
Miao et al. Cancer Cell International           (2022) 22:66  
https://doi.org/10.1186/s12935-022-02480-7

PRIMARY RESEARCH

As a prognostic biomarker of clear cell renal 
cell carcinoma RUFY4 predicts immunotherapy 
responsiveness in a PDL1‑related manner
Daojia Miao1,2, Jian Shi1,2, Zhiyong Xiong1,2, Wen Xiao1,2, Xiangui Meng1,2, Qingyang Lv1,2, Kairu Xie3, 
Hongmei Yang3* and Xiaoping Zhang1,2*   

Abstract 

Background:  Clear cell renal cell carcinoma (ccRCC) is one of the most lethal malignancies in the urinary system and 
the existing immunotherapy has not achieved satisfactory outcomes. Therefore, this study aims at establishing a novel 
gene signature for immune infiltration and clinical outcome (overall survival and immunotherapy responsiveness) in 
ccRCC patients.

Methods:  Based on RNA sequencing data and clinical information in The Cancer Genome Atlas (TCGA) database, we 
calculated proportions of immune cells in 611 samples using an online tool CIBERSORTx. Multivariate survival analysis 
was conducted to determine crucial survival-associated immune cells and immune-infiltration-related genes (IIRGs). 
Next, the clinical specimens and common renal cancer cell lines were applied to confirm IIRGs expression at protein 
and RNA levels. Finally, functional enrichment analyses and siRNA technology targeted to RUFY4 were implemented 
to verify its function of predicting immunotherapy response.

Results:  Follicular helper T cells (TFHs) and Regulatory T cells (Tregs) were highly infiltrated in the tumor microenvi-
ronment (TME) and their relative proportions were independent prognostic factors for patients. Among IIRGs of TFHs 
and TREGs, RUFY4 was found to be highly activated in tumor microenvironment and its co-expression network was 
enriched in PDL1/PD1 checkpoint pathway in cancer. Additionally, knockdown of RUFY4 led to the decline of PDL1 and 
proliferation ability in ccRCC cell lines.

Conclusion:  TFHs and Tregs were considered as prognostic biomarkers and RUFY4 was an immunotherapeutic pre-
dictor of ccRCC patients in a PDL1-Related manner.
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Background
Global statistics indicate that kidney cancer accounts for 
approximately 2.2% of all cancers, with 1.8 million new 
cases and 175,100 deaths recorded in 2018 [1]. Clear cell 

renal cell carcinoma (ccRCC) is the predominant sub-
type among all kidney cancer subtypes, representing over 
70% of all RCC cases [2]. In the past decade, antiangio-
genic drugs targeting vascular endothelial growth factor 
(VEGF), mechanistic target of rapamycin (mTOR) inhibi-
tors, and immune checkpoint inhibitors (ICI) have rap-
idly expanded treatment options for metastatic ccRCC 
[3]. Though great improvements in managing ccRCC 
have been achieved via specific cellular and molecular 
targets, the prognosis of patients is still unsatisfactory.
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The interaction between cancer and immune cells in 
the tumor microenvironment (TME) has been a new 
hallmark of cancer since 2011 [4]. As an indispensable 
part of the TME, immune infiltration cells have been 
shown to play crucial roles in the occurrence and devel-
opment of tumors [5]. In previous studies, ccRCC has 
been considered as a highly immune-infiltrated tumor 
and infiltration of different immune cells was correlated 
with distinct clinicopathologic features [6, 7]. Studies by 
Ueda [8] and Mikami [9] have suggested that immune-
infiltrated-related genes (IIRGs) are associated not only 
with the response to immunotherapy but also with the 
clinical outcome of ccRCC patients. However, their accu-
racy and specificity in predicting sensitiveness to immu-
notherapy and prognosis of ccRCC remain problematic. 
Therefore, to improve the survival time and life quality of 
ccRCC patients and provide worthy information to con-
duct precise individual treatment, novel immune predic-
tors and prognostic indicators are urgently needed.

RUN and FYVE domain-containing proteins (RUFYs), 
consisting of an N-terminal RUN domain and a phos-
phatidylinositol 3-phosphate (PI3P)-interacting C-ter-
minal FYVE domain, encompass four genes named 
RUFY1-4 [10]. Briefly, RUFY1-2 contain a RUN domain 
and a FYVE domain, separated by two coiled coil domain 
and both of them are identified as downstream effec-
tors of Etk protein kinase [10]. RUFY3, the smallest of 
the RUFY proteins with only a RUN domain, is mostly 
expressed in neurons [11]. RUFY4 is atypical among the 
RUFY family members, since it only holds one coiled coil 
domain [12]. Currently, RUFYs have taken center stage 
in the field of oncology [11]. RUFY1 has been shown 
to interact with podocalyxin-like (PODXL) protein, an 
ion exchanger regulatory factor in the membrane pro-
tein complex associated with poor prognosis of differ-
ent cancers [13, 14]. Shin [15] suggested RUFY2 as one 
of the extremely frequently mutated genes in colorectal 
cancer. Besides, researches by Zheng [16] and Staubitz 
[17] showed that RUFY2 participated in tumorigenesis in 
lung adenocarcinoma and papillary thyroid carcinoma. 
RUFY3 is the final well-known protein in the RUFY fam-
ily and its dysregulation is implicated in the growth, inva-
sion, and metastasis of lung adenocarcinoma [18] and 
colorectal cancer [19]. Although RUFY4 is reported to be 
the first molecule that affects autophagy and endosome 
dynamics in a subset of immune cells and that RUFY4 
is an important factor that defines the nature of the 
response of cells to the direct immune environment [12], 
there is no strong evidence that RUFY4 is relevant to any 
type of cancer.

Based on The Cancer Genome Atlas (TCGA) database, 
the present study quantified the composition of immune 
cells in ccRCC and figured out two types of immune cell 

that possess prognostic ability of ccRCC. Furthermore, 
we identified RUFY4, as a novel IIRG, that could simul-
taneously predict patient prognosis and immunotherapy 
responsiveness in a PDL1-related manner. Our study also 
offered a novel method for researchers to creatively tap 
into immunotherapeutic cells and gene signatures for 
other cancers.

Materials and methods
Data source and cleaning
The ccRCC RNA-Seq data were obtained from TCGA 
database via the Data transfer tool. Samples information 
and clinical data which consist of gender, age, clinical 
TNM stage, histopathological grade, survival time, etc. 
were directly collected from the website. Then, two gene 
expression matrices of COUNT and FPKM (Fragments 
Per Kilobase of exon model per Million mapped)) and 
one clinical information table were constructed through 
R software (version: 64 4.0.3). Meanwhile, Yusenko renal 
datasets from the Oncomine (https://​www.​oncom​ine.​
org/) database and GSE126864 from GEO (Gene Expres-
sion Omnibus) database were also analyzed in this study. 
The analytical procedures were shown in Additional 
file 1: Fig. S1.

Establishment of immune infiltration landscape
CIBERSORTx is an online tool to accurately infer cell 
type abundance from RNA profiles of intact tissues [20]. 
This study conducted CIBERSORTx analysis online 
(https://​ciber​sortx.​stanf​ord.​edu/) according to the fol-
lowing parameters:

sigmatrix: LM22.update-gene-symbols.txt, perm: 500, 
verbose: TRUE, rmbatchBmode: TRUE, QN: FALSE

From calculation results of CIBERSORTx, 609 sam-
ples were selected with p ≤ 0.05 and each sample was 
equipped with the relative proportion matrix of 22 
immune cell types. Then R packages “pheatmap”, “bar-
plot” and “vioplot” were installed in R software to estab-
lish the immune infiltration landscape.

Identification of survival‑associated immune cells
On basis of the proportions of 22 immune cells, Kaplan–
Meier (K-M) analysis of overall survival rate was per-
formed. Among K-M survival analysis, the cut-off was 
set as the upper and lower quartiles and statistically sig-
nificant means that p-values were  less than 0.05. Uni-
variate survival analysis was used to verify the prognostic 
predictive effect of known factors, such as age, gender, 
T stage, M stage, etc. Additionally, this study created a 
multivariate model which was adjusted for those factors 
whose hazard ratio (HR) > 1. By setting the cut-off as the 
median of relative proportion, 537 samples were distrib-
uted into high and low groups. Then the proportion of 

https://www.oncomine.org/
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each immune cell was added as a new binary variable for 
survival analysis.

Identification of key genes related to immune infiltration
Among genes that are highly expressed in tumors, this 
study searched for genes that are closely related to the 
high degree of immune-infiltration of immune cells. 
Also, the same method was used to identify the low 
expressed key genes. R package “VennDiagram [21]” 
was installed on R software to visualize these results. 
The receiver operating characteristic (ROC) curve 
of each key gene was used to assess the capability of 
distinguishing from patients for healthy individuals 
according to areas under this curve (AUC).

Construction of RUFY4 co‑expression network
The cBioPortal offers researchers online assistance for 
studying multidimensional cancer genomics data [22]. 
To construct the co-expression network of RUFY4, 
genes with a Spearman correlation index > 0.55 were 
added to co-expression network.

Functional enrichment analysis
This study carried out functional classification and 
annotation of immune-associated genes on the website 
DAVID [23] by the methods of GO and KEGG analysis. 
The cut-off of p-value was 0.05. R packages “ggplot2” 
were used to visualize the top 10 terms of GO analy-
sis and KEGG pathway analysis. Then, Cytoscape [24] 
was also applied to construct the pathway cross-talk 
network via a “Cluego” plug-in. Gene set enrichment 
analysis (GSEA) was performed by Windows desktop 
program v4.1.0. The GSEA result of RUFY4 was there-
fore conducted on all known genes ranked by enrich-
ment scores from most positive and most negative. 
1000 random sample permutations were carried out.

Prediction of immunotherapy response
ImmuCellAI was used to predict the response of 
Immune checkpoint blockade (ICB) therapy with the 
ICB response prediction being checked based on gene 
expression matrix [25]. This study conducted ICB pre-
diction analysis online (http://​bioin​fo.​life.​hust.​edu.​cn/​
ImmuC​ellAI#​!/​analy​sis) based on the compositions and 
proportions of immune cells of patients in TCGA.

Cell culture and reagents
The human renal cell carcinoma cell line A498, 786O, 
CAKI, OSRC and control cell line HK2 were obtained 
from the American Type Culture Collection (ATCC, 
USA). Cells were cultured in with Dulbecco’s modified 

eagle medium (DMEM, Gibco, USA) supplemented 
with 10 percent fetal bovine serum (FBS, Gibco, USA) 
and were cultured in the incubator at 37 °C, 5% carbon 
dioxide.

RNA interference
Small interfering RNA for RUFY4 was transfected in 
786O and CAKI cell lines using Lipofectamine 6000 
(Beyotime, China), respectively. The siRNA sequences for 
RUFY4 (GenePharma, China) were followings:

siRNA#1:5′–3′ CAA​GGU​CAC​CAA​AGA​CCU​AAG​
siRNA#2:5′–3′ GGA​GAA​UCC​ACA​AGU​GCA​AAC​
siRNA#3:5′–3′ GCA​GAG​GGU​CAG​AGA​ACA​ACA​
Cell lysates and total RNA were collected 72 h after the 

transfection to verify knockdown efficiency by western 
blot and qPCR.

Tissue samples
16 pairs of human ccRCC tissues and adjacent normal 
tissues were collected from Department of Urology, 
Union Hospital, Tongji Medical College (Wuhan, China) 
in 2020. This process had fully informed consent of the 
patients. And this study was approved by the Institu-
tional Review Board of Huazhong University of Science 
and Technology. The license number of the ethical review 
for the study was S1892.

RNA isolation and real‑time PCR analysis
The Magzol reagent (Thermo, Massachusetts, USA) 
was used to extract total RNA of tissues and cell lysates. 
500  ng of total RNA from tissue and cell were applied 
for reverse transcription. qPCR analysis was conducted 
(LightCycler 480II; Roche, Basel, Switzerland) with the 
Hieff® qPCR SYBR Green Master Mix (11201ES03, 
Yeasen, China). Samples were normalized by Glyceralde-
hyde-3-Phosphate Dehydrogenase (GAPDH).

GAPDH  Forward  5′-CCA​GAA​CAT​CAT​CCC​TGC​CT-3′
           Reverse  5′-CCT​GCT​TCA​CCA​CCT​TCT​TG-3′
RUFY4     Forward  5′-ACG​CCA​AGA​AGA​CAT​CCT​GG-3′
           Reverse 5′-CTC​TGA​CCC​TCT​GCA​ACC​AG-3′

Western blotting assays
The protein of cells and tissues was extracted by radio-
immunoprecipitation assay (RIPA) protein lysis buffer 
(Beyotime, China) with protease inhibitor cocktail (Beyo-
time, China) and Phenylmethanesulfonylfluoride (PMSF, 
Beyotime, China). 30  µg of protein was subjected to 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE) gel. The proteins were then separated 
by gel electrophoresis and transferred to polyvinylidene 

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis
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fluoride (PVDF, Roche, Basel, Switzerland) membranes. 
5% nonfat dried skimmed milk was used to block the 
membranes for 1.5  h at room temperature. Then, the 
membranes were incubated overnight with primary 
antibodies.

RUFY4, LS‑C307570 LSBio, USA, dilution 1:2000
PDL1, A1645 ABclonal, China, dilution 1:1000
β-actin, AC026 ABclonal, China, dilution 1:100,000
Finally, the membranes were washed and incubated in 

blocking buffer with secondary antibodies (Anti-Rabbit 
AS014 ABclonal, China; Anti-Mouse AS003 ABclonal, 
China) for 2 h before detection.

Cell viability assays
Each 96‐well plate was plated with 2000 cells. The prolif-
eration rate of cells was detected using the cell counting 
kit (CCK-8, Yeasen, China). 110 μL CCK8 solution (10 μL 
CCK8:100 μL medium) were added to each well and the 
96-well plate was incubated in dark for 1 h. Cell viability 
was assessed at 0, 24, 48, 72 and 96  h upon treatments 
by NanoDrop 2000 spectrophotometer (NanoDrop Tech-
nologies, USA) at 450 nm.

Transwell assays
For migration and invasion assays, cells were cultured in 
serum-free medium for 24  h. Then, cells were plated in 
the top chamber of transwell chamber (REF3422, Corn-
ing, USA) and cells were allowed to invade through the 
Matrigel (Corning, USA, dilution 1:8) or not. With or 
without Matrigel were used for invasion and migration 
assay. After 24 h, cells invading the lower surface of the 
chamber membrane were fixed in 100% methanol. Then, 
cells were stained with 0.05% crystal violet and 10 fields 
were randomly photographed for counting. More details 
were described in previous study [26].

Results
A unique immune infiltration landscape was established 
for ccRCC​
When the RNA-seq matrix derived from 611 ccRCC 
samples were screened by the CIBERSORTx algo-
rithm, the differences of immune infiltration between 
ccRCC and adjacent normal tissues were comprehen-
sively tracked out. The proportions of 22 immune cells 
in ccRCC and adjacent normal tissues were shown 

in Fig.  1A. The heatmap of the 22 immune cells was 
shown in Fig.  1B. To further examine the difference of 
immune infiltration cells, we generated a violin plot 
to quantitatively describe the differences based on 
tumor tissues (537 samples) and adjacent normal tis-
sues (72samples). According to the violin plot (Fig. 1C), 
naïve B cells, plasma cells, CD8 T cells, naïve CD4 T 
cells, resting memory CD4 T cells, activated memory 
CD4 T cells, follicular helper T cells (TFHs), regulatory 
T cells (Tregs), gamma delta T cells, monocytes, M0 
macrophages, M1 macrophages, resting dendritic cells, 
activated dendritic cells, resting mast cells, eosinophils 
and neutrophils presented different relative propor-
tions and the differences were statistically significant. 
Immune cell types, such as CD8 T cells, were markedly 
highly infiltrated in tumor tissues. These results showed 
that the proportions of immune-infiltrated cells might 
help researchers to distinguish ccRCC from normal 
individuals.

TFHs and Tregs were identified as survival‑associated 
immune cell
In the previous step, 17 immune cell types were obtained 
based on their differences in immune infiltration between 
tumor and adjacent normal tissues. Here, the correlation 
among the proportions of the 17 immune cell types and 
overall survival (OS) rates were analyzed via Kaplan–
Meier curves. The results in Additional file 2: Fig. S2A–H 
showed that the proportions of 8 immune cells were 
related to the OS rates, including activated memory 
CD4 T cells, resting memory CD4 T cells, CD8 T cells, 
M0 macrophages, M1 macrophages, Tregs, TFHs, and 
neutrophils. Notably, TFHs and Tregs had the highest 
hazard ratio (HR) values ​​of 1.59 and 1.62, respectively, 
while resting memory CD4 T cells and neutrophils were 
negatively correlated with the OS rate. To further under-
stand the clinical predictive value of survival-associated 
cells, the spearman correlation analysis was conducted 
among the relative proportion of immune cells and clini-
cal attributes. As shown in Fig.  2C–K and Additional 
file  3: Fig. S3A–C, the proportions of TFHs, Tregs and 
CD8 T cells elevated with the increase of histopathologi-
cal grade and TNM stage. The results of other immune 
cells were shown in Additional file 3: Fig. S3D–G. Next, 
multivariate survival analysis was conducted to assess 

Fig. 1  Establishment of immune-infiltration landscape. A The relative proportions of immune cells in the samples from TCGA. Each column 
represents a sample, and each column with a different color and height indicates the relative proportions of immune cells in this sample. B The 
heatmap of 22 immune cells in tumor and adjacent normal tissues. Each row represents one type of immune cell and the color of each small square 
represents the content of immune cells. C The difference of 22 immune cell relative proportions between the ccRCC and control groups in TCGA. 
The blue violins represent adjacent normal tissues while the red violins represent tumor tissues. Wilcoxon-test were used in statistical analysis. p 
valves were displayed in Figures

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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the prognostic value of the 8 immune cells and a clin-
icopathologic parameter was chosen as OS rates for 
ccRCC patients (Table  1). Relative proportions of TFHs 
and Tregs were independent prognostic factors for OS, 
after adjustment for known risk factors such as age, clini-
cal stage, T stage, M stage, and histopathological grade 
(Fig.  2A, B). Survival analyses indicated that a higher 
immune infiltration of TFHs or Tregs was associated 
with inferior OS. OS curves based on TFHs or Tregs 
proportions in ccRCC tumor tissues were distinctly dis-
joined. Therefore, TFHs and Tregs held much appeal for 
this study. 

IIRGs of Tregs and TFHs participated in several overlapped 
biological processes
This study obtained 680 genes that had significantly dif-
ferent expression levels between high and low propor-
tions of TFHs in the TME, 620 of which presented much 
higher expressions (Fig. 3A). As for Tregs, 676 differen-
tially expressed genes were identified, where 353 genes 
were related to higher immune infiltration (Fig.  3B). 
After uploading these genes to the DAVID website, the 
top 10 items of TFHs in Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
were obtained (Fig. 3D–G). The biological process of the 
GO analysis demonstrated that TFHs might be involved 
in the cellular protein metabolic process and immune 
response (Fig. 3D). The cellular component showed that 
these genes were enriched in extracellular exosome and 
plasma membrane (Fig.  3G). The molecular function of 
these genes was gathered in serine-type endopeptidase 
activity, antigen binding and sequence-specific DNA 
binding (Fig.  3E). The KEGG analysis suggested that 
cytokine-cytokine receptor interaction was the domi-
nant pathway and PDL1/PD1 pathway was also enriched 
(Fig. 3F). As for Tregs, cellular protein metabolic process 
at the biological process level, extracellular exosome at 
the cellular component level and serine-type endopepti-
dase activity at molecular function level were the most 
crucial enrichment items (Additional file 4: Fig. S4A–D). 
KEGG pathway analysis results were largely similar to 
TFHs results. Collectively, these results showed that the 
two crucial immune-associated cells had a considerable 
overlapped function, implying that the two cells might 

participate in the same biological process and there 
might be cross-talks within the TME.

Upregulated‑RUFY4 was a prognostic biomarker of ccRCC​
Three gene sets, including genes related to low immune 
infiltration of Tregs, low immune infiltration of TFHs, 
and genes low-expressed in tumor tissues (shown in the 
previous Fig. 3C), were submitted to the “VennDiagram” 
Package on R software. As shown in Fig.  4A, SLC12A1 
was closely related to the low degree of immune infiltra-
tion of the two crucial immune cells and it was silenced 
in tumor tissues. Remarkably, after narrowing the search 
scope to genes that were highly expressed in tumor tis-
sues, LAG3, PDCD1, and RUFY4 were found to be asso-
ciated with the high degree of immune infiltration of 
Tregs and TFHs. From Fig. 4B, it could be observed that 
94 genes were not only associated with the increased 
immune infiltration of Tregs but also with the immune 
infiltration of TFHs. The ROC results of the aforemen-
tioned 4 key genes, including one downregulated gene 
SLC12A1 and 3 upregulated genes LAG3, PDCD1 and 
RUFY4, are presented in Fig.  4C–F. RUFY4 had a rela-
tively higher AUC (area under the curve = 0.946) than 
the other key genes (0.890, 0.912, 0.008), suggesting 
that it had a more accurate diagnostic value for ccRCC. 
Though LAG3 also had a significant AUC, it had little 
prognosis prediction valve (Additional file  5: Fig. S5A). 
Therefore, RUFY4 was considered as the key gene in the 
TME related to the high immune infiltration of TFHs and 
Tregs (Table 2). Besides, RUFY4 had an activated expres-
sion in tumor tissues, hence could accurately and sensi-
tively distinguish between normal and ccRCC patients. 
To verify these results, the high throughput sequencing 
data in GSE126964 were downloaded from GEO data-
base. From Fig. 4G, it could be demonstrated that RUFY4 
was also upregulated in ccRCC. The same results were 
obtained from the collected clinical samples (Fig.  4H). 
Correspondingly, changes of the protein level were con-
sistent with the RNA level of RUFY4 (Fig. 4I). Addition-
ally, common RCC cell lines, such as 786O [27] and CAKI 
[27], presented higher protein and RNA levels than HK2 
that is an immortalized proximal tubule epithelial cell 
line from normal adult human kidney (Fig. 4J–K). More-
over, the immunohistochemical results from the Human 

(See figure on next page.)
Fig. 2  TFHs and Tregs were identified as survival-associated immune cell. A, B The multivariate survival analysis for the relative proportions of 
immune cells. The red line indicates a high proportion group of immune cells, and the blue line indicates a low proportion group of immune 
cells. HR means hazard ratio and CI means confidence interval. p-valve were on Figures. C–K The relationship between the relative proportions 
of immune cell and G grade, clinical stage and T stage. The ordinate represents the proportion of immune cells and the horizontal line inside the 
box represents the median value of immune cell proportions. Kruskal-test and Wilcoxon-test were used in statistical analysis and p-valves were on 
Figures
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Protein Atlas [28] (HPA is a resource for many areas of 
biomedical research, including protein science and bio-
marker discovery) also showed that RUFY4 was highly 
expressed in renal cancer (Additional file  5: Fig. S5B). 
Next, this study determined the correlation between 
RUFY4 and ccRCC clinical attributes. RUFY4 expression 
levels were consistently correlated with ccRCC clinical 

stage (Fig. 4L), histopathological grade (Fig. 4M), T stage 
(Fig.  4N), M stage (Fig.  4O), N stage (Fig.  4P). Survival 
analysis revealed that the increased expression of RUFY4 
was associated with inferior OS (Fig.  4Q). In summary, 
these results confirmed that RUFY4 was a new prognos-
tic biomarker of ccRCC. 

RUFY4 depletion impaired proliferation rather 
than migration or invasion of cancer cells
To ascertain the function of RUFY4 in TME, small inter-
fering RNAs targeted RUFY4 were applied to knockdown 
RUFY4 in RCC cells, 786O and CAKI. As was shown in 
Fig. 5A and B, RUFY4 was silenced in RCC cell lines both 
in RNA and protein levels. And Fig. 5D, E demonstrated 
RUFY4 depletion impaired cell proliferation. Our previ-
ous results showed that RUFY4 is related to the distant 
metastasis and lymphatic metastasis in cancer patients 
(shown in the previous Fig. 4O, P). Here, we found that 
down-regulated RUFY4 had no influence on cell migra-
tion and invasion (Fig.  5C). These results hinted that 
RUFY4 itself has no significant role in the progress of 
ccRCC. More in-depth research needs to be carried out 
to explain these contradictory results.

RUFY4 predicted immunotherapy in a PDL1‑related 
manner
We hypothesized that the immune cells in TME might 
be involved in the tumor-promotive function of RUFY4 
based on the findings that RUFY4 functioned little 
on migration and invasion of ccRCC. Table  2 demon-
strated that there were correlations between 17 types of 
immune cells and RUFY4, 6 types of which were posi-
tively correlated with RUFY4 while 11 were negatively 
correlated. Next, a co-expression network of RUFY4 was 
constructed (Additional file  5: Fig. S5C). As expected, 
the network of RUFY4 was shown to be involved in 
several crucial immunomodulation processes, includ-
ing cytokine-cytokine receptor interaction, PD-L1 (pro-
grammed cell death 1 ligand 1) expression and PD-1 
(programmed death-1) checkpoint pathway in cancer, 
T helper cells differentiation, T cell receptor signal-
ing pathway, and primary immunodeficiency (Fig.  6E). 
These results emphasized that the RUFY4 might have an 
inseparable connection with immunomodulation in TME 

Table 1  Multivariate analyses of immune cell fraction and 
patient survival

Multivariate models were adjusted for T, M classification, age, and gender

Hazard ratio, estimated from Cox proportional hazard regression model

Confidence interval of the estimated HR

Variable HR 95% CI p-valve

Low Up

Age (years)

 ≤ 60 (n = 267)

 > 60 (n = 270) 1.71 1.231 2.374 0.001

Gender

 Female (n = 186)

 Male (n = 351)  > 0.05

Clinical stage

 C1–C3 (n = 452)

 C4 (n = 82) 14.832 3.417 64.394  < 0.001

 CX (n = 3)

T stage

 T1 and T2 (n = 348)

 T3 and T4 (n = 189) 1.689 1.150 2.482 0.008

M stage

 M0(n = 447) 0.189 0.044 0.811 0.025

 M1 (n = 80)

 MX (n = 10)

G stage

 G1 and G2 (n = 249)

 G3 and G4 (n = 281) 1.797 1.212 2.665 0.004

 GX (n = 7)

Tregs

 Low (n = 268)

 High (n = 269) 1.494 1.073 2.080 0.018

TFHs

 Low (n = 268)

 High (n = 269) 1.589 1.141 2.212 0.006

Fig. 3  IIRGs of Tregs and TFHs participated in several overlapped biological processes in TME. A DEGs between high TFHs-infiltration group and low 
TFHs-infiltration group. B DEGs between high Tregs-infiltration group and low Tregs-infiltration group. C DEGs between ccRCC and adjacent normal 
tissues. Each red dot shows an upregulated gene and each blue dot shows a downregulated gene. DEGs means different expression genes. D–G 
the enrichment analysis results of IIRGs at biological processes, cellular components, molecular functions, and KEGG levels. The top 10 results of 
each term are shown, and the color indicates the statistical significance and the size indicates the number of genes enriched for each result. IIRGs is 
the abbreviation of immune-infiltration-related genes

(See figure on next page.)
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of ccRCC. After choosing canonical pathways gene sets 
derived from the KEGG pathway database as the molecu-
lar signatures database (Fig. 6C, D), GSEA indicated that 
RUFY4 was highly associated with T cell receptor sign-
aling pathway and cytokine-cytokine receptor interac-
tion. Moreover, as presented in Fig. 6A, B, it was found 
that when compared with gene sets derived from the 
WikiPathways pathway database, cancer-immunotherapy 
with PD1-blockade and costimulatory signaling of T cell 
receptor were the two most significant enrichment path-
ways, whose q-FDR (false discovery rate) values both 
equaled to zero. These pieces of evidence indicated that 
the cancer-promoting effect of RUFY4 was insepara-
ble from the assistance of immunomodulation in TME. 
Therefore, PD-1 (programmed death-1) checkpoint path-
way in cancer that repeatedly appeared in the functional 
enrichment results appealed to this study. Moreover, The 
RNA-Seq data from Yusenko Renal study showed that 
PDL1 was upregulated in ccRCC (Fig.  6F). To explore 
how RUFY4 contributed to PD-1/PDL1 in TME, the 
correlation analysis between PDL1 and RUFY4 was con-
ducted on the basis of the ccRCC RNA-Seq data. There 
was a  strong relationship between them and the spear-
men R index equaled 0.5142 (Fig. 6G). Also, small inter-
fering RNA targeted RUFY4 were applied to degrade the 
expression level of RUFY4. As was shown in previous 
Fig.  5B, the depletion of RUFY4 caused the decrease of 
PDL1 in RCC cell lines, 786O and CAKI. Furthermore, 
the expression level of RUFY4 could predict the respon-
siveness of tumor patients to ICB immunotherapy 
(Fig. 6H). Once PDL1 and RUFY4 were united together, 
the prediction model was more convincing and valuable 
(Fig.  6I). And as for immune infiltration prediction, the 
joint prediction ability of PDL1 and RUFY4 was stronger 
than the single one (Fig. 6J). Taken together, these obser-
vations suggested that RUFY4 might be an indicator for 
immune infiltration and immunotherapy in a PDL1-
related manner.

Discussion
Clear cell RCC is one of the most lethal types of urogeni-
tal tumors with an increasing mortality rate over several 
years [29]. Since Galon [30] first proposed the concept of 
immune contexture in 2007, researches associated with 
the location, density, and functional orientation of differ-
ent immune cells in the TME have put immunotherapy 
into the cutting-edge frontier. Among the current thera-
peutic strategies, ICI has become a key option for various 
cancer types [31]. Ample clinical trials have shown that 
PD-1 blockade is a vital method in the management of 
ccRCC and therapies based on anti-PD-1 are the first-line 
choices for refractory patients [32, 33]. Hence, we aimed 
at identifying immune cells and genes closely associ-
ated with both immune infiltration and immunotherapy 
responsiveness in the TME.

In this study, TFHs and Tregs were related to patients’ 
OS after adjusting for known risk factors. TFHs are special-
ized T helper (TH) cells and different from other subgroups 
such as TH1, TH2, and TH17. TFHs predicted improved 
survival in breast cancer [34] and were associated with a 
positive prognosis in colorectal cancer [35]. Contrarily, 
TFHs predicted a negative clinical prognosis in lung squa-
mous cell carcinoma [36]. These results put TFHs in a con-
troversial position and thus further exploration should be 
performed to determine whether it is a protective factor 
or a risk factor. Treg is another crucial survival-associated 
immune cell, which is a widely known restrainer of the 
immune regulatory network. Tregs are involved in bal-
ancing immune responses [37] and act as a double-edged 
sword. On the one hand, they can restrain unnecessary 
immune activations, such as autoimmunity. On the other 
hand, useless immune responses are utilized by Tregs for 
pathogens or cancer cells, resting in the progression of 
cancer [38]. In renal cancers, there has been evidence for 
the association between Tregs and poor prognosis, as well 
as immunotherapy resistance. In summary, these cells play 
important roles in the construction of the TME.

(See figure on next page.)
Fig. 4  Upregulated-RUFY4 was a prognostic biomarker of ccRCC. A Using Venn plot to pick up genes that are low-expressed in tumors and 
related to low-density immune-infiltration. B Contrary to A, the figure shows genes that are highly expressed in tumors and related to high-density 
immune-infiltration. C–F Receiver operating characteristic (ROC) curve of RUFY4, PDCD1, LAG3, and SCL12A1. ROC curves indicate the capabilities 
of picking up ccRCC patients from the public. AUC means the area under a curve. p-valves were on Figures. G The mRNA levels of RUFY4 in 55 
ccRCC tissues and 11 paired adjacent normal tissues in ccRCC based on data from the GEO database. t-testp < 0.0001. H The mRNA levels of RUFY4 
in 16 pairs of ccRCC tissues and adjacent normal tissues. t-test, ****p < 0.0001. I The protein levels of RUFY4 in 8 ccRCC tissues and 8 paired tissues 
in ccRCC. J The protein levels of RUFY4 in HK2 and RCC cell lines. K The mRNA levels of RUFY4 in HK2 and RCC cell lines. t-test, ****p < 0.0001, 
***p < 0.)01. L–P The relationship between the expression level of RUFY4 and clinical stage, G grade, T stage, M stage, and N stage. Kruskal-test 
and Wilcoxon-test were used in statistical analysis. p-valves were on Figures. Q The multivariate survival analysis for the expression level of RUFY4. 
The red line indicates a high expressing group of RUFY4, and the blue line indicates a low expressing group. HR means hazard ratio and CI means 
confidence interval. p-valves were on Figures
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Among IIRGs in this study, RUFY4 is closely related 
to the dense infiltration of TFHs and Tregs. Although 
the importance of IIRGs in tumor progression and 
immunotherapy has been recognized, there are few 
studies dedicated to genes related to the immune infil-
tration of TFHs and Tregs. Here, this research inno-
vatively proposes a method of a targeted selection of 
IIRGs. Additionally, our results denoted that the deple-
tion of RUFY4 caused the decrease of PDL1. Previous 
studies [39–41] revealed that JAK-STAT axis primarily 
regulates PDL1 expression in tumor cells through the 
activation of transcription pathway. Angel [39] consid-
ered that the JAK-STAT3 regulated PDL1 expression by 
activation of its promoter. The role and function of the 
NF-kB signaling pathway cannot be overlooked. Peng 

[42] found that chemotherapy induces local immune 
suppression in ovarian cancer through NF-kappa 
B-mediated PDL1 upregulation. Fabrizio proposed 
that NF-kappa B directly induces PDL1 gene transcrip-
tion by binding to its promoter, and it can also regulate 
PDL1 post-transcriptionally through indirect pathways 
[43]. Together with our finding that RUFY4 was also 
closely linked to JAK-STAT and NF-kappa B pathways, 
we speculate that RUFY4 regulated the expression level 
of PDL1 by participating in JAK-STAT and/or NF-
kappa B signaling pathways.

Another finding in this study is that RUFY4 depletion 
has no effect on migration or invasion of cancer cell 
in  vitro while RUFY4 is related to the distant metas-
tasis and lymphatic metastasis in cancer patients. To 
explain this conflict phenomenon, we make a hypoth-
esis that the immune system might be involved in the 
tumor-promotive function of RUFY4 based on the fol-
lowing evidence: (a) Metastasis is under the control of 
complex and redundant pathways involving the tumor 
cell and the microenvironment [44, 45]. More and more 
evidence confirms that a large array of genes is known 
to facilitate or regulate cancer metastasis, not just a 
single molecular effect [44, 46–50]; (b) TME represents 
the necessary prerequisite for cancer progression and 
metastasis [51–53]; (c) Tregs [54] and TFHs [55] con-
trol cancer invasion and migration because they might 
establish an immunosuppressive microenvironment 
within primary lesions; and (d) RUFY4 is considered an 
immunological biomarker of THFs and Tregs, and its 
depletion contributes to the reduction of PDL1. Thus, 
we guess that the depletion of PDL1 could be recog-
nized by THFs or Tregs, which might be responsible for 
RUFY4-mediated cancer metastasis. There is no doubt 
that more in-depth mechanism research needs to be 
carried out in the future.

Conclusion
The present study analyzed and verified a unique gene 
RUFY4 closely related to immune infiltration of TFHs 
and Tregs. These cells and the gene were separately rec-
ognized as independent prognostic biomarkers of ccRCC 
patients. Moreover, RUFY4 could predict the responsive-
ness of ICI therapy for ccRCC patients in a PDL1-related 
manner. Our findings also provide strategies to explore 
effective signatures of immunotherapy and clinical out-
come in cancer research.

Table 2  Spearman corelation analyses of immune cell fraction 
and RUFY4&LAG3

**** p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, p = ns (no significance)

RUFY4 LAG3

Immune cells Spearman r p-value Spearman r p-value

Naïve B cells − 0.505 **** − 0.596 ****

Memory B cells 0.024 ns 0.003 ns

Plasma cells − 0.071 ns − 0.027 ns

CD8 T cells 0.528 **** 0.821 ****

Naïve CD4 T cells − 0.212 **** − 0.207 ****

Resting memory CD4 
T cells

− 0.383 **** − 0.590 ****

Activated memory CD4 
T cells

0.052 ns 0.137 ***

Follicular helper T cells 0.471 **** 0.454 ****

Regulatory T cells 
(Tregs)

0.362 **** 0.315 ****

Gamma delta T cells 0.278 **** 0.562 ****

Resting NK cells − 0.255 **** − 0.503 ****

Activated NK cells 0.135 *** 0.245 ****

Monocytes − 0.171 **** − 0.350 ****

Macrophages M0 0.049 ns 0.069 ns

Macrophages M1 0.183 **** 0.222 ****

Macrophages M2 − 0.289 **** − 0.375 ****

Resting Dendritic cells − 0.211 **** − 0.264 ****

Activated Dendritic 
cells

− 0.290 **** − 0.375 ****

Resting Mast cells − 0.363 **** − 0.480 ****

Activated Mast cells − 0.015 ns − 0.060 ns

Eosinophils − 0.348 **** − 0.380 ****

Neutrophils − 0.271 **** − 0.284 ****
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Fig. 5  RUFY4 depletion impaired proliferation rather than migration or invasion of cancer cells. A Relative mRNA levels of RUFY4 in the control cells 
and RUFY4-knockdown cells. t-test, ****p < 0.0001. B Western blot assay for the protein levels of RUFY4 in indicated cells. C Migration and invasion 
assay for indicated RCC cells (Magnification: 200×). t-test, p = ns (no significance). D Cell growth curves of CCK8 assays for indicated cells. t-test, 
****p < 0.0001

(See figure on next page.)
Fig. 6  RUFY4 predicted immune infiltration and immunotherapy in a PDL1 related manner. A–D GSEA for the correlation between RUFY4 and TCR 
signaling pathway, cancer immunotherapy by PD-1 blockades, TCR and costimulatory signaling, and TCR costimulatory signaling. FDR < 25%, p < 
0.05 was considered statistically significant. E Pathway network diagram established by clueGO based on the co-expressed genes of RUFY4. The 
color of each circle represents one type of signal pathway and its size represents the degree of statistical significance. Genes involved in each signal 
pathway are marked with red labels. F The mRNA levels of PDL1 in 22 ccRCC tissues and 5 adjacent normal tissues in ccRCC based on data from the 
Oncomine database. t-test, *p < 0.05. G The relationship between the expression level of RUFY4 and PDL1 based on the data from TCGA database. 
Spearman-test, p < 0.0001. H The relationship between the expression level of RUFY4 and the sensitivity of ICB immunotherapy. Chi-square tests 
were used to calculate the p-valve. The cut-off for classifying a patient into High/Low expression is the median of expression level. I The relationship 
between the expression level of RUFY4-PDL1 and the sensitivity of ICB immunotherapy. Low PDL1-RUFY4 means RUFY4 and PDL1 were both lower 
than the median expression level. Chi-square test were used to calculated the p-valve. J The difference of 8 immune cell proportions between low 
and high PDL1/RUFY4 groups. Low PDL1 + low RUFY4 means RUFY4 and PDL1 were both lower than the median of expression level. Chi-square tests 
were used to calculate the p-valve. **p < 0.01, ***p < 0.001, ****p < 0.0001. p = ns (no significance)
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