570837 0.000293 ***

Type.17.T.helper.cellna 0.466109 0.466299 0.464527 0.584038 ns

Type.2.T.helper.cellna 0.61026 0.582465 0.582235 3.01E-09 ***
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in relation to the five factors, and the intersecting genes 
(HNRNPA2B1 and IGFBP3) were verified with clinical 
PCa tissues. The level of HNRNPA2B1 was higher in PCa 
tissues than in normal prostate tissues and was highly 
correlated with the other four advanced factors. How-
ever, the level of IGFBP3 was lower in PCa tissues but 
higher in the presence of the above advanced-stage indi-
cators. This suggests that independent molecular mecha-
nisms and expression patterns exist in PCa occurrence 
and progression. Consistent with the bioinformatic anal-
ysis, the mRNA levels of HNRNPA2B1 and IGFBP3 were 

elevated in PCa tissue of the high GS group (GS > 7) com-
pared with the low GS group (GS < 7). In the TN com-
parison, the expression of HNRNPA2B1 was higher in 
PCa, but no significant difference in the level of IGFBP3 
expression was found.

It has been reported that upregulation of HNRN-
PA2B1 by PCAT6 promotes PCa progression and neu-
roendocrine differentiation [41]. HNRNPA2B1 may also 
be an independent prognostic factor and contribute to 
cancer progression [42]. Coexpression network analysis 
using clinical data from the GSE70768 dataset as well 

Fig. 4  Consensus clustering analysis according to DEGs of m6Aclusters. A DEGs were analyzed in every pairwise comparison of m6Aclusters 
and intersecting genes were identified via a Venn diagram. B Univariate Cox regression analysis was performed to evaluate RFS in relation to 74 
intersecting genes. The statistical significance (P < 0.05) of 6 genes (BAIAP2, TEX264, MMAB, JAGN1, TIMM8AP1, and IMP3), P value, and HR value 
(with 95% CI) are shown in the plot. C Consensus clustering analysis according to DEGs of m6Aclusters was performed. (left) Relative change in 
area under the CDF curve from k = 2 to 9. (right) Color-coded heatmap of the consensus matrix for k = 3. Color gradients represent values from 
0–1 (white: 0, dark blue: 1). D The heatmap shows unsupervised clustering of the 6 genes in TCGA-PRAD. PSA grade, pT, pN, GS, and biochemical 
recurrence were used for patient annotation. E Survival analysis for RFS among three geneClusters based on 495 TCGA-PRAD patients. Kaplan–Meier 
curves and log-rank P values are shown in the graph, and the numbers of patients at risk are shown at the bottom. F Expression of m6A regulators 
among three geneClusters is shown in the boxplot. The median ± interquartile range of values is shown in the graph. ns P > 0.05; * P < 0.05; ** 
P < 0.01; ***P < 0.001. G As described in Fig. 2F, intersecting DEGs of GS, pT, RFS, TN, and TP53 are shown in a Venn diagram. H As described in Fig. 2G, 
PCa tissues and adjacent normal tissues were divided into four groups, and mRNA levels of intersecting gene (MMAB) in different groups were 
compared. * P < 0.05



Page 14 of 19Quan et al. Cancer Cell International           (2022) 22:33 

as quantitative proteomic mass spectrometry profiling 
and gene enrichment analysis using LNCaP and PC3 cell 
lines suggest that HNRNPA2B1 is associated with PCa 
progression and prognosis [43, 44]. The level of IGFBP3 
in PCa is controversial, with one meta-analysis indicat-
ing that the CC genotype of the IGFBP3–202A/C poly-
morphism is associated with an increased risk of PCa 
[45–47]. Overall, tissue verification and previous studies 
support a certain level of accuracy of our bioinformatic 
analysis using TCGA-PRAD data.

To analyze the overall effects of m6A regulators in PCa, 
we performed consensus clustering analysis and divided 
the TCGA-PRAD cohort into three subgroups based on 
25 m6A regulators. As no significant difference in the 
three clusters for RFS was observed, this cluster analysis 
with m6A regulators may not be suitable for inclusion in 
a prognostic risk prediction model.

As epigenetic regulators, posttranscriptional modi-
fication of target genes is the primary function of m6A 
regulators. To analyze the downstream genes of m6A 
regulators, we focused on the DEGs of the m6Aclus-
ter and screened six risk genes (BAIAP2, TEX264, 

MMAB, JAGN1, TIMM8AP1, and IMP3) through uni-
variate Cox regression analysis. Only IMP3 has previ-
ously been reported in PCa studies, and it appears to 
be increased in PCa tissues and associated with higher 
GS, PCa metastasis, and PCa-specific survival [48–50]. 
Regardless, according to our bioinformatic analysis of 
TCGA-PRAD, the expression of IMP3 was decreased 
in three groups related to advanced PCa (HR (RFS) < 1, 
TP53 mutation < wild type, pT3 < pT2, and tumor > nor-
mal). This finding indicates discordance between TCGA-
PRAD data and previous results, which warrants further 
confirmation.

Consensus clustering analysis was then performed 
based on the 6 genes to construct a risk prediction 
model, and TCGA-PARD patients were divided into 
three subgroups. In these clusters, the clinicopathologi-
cal parameters of PSA grade 3 (grade 1: > 0 and < 1, grade 
2: 1–10, grade 3: > 10), pT 4, pN 1, and GS > 7 were gath-
ered in cluster A, which was related to significantly poor 
RFS, suggesting an accurate risk prediction model based 
on 6 genes. We then analyzed the DEGs of the 6 genes in 
correlation with the above five factors, and MMAB and 

Table 7  Expression of m6A regulators among three geneClusters

a  ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001

Gene Group A (median) Group B (median) Group C (median) P value P symbola

METTL3 25.43239 28.121 27.4013 0.067214 ns

METTL14 12.49848 11.61563 10.65721 0.002169 **

METTL16 15.11261 14.27289 14.50079 0.198853 ns

WTAP 59.59774 61.67926 63.11492 0.011085 *

VIRMA 17.50783 14.85196 13.20034 5.68E-09 ***

ZC3H13 24.27743 19.83391 16.76071 9.62E-06 ***

RBM15 7.196895 6.848082 6.450624 0.001906 **

RBM15B 50.11591 45.15223 37.2346 1.84E-09 ***

CBLL1 21.41409 24.31778 19.51026 0.001104 **

YTHDC1 41.63361 37.73905 36.59234 7.15E-07 ***

YTHDC2 11.26867 10.11635 8.712406 1.55E-06 ***

YTHDF1 65.1071 63.04105 58.22785 0.027657 *

YTHDF2 55.0904 51.34166 48.46479 0.00317 **

YTHDF3 47.39185 42.42069 33.32456 6.17E-08 ***

HNRNPC 187.0431 166.5035 152.1311 2.12E-08 ***

FMR1 15.0888 13.23247 12.25827 1.79E-07 ***

LRPPRC 53.01479 43.53207 37.2318 1.07E-08 ***

HNRNPA2B1 299.7436 280.6586 271.21 0.001427 **

IGFBP1 0 0 0 0.057215 ns

IGFBP2 133.3923 214.2155 266.8425 2.11E-25 ***

IGFBP3 66.44944 43.65073 48.12219 4.87E-08 ***

RBMX 92.67909 79.35541 72.55706 1.94E-12 ***

ELAVL1 44.32754 41.28624 39.84319 0.000294 ***

FTO 11.70362 10.25875 7.217273 7.92E-09 ***

ALKBH5 122.1352 121.0671 118.568 0.116104 ns
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BAIAP2 were identified as intersecting genes. Levels of 
both were higher in PCa tissues than in adjacent normal 
prostate tissues but lower in tissues with advanced dis-
ease factors. We next verified MMAB based on different 
GSs of PCa tissues and adjacent normal tissues and found 
that its level of mRNA was elevated in PCa tissues but 
decreased in the GS > 7 group, consistent with the bioin-
formatic analysis.

To quantitatively illustrate the m6A signature, we cal-
culated m6Ascore according to the expression of the 6 
genes in TCGA-PARD: m6Ascore correlated positively 
with geneCluster, and lower m6Ascore was associated 

with poor prognosis in RFS. Furthermore, m6Ascore was 
negatively correlated with 16 of 23 immune-associated 
cells. Thus, a potential mechanism by which the m6A sig-
nature protects against PCa progression is by negatively 
regulating immune cell infiltration. A high TMB score 
corresponds with tumor-related mutations and sensitivity 
to immunotherapy [27, 28], and Yue Zhao et  al. reported 
that m6A modification in PCa may contribute to immuno-
therapy strategies [26]. In our study, the lower m6Ascore 
group tended to have a higher proportion of TP53 muta-
tions (18%), and the high m6Ascore group tended to have 
a higher proportion of SPOP mutations (12%). However, 

Fig. 5  The low m6Ascore group based on the 6 genes was associated with poor prognosis in RFS. A The m6Ascore was calculated through PCA 
of the 6 gene levels in TCGA-PARD, and m6Ascores among geneClusters (left) and m6Aclusters (right) were compared. The median ± interquartile 
range of values and P values  are shown in the box plots. B PRAD patients were divided into low and high m6Ascore groups based on the optimum 
threshold segmentation of m6Ascores in relation to RFS. The prognosis of the two groups was evaluated through survival analysis of Kaplan–Meier 
curve and log-rank P value. C Alluvial diagram showing changes in m6Aclusters, geneClusters, m6Ascore, and recurrence status (fustat of 0: no 
biochemical recurrence, 1: biochemical recurrence). D Correlations between m6Ascore and immune cell infiltration in TCGA-PRAD. Red: positive 
correlation, blue: negative correlation
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no significant correlation with TMB was found in the two 
m6Ascore groups in our study, and there were also no dif-
ferences in PD-L1 expression or IPS score with response 
prediction of negative or positive PD1 and CTLA4 therapy. 
In summary, the results of this study do not clearly support 
an influence of m6A modification patterns on PCa immune 
cell infiltration and immunotherapy.

Conclusions
In this study, we comprehensively analyzed m6A regula-
tors in TCGA-PRAD through bioinformatic analysis and 
tissue validation. First, we screened DEGs of m6Aclusters 

and found 6 genes (BAIAP2, TEX264, MMAB, JAGN1, 
TIMM8AP1, and IMP3), through which we divided PCa 
patients into three subgroups and calculated m6Ascore 
to construct a risk model with high predictive value for 
recurrence. This study may contribute to determination 
of the effects of m6A signaling on the progression and 
prognosis of PCa.

Abbreviations
PCa: Prostate cancer; ADT: Androgen deprivation therapy; CRPC: Castration-
resistant prostate cancer; m6A: N6-methyladenosine; TCGA​: The Cancer 
Genome Atlas; DEG: Differentially expressed gene; GO: Gene Ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; PCA: Principal component 
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