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Abstract 

Background: Ovarian cancer (OC) is an invasive gynaecologic cancer with a high cancer-related death rate. The pur-
pose of this study was to establish an invasion-related multigene signature to predict the prognostic risk of OC.

Methods: We extracted 97 invasion-related genes from The Cancer Genome Atlas (TCGA) database. Then, the 
ConsensusClusterPlus and limma packages were used to calculate differentially expressed genes (DEGs). To calculate 
the immune scores of the molecular subtypes, we used ESTIMATE to evaluate the stromal score, immune score and 
ESTIMATE score. MCP-counter and the GSVA package ssgsea were used to evaluate the types of infiltrating immune 
cells. Survival and nomogram analyses were performed to explore the prognostic value of the signature. Finally, qPCR, 
immunohistochemistry staining and functional assays were used to evaluate the expression and biological abilities of 
the signature genes in OC.

Results: Based on the consistent clustering of invasion-related genes, cases in the OC datasets were divided into 
two subtypes. A significant difference was observed in prognosis between the two subtypes. Most genes were highly 
expressed in the C1 group. Based on the C1 group genes, we constructed an invasion-related 6-gene prognostic 
risk model. Furthermore, to verify the signature, we used the TCGA-test and GSE32062 and GSE17260 chip datasets 
for testing and finally obtained a good risk prediction effect in those datasets. Moreover, the results of the qPCR and 
immunohistochemistry staining assays revealed that KIF26B, VSIG4 and COL6A6 were upregulated and that FOXJ1, 
MXRA5 and CXCL9 were downregulated in OC tissues. The functional study showed that the expression of KIF26B, 
VSIG4, COL6A6, FOXJ1, MXRA5 and CXCL9 can regulate the migration and invasion abilities of OC cells.

Conclusion: We developed a 6-gene prognostic stratification system (FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and 
COL6A6) that is independent of clinical features. These results suggest that the signature could potentially be used to 
evaluate the prognostic risk of OC patients.
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Introduction
Despite advances in the diagnosis and treatment of ovar-
ian cancer (OC) over the past few decades, long-term 
survival remains poor [1, 2]. OC is a malignant gynae-
cologic cancer and is the eighth leading cause of cancer-
related death worldwide [3]. The standard treatment of 
OC includes surgery and platinum-based chemotherapy. 
Currently, the 5-year survival rate of OC is approximately 
47%, which is primarily due to recurrence and chemical 
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resistance [4]. Emerging therapies for high-grade serous 
ovarian carcinoma include molecular targeting agents 
[5–8], including PARP inhibitors. The results of 4 phase 
III clinical trials (SOLO-1, PAOLA-1/ENGOT-OV25, 
PRIMA/ENGOT-OV26 and VELIA/GOG-3005) showed 
that PARP inhibitors can significantly improve the pro-
gression-free survival of OC patients [9]. OC is mainly 
diagnosed by transvaginal ultrasonography and blood 
CA-125 levels, but these methods have limitations. 
Transvaginal ultrasound can result in the misdiagnosis 
of cancer as cysts, and blood CA-125 levels have a high 
false-positive rate [10–12]. The current low accuracy in 
the diagnosis of early OC highlights the demand for new 
diagnostic biomarkers.

Tumour biomarkers play a crucial role in the detec-
tion and management of OC. Many oncogenes or sup-
pressor genes associated with OC have been reported, 
including noncoding RNAs and mRNAs [13, 14]. Previ-
ous studies have shown that the inhibition of HDAC6 
gene expression reduces the proliferation, migration and 
survival of OC cells [15]. It has also been shown that the 
downregulation of RAD51AP1 inhibits the proliferation, 
migration and invasion of OC cells in  vitro [16]. BRDT 
overexpression promotes the development of OC cells 
[17]. Although many genes have been found to be associ-
ated with the diagnosis and prognosis of OC, gene mark-
ers for diagnosis and prognosis should still be studied.

In this study, tumour invasion-related genes were col-
lected, and crossover analysis with gene expression data-
sets from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases was performed. 
We established OC invasion-related molecular subtypes. 
The relationships between molecular subtype and prog-
nosis and clinical features were further evaluated. The 
prognostic risk model constructed using differentially 
expressed genes (DEGs) between OC molecular sub-
types can better evaluate the prognosis of OC patients, 
and the GEO gene expression dataset was further used to 
verify the prognostic risk model. Moreover, the results of 
qPCR and immunohistochemistry (IHC) staining assays 
revealed that KIF26B, VSIG4 and COL6A6 were upregu-
lated and that FOXJ1, MXRA5 and CXCL9 were down-
regulated in OC tissues. The functional study showed 
that the expression of KIF26B, VSIG4, COL6A6, FOXJ1, 
MXRA5 and CXCL9 can regulate the migration and 
invasion abilities of OC cells. These results suggest that 
the signature could potentially be used to evaluate the 
prognostic risk of OC patients.

Methods
Data download
We downloaded the most recent expression data and 
clinical follow-up information of OC patients in the 

TCGA database, which contains RNA-Seq samples along 
with gene expression profile information. The GSE32062 
and GSE17260 chip datasets with prognostic informa-
tion were downloaded from the GEO database. Invasion-
related gene sets, which included 97 genes (Additional 
file 4: Table S1), were downloaded from CancerSEA [18].

Comparative analysis of immune scores 
between molecular subtypes
To identify the relationship between the immune scores 
of molecular subtypes in the TCGA dataset, we used the 
R software package ESTIMATE to evaluate the stromal 
score, immune score and ESTIMATE score; MCP-coun-
ter was used to evaluate 10 types of infiltrating immune 
cells, and the GSVA package ssgsea was used to evalu-
ate 28 types of infiltrating immune cells [19]. We then 
compared the differences in immune scores between the 
molecular subtypes. Next, according to a previous report 
[20], TCGA-OC samples were classified according to 
mRNA expression and divided into four categories: dif-
ferentiated, immunoreactive, mesenchymal and prolifer-
ative. Finally, we compared the relationship between C1 
and C2 obtained by our classification.

Construction of a prognostic risk model
First, 363 samples in the TCGA dataset were divided into 
a training set and a test set. To avoid the influence of ran-
dom allocation deviation on the stability of subsequent 
modelling, all samples were randomly grouped 100 times 
in advance, and grouping was performed according to a 
1:1 ratio of the training set and test set. Using the training 
set data, a univariate Cox proportional hazards regres-
sion model was performed using the R package survival 
with the coxph function; p  < 0.05 was selected as the 
threshold for filtering. According to previously identified 
DEGs, we used the R software package glmnet for least 
absolute shrinkage and selection operator (lasso) Cox 
regression to further compress the screened genes and to 
reduce the number of genes in the risk model. Stepwise 
regression uses the pooled Akaike information criterion 
(AIC), which considers the statistical fitting degree of the 
model and the number of parameters used for the fit. The 
step method in the stats package starts from the most 
complex model and deletes a variable in turn to reduce 
the AIC. This shows that the model exhibits a sufficient 
degree of fit with fewer parameters.

Specimen collection
Ovarian tumour and normal tissues derived from sur-
gical resection specimens were snap-frozen in liquid 
nitrogen and stored at −  80  °C until RNA extraction. 
The clinicopathological characteristics of ovarian can-
cer tissues shown in Additional file 5: Table S2. None of 
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the patients received chemotherapy or radiation therapy. 
None of the patients received treatment before surgery, 
and all patients signed informed consent forms provided 
by the Cancer Hospital, CAMS & PUMC. This study was 
approved by the Ethics Committee of the Cancer Institute 
(Hospital), CAMS & PUMC (17-099/1355). Ten ovarian 
tumour tissues were high-grade serous adenocarcinoma.

Cell culture and treatments
The human OC cell line SKOV3 (Cat: HTB-7) cells 
were purchased from American Type Culture Collec-
tion (ATCC). SKOV3 is an ovarian cancer cell line that 
was established from an Ovarian adenocarcinoma 
tumour in an untreated patient. A2780 (93,112,519) cell 
lines were purchased from the European Collection of 
Authenticated Cell Cultures (ECACC, Sigma-Aldrich, 
St. Louis, MO, USA). The human OC cell line A2780 is 
an ovarian cancer cell line that was established from an 
Ovarian endometroid adenocarcinoma tumour in an 
untreated patient. The cell line has an epithelial mor-
phology and cells grow as a monolayer in tissue culture 
flasks and in suspension in spinner cultures. The patient 
from whom the SKOV3 and A2780 cell line was estab-
lished, did not receive treatment for their tumour before 
tissue was taken. The cell lines were cultured in DMEM 
supplemented with 10% foetal bovine serum (Invitro-
gen, San Diego, CA) in a 5%  CO2 incubator at 37 °C. Si-
MXRA5, Si-KIF26B, Si-VSIG4, Si-COL6A6 and Si-NC 
were purchased from GenePharma (Shanghai, China). 
The human FOXJ1 and CXCL9 coding sequences were 
purchased from Fenghui (Hunan, China). Transfection 
was performed using Lipofectamine 3000 reagent (No. 
L3000015, Invitrogen, China) according to the manufac-
turer’s instructions. The sequences are shown in Addi-
tional file 6: Table S3.

Total RNA extraction and quantitative real‑time PCR
Total RNA was extracted from 10 ovarian tumour and 
6 nontumour tissues using RNA-easy Isolation Reagent 
(No. RC112-01, Vazyme, China). Quantitative real-time 
PCR (qRT-PCR) analysis was performed using the HiS-
cript III 1st Strand cDNA Synthesis Kit (No. R312-01, 
Vazyme, China) and ChamQTM Universal  SYBR® qPCR 
Master Mix (No. Q712-02, Vazyme, China) according to 
the manufacturer’s instructions. The primers are shown 
in Additional file 6: Table S3. GAPDH served as an inter-
nal control.

IHC staining analysis
An immunohistochemistry SP kit (No. SP-9000, ZSGB-
BIO, China) was used for IHC, which was performed as 
previously described [21]. Anti-FOXJ1 (1:200) and anti-
MXRA5 (1:200) were purchased from Immunoway (No. 

YT1751; No. YN2103, USA); anti-KIF26B (1:200) and 
anti-VSIG4 (1:200) were purchased from Abcam (No. 
ab121952; No. ab252933, China); anti-CXCL9 (1:200) 
was purchased from Affinity (No. DF9920, China); and 
anti-COL6A6 (1:200) was purchased from Invitrogen 
(No. PA5-60958, China). The magnification of the IHC 
images was 20 ×.

Transwell assays
Transwell assays were performed as previously described 
[22]. Transwell assays were used to determine the inva-
sion and migration abilities of CAOV3 and A2780 cells 
in vitro. For the migration assay, 700 μl DMEM with 20% 
serum was added to the lower chamber of a Transwell 
plate (Corning, NY, USA), and 1.5 × 105 cells were added 
to 200 μl serum-free DMEM in the upper chamber. After 
incubation for 24 h at 37 °C, the Transwell chamber was 
removed, cleaned once with PBS, and fxed for 30  min, 
then stained with 0.5% crystal violet for 30  min. The 
chamber was rinsed with PBS, and the cells on the upper 
side of the flter were carefully wiped away.

Statistical analysis
All statistical analyses were performed with R software 
3.5.3 and GraphPad Prism v. 8.01 (GraphPad Software, La 
Jolla, CA, USA). Student’s t test was used to compare val-
ues between the test and control groups. p values < 0.05 
indicated statistical significance.

Results
Identification of two molecular subtypes based 
on invasion‑related gene profiles
After preprocessing, the TCGA-OC dataset had 363 
samples, the GSE32062 dataset had 260 samples, and the 
GSE17260 dataset had 110 samples (Fig. 1). The clinical 
statistics of the samples are shown in Table  1. We first 
extracted the expression of 97 invasion-related genes 
from the TCGA database and then used Consensus-
ClusterPlus to cluster these genes. At k = 2, the samples 
could be clustered together (Fig. 2A). The expression of 
97 invasion-related genes in the two subclasses is shown 
in Fig.  2B; most genes were highly expressed in the C1 
group and expressed at low levels in the C2 group. We 
further analysed the prognostic relationship between 
the two groups, and the results revealed significant dif-
ferences between C1 and C2 (Fig. 2C, D; p < 0.05). DEGs 
between the C1 and C2 molecular subtypes were deter-
mined by the limma package. In total, 393 DEGs were 
filtered according to the thresholds of false discovery 
rate (FDR) < 0.05 and |log2 fold change (FC)|> 1. There 
were 384 upregulated genes and 9 downregulated genes 
(Fig. 2E and Additional file 7: Table S4). We selected the 
top 50 DEGs to generate a heat map (Fig. 2F).
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Furthermore, we performed Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway and Gene Ontol-
ogy (GO) functional enrichment analyses on the DEGs. 
For GO functional annotation, the results of the top 10 
biological processes (BPs), molecular functions (MFs) 
and cellular components (CCs) are shown in Additional 
file 1: Figure S1A–C. For KEGG pathway enrichment, the 
annotation results are shown in Additional file 1: Figure 
S1D, in which ECM-receptor interaction, proteoglycans 
in cancer, focal adhesion, PI3K-Akt signalling pathway, 
and other tumour-related pathways were significant. 
More detailed information is shown in Additional file 8: 
Table S5.

Next, we used gene set enrichment analy-
sis (GSEA) to analyse the pathways that were sig-
nificantly enriched in the C1 and C2 groups. The 
thresholds for enriched pathways were p < 0.05 
and FDR < 0.25; we then obtained the significantly 
enriched pathways (Additional file  9: Table  S6). 

More tumour-related pathways were enriched in the 
C1 subgroup, such as APOPTOSIS, PATHWAYS_
IN_CANCER, VEGF_SIGNALING_PATHWAY, 
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY, 
ECM_RECEPTOR_INTERACTION, FOCAL_ADHE-
SION and other tumour-related pathways. These GSEA 
pathways are shown in Additional file 1: Figure S1E and 
indicate that the C1 subtype was more strongly corre-
lated with tumours.

Comparative analysis of immune scores between the two 
molecular subtypes
ESTIMATE was used to identify the relationship 
between the immune scores of the molecular sub-
types. The results showed that the immune score of 
the C1 subtype was higher than that of the C2 sub-
type (Fig.  3A–C). We also generated a heatmap of the 
immune scores of the two subtypes (Fig. 3D).

Fig. 1 Technical road map
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Comparison of the identified molecular subtypes 
and existing subtypes
According to a previous report [13], the TCGA-OC sam-
ples were classified based on mRNA expression, after 
which they were divided into four categories: differen-
tiation, immunoreactive, mesenchymal and prolifera-
tive. We compared the relationship between the C1 and 
C2 subtypes obtained by our classification and found 
that the proportion of mesenchymal cells in the C1 sub-
type obtained by our clustering reached 57.82% (Fig. 3E). 
The proportion of proliferative cells in the C2 subtype 
obtained by our clustering reached 37.8% (Fig. 3F). Fur-
thermore, we analysed the prognostic relationships 
among these four subtypes and found significant differ-
ences in differentiation, immunoreactivity, mesenchymal 
activity and proliferation (Fig. 3G, H; p < 0.05).

Construction and evaluation of a prognostic risk model
The training set data were used for further analyses. 
Univariate Cox analysis was performed on 393 DEGs 
among molecular subtypes, and 7 genes that were 

Table 1 Sample information table

Clinical features TCGA‑OC GSE32062 GSE17260

OS

 0 136 139 64

 1 227 121 46

Stage

 I 1

 II 21

 III 282

 IV 56

 X 3

Grade

 G1 1

 G2 42

 G3 310

 G4 1

 GX 10

Age

 ≤ 60 199

 > 60 164

Fig. 2 Sample clustering heat map (A); heat map of 97 invasion-related genes (B); OS of each molecular subtype (C); PFS of each molecular subtype 
(D); volcano maps (E) and heat map (F) of differentially expressed genes between the C1 and C2 groups;
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associated with prognosis were identified (Additional 
file 10: Table S7). Lasso regression was used to reduce 
the gene numbers in the risk model. First, we analysed 
the trajectory of each independent variable, as shown in 
Fig. 3I. Next, we used ten-fold cross validation to con-
struct the model and confidence interval under each 
lambda, as shown in Fig. 3J. From the graph, we chose 
7 genes (FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9, 
CCL19 and COL6A6) when lambda was 0.003518527. 
Furthermore, a stepwise regression algorithm was 
applied, and we finally reduced 7 genes to 6 genes, 
namely, FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and 
COL6A6. The prognostic Kaplan–Meier (KM) curves 
of the 6 genes are shown in Additional file 1: Figure S1F. 
The final 6-gene signature formula is as follows:

Riskscore = −  0.1120494*FOXJ  −  0.3964107*MXRA5 
+ 0.2782800*KIF26B + 0.2701755*VSIG4 − 0.2419422*C
XCL9 + 0.2652037*COL6A6.

Verification of the prognostic risk model
We calculated the risk score of the TCGA training set 
and drew the risk score distribution. Based on the graph, 
samples with a high risk score were significantly lower in 
the graph than those with a low risk score, which suggests 
that high-risk score samples had a worse prognosis. The 
changes in expression of the 6 genes in the signature with 
increasing risk value were identified. High expression 
of KIF26B, VSIG4 and COL6A6 was a risk factor, while 
high expression of FOXJ1, MXRA5 and CXCL9 was a 

Fig. 3 Comparison of ssGSEA (A), MCP-counter (B) and estimated immune scores between molecular subtypes (C) and a heatmap of the immune 
score results (D) in the TCGA dataset. Comparison between molecular subtype C1 and existing subtypes (E); B comparison between molecular 
subtype C2 and existing subtype C (F); OS of existing molecular subtypes (G); D PFS of existing molecular subtypes (H). The trajectory of each 
independent variable: the horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the 
coefficient of the independent variable (I). The confidence interval is under each lambda (J)
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protective factor. Furthermore, we used the R software 
package timeROC to analyse the receiver operating char-
acteristic (ROC) curve of the risk score. We analysed the 
classification efficiency of the 1-year, 3-year and 5-year 
prognostic predictions. Finally, we calculated the z-scores 
of the risk score, divided the samples with a risk score 
greater than zero after the z-score into a high-risk group 
and those with a risk score less than zero into a low-risk 
group, and drew KM curves, as shown in Fig.  4A. The 
high-risk group had a lower survival rate (p < 0.0001).

To determine the robustness of the model, we utilized 
the TCGA test set and all TCGA datasets to calculate 
the risk score and drew the risk score distribution. Sam-
ples with a high risk score were significantly lower on the 
graph than those with a low risk score. The results of the 
KM curves reveal that the high-risk group has a lower 
survival rate in the TCGA test set and all TCGA datasets 
(Fig. 4B, C) (p < 0.01).

We used the same model and coefficients as those in 
the training set in the external test sets GSE32062 and 
GSE17260. We also calculated the risk score of each 

Fig. 4 Risk score, survival time, survival status, and 6-gene signature expression in the TCGA training set. ROC curve and AUC of the 6-gene 
signature classification; 6-gene signature distribution within the KM survival curve in the training set (A). TCGA test set risk score, survival time, 
survival status and 6-gene signature expression (B); risk score, survival time, survival status, and 6-gene signature expression in all TCGA datasets (C). 
Independent test of the risk score, survival time, survival status, and expression of the 6-gene signature in GSE32062 (D). Independent test of the risk 
score, survival time, survival status, and 6-gene signature expression in GSE17260 (E)
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sample according to the expression level of the sample 
and drew the risk score distribution of the sample. The 
risk score distributions of the independent test datasets 
GSE32062 and GSE17260 are shown in Fig. 4D, E.

Prognostic analysis of the risk model and clinical features
We further performed correlation analysis of the 6-gene 
signature and clinical factors and found that the signature 
could significantly distinguish high- and low-risk groups 
by age, stage III, stage IV, grade, recurrence or chemo-
therapy; however, stage I + II and no chemotherapy could 
not be used to distinguish between high- and low-risk 
groups due to the limited number of samples (Additional 
file  2: Figure S2A; p < 0.05). This finding further shows 
that our model still has good predictive ability for some 
different clinical factors.

Performance of the risk score for different clinical features 
and molecular subtypes
By comparing the distribution of the risk score among 
different clinical feature groups, we found significant 
differences among age groups, subtypes, and clus-
ters (Fig.  5A, E, F; p < 0.05) and no significant differ-
ences among the stage, grade and chemotherapy groups 
(Fig.  5B–D; p > 0.05). The results showed that for our 
molecular subtypes, the risk score of the C1 subtype with 
a poor prognosis was significantly higher than that of the 
C2 subtype with a good prognosis. Significant differences 
were also found in the risk score between existing molec-
ular subtypes.

Relationship between the risk score and pathways
To observe the relationship between the risk score and 
the biological functions of different samples, the gene 
expression profiles corresponding to these samples were 
selected for single-sample GSEA using the R software 
package GSVA. The scores of each sample for different 

Fig. 5 By comparing the distribution of the risk score among clinical feature groups, significant differences were found among age groups, 
subtypes, and clusters (A, E, F); no significant difference was found among the stage, grade and chemotherapy groups (B–D); correlation coefficient 
between KEGG pathways and the risk score with a risk score greater than 0.3 (G–I); single-factor (J) and multivariate analysis results of the clinical 
characteristics and the risk score. Construction and evaluation of the line graph model (K)
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functions were calculated to obtain the ssGSEA scores 
of each function corresponding to each sample. The 
correlations between these functions and the risk score 
were further calculated. The functions with correlations 
greater than 0.3 were selected, as shown in Fig. 5G–I. The 
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_
CHONDROITIN_SULFATE, KEGG_GLYCOSAMINO-
GLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE, and 
KEGG_SULFUR_METABOLISM pathways were posi-
tively correlated with the risk scores of the samples.

Univariate and multivariate analyses of the 6‑gene 
signature
To assess the independence of the 6-gene signature model 
for clinical application, we used single-factor and multi-
factor Cox regression to analyse the clinical information 
and the risk score. In the TCGA dataset, univariate Cox 
regression analysis showed that the risk score was sig-
nificantly associated with survival, and multivariate Cox 
regression analysis showed that the risk score (HR = 1.72, 
95% CI 1.5–1.98, p < 1e−5) was still significantly associ-
ated with prognosis Fig. 5J. The above findings show that 
our 6-gene signature model has good predictive perfor-
mance in clinical application.

Construction of a nomogram integrating the risk score 
and clinical features
According to the results of univariate and multivariate 
analyses, we constructed a nomogram model with clini-
cal features (age, chemotherapy and risk score) (Fig. 5K). 
In the model, the risk score features have the greatest 
impact on survival prediction, which indicates that the 
6-gene risk model can better predict prognosis. Further-
more, we used a calibration curve to evaluate the predic-
tion accuracy of the model. The prediction calibration 
curves of the three calibration points at 1, 3 and 5 years 
are close to the standard curve, which indicates that the 
model has good prediction performance. In addition, we 
used decision curve analysis (DCA) to evaluate the reli-
ability of the model. We observed that the benefits of the 
risk score and nomogram were significantly higher than 
the extreme curve and that the benefits of the nomogram 
were higher than those of the risk score. Age and chemo-
therapy were close to the extreme curve, which indicates 
that the risk score and nomogram have good reliability.

Model comparison and immunotherapy cohort prediction
We finally selected two prognostic risk models, a 10-gene 
signature (Wang) [23] and a 7-gene signature (Sabatier) 
[24], for comparison with our 6-gene signature model. 
To make the models comparable, we calculated the risk 
score of each OC sample in the TCGA dataset using the 
same method based on the corresponding genes in the 4 

models, obtained the z-scored risk scores, and divided 
the samples with risk scores greater than zero after 
z-scorization into the high-risk group and those with risk 
scores less than zero into the low-risk group. The prog-
nostic difference in OC between the two groups of sam-
ples was calculated. The ROC and OC KM curves of the 
two models are shown in Additional file 2: Figure S2B–D. 
The ROC curves of the two models based on the TCGA 
data showed a poor construction, and the AUC values at 
1, 3 and 5 years were lower than the average AUC values 
of our 6-gene model. The KM curves of the Wang model 
showed that the high-risk group was significantly related 
to the poor prognosis of patients with OC (p < 0.01). 
No significant difference was observed in the progno-
sis between the high and low subgroups of the Sabatier 
model. Overall, our model is more reasonable and effec-
tive with fewer genes.

At present, effective predictive markers for immuno-
therapy are limited. The identification of new predic-
tive markers is crucial for the further advancement of 
precision immunotherapy. Therefore, we retrieved the 
IMvigor210 dataset [25], which contains the gene expres-
sion profile data of PD-L1 immunotherapy metastatic 
urothelial carcinoma (mUC) patients, to explore whether 
the 6-gene model can predict the benefits of immu-
notherapy. The results of the KM curve showed that a 
higher risk score was associated with poorer survival in 
mUC patients (Additional file  2: Figure S2E). We used 
the same method to evaluate the risk score of patients 
and analysed the difference in the risk score under dif-
ferent response states, as shown in Additional file 2: Fig-
ure S2F, G. The risk score of complete response (CR)/
partial response (PR) patients (responders) was signifi-
cantly lower than that of progressive disease (PD)/stable 
disease (SD) patients (nonresponders), indicating that 
patients in the low-risk score group had a good response 
to immunotherapy. Furthermore, the KM curve revealed 
that a lower risk score was associated with better survival 
in mUC patients receiving immunotherapy (Additional 
file 2: Figure S2H).

Expression of the signature genes in OC tissues
Furthermore, to verify the accuracy of the 6-gene signa-
ture, we examined the expression of the signature genes 
(FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and COL6A6) 
in clinical samples from OC patients by qPCR and IHC 
analyses. The qPCR and IHC results showed that the 
expression of FOXJ1, MXRA5 and CXCL9 was low, while 
that of KIF26B, VSIG4 and COL6A6 was high in OC tis-
sues (Fig. 6A, B).
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Biological functions of the signature genes in OC cells
To clarify the functional roles of the signature genes in 
OC cells, siRNA was used to reduce the expression of 
MXRA5, KIF26B, VSIG4 and COL6A6, and overex-
pression plasmids were used to overexpress FOXJ1 and 
CXCL9. For MXRA5, the transcript length was 9804 bp, 
which was too long to construct an overexpression plas-
mid and thus, Si-MXRA5 was used for functional assays. 
Transwell assays were used to determine the invasion and 
migration abilities of CAOV3 and A2780 cells in  vitro, 
and the results showed that reduced KIF26B, VSIG4 or 
COL6A6 expression and FOXJ1 or CXCL9 overexpres-
sion significantly inhibited CAOV3 cell invasion and 
migration. Moreover, low MXRA5 expression increased 
the invasion and migration abilities of CAOV3 cells 
(Fig. 7A, B). We observed the same results in A2780 cells 
(Additional file 3: Figure S3) that reduced KIF26B, VSIG4 
or COL6A6 expression and FOXJ1 or CXCL9 over-
expression significantly inhibited invasion and migration, 
and low MXRA5 expression increased the invasion and 
migration abilities of A2780 cells.

Discussion
Although the incidence and mortality of OC has been 
declining, fewer than half of women survive more than 
5 years after diagnosis due to its high invasiveness, a lack 
of specific early symptoms and a lack of effective early 
detection strategies [26]. Therefore, the main challenge is 
to develop an accurate prognostic model to provide crite-
ria for making clinical treatment decisions.

To solve this problem, we collected genes related to OC 
invasion and used gene expression data from public data-
bases, such as TCGA and GEO, to establish molecular 
subtypes of OC based on tumour invasion-related genes. 
The relationships between molecular subtype and prog-
nosis and clinical features were further evaluated. The 
prognostic risk model constructed by DEGs between OC 
molecular subtypes can better evaluate the prognosis of 
OC patients; moreover, the GEO gene expression dataset 
was further used to verify that the prognostic risk model 
has good performance. FOXJ1, MXRA5, KIF26B, VSIG4, 
CXCL9 and COL6A6 were screened out. High expres-
sion of KIF26B, VSIG4 and COL6A6 is related to high 
risk and is a risk factor for poor prognosis. High expres-
sion of FOXJ1, MXRA5 and CXCL9 is related to low risk 

Fig. 6 The qPCR (A) and IHC (B) results showed that FOXJ1, MXRA5 and CXCL9 expression was low and that KIF26B, VSIG4 and COL6A6 expression 
was high in OC tissues
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and is protective. Moreover, the results of the qPCR and 
immunohistochemistry staining assays revealed that 
KIF26B, VSIG4 and COL6A6 were upregulated and that 
FOXJ1, MXRA5 and CXCL9 were downregulated in OC 
tissues. The functional study showed that the expres-
sion of KIF26B, VSIG4, COL6A6, FOXJ1, MXRA5 and 
CXCL9 can regulate the migration and invasion abilities 
of OC cells. Our signature is more accurate than others, 
and we established a more reasonable and efficient model 
with fewer genes.

FOXJ1 is a member of the FOX family and has been 
reported to be involved in tumorigenesis. Single-cell 
sequencing of endometrial and ovarian tumours has 
shown that FOXJ1 is expressed in endometrial tumours 
and is positively correlated with the disease specificity 
and overall survival of endometrial cancer patients [27]. 
Knockdown of FOXJ1 inhibits proliferation, migra-
tion, invasion and glycolysis in laryngeal squamous 
cell carcinoma cells [28]. Decreased FOXJ1 expres-
sion and cilia formation in ependymomas and choroid 
plexus tumours are markers of poor prognosis and 
are therefore useful biomarkers for evaluating these 
tumours [29]. Patients with malignant pleural meso-
thelioma and a high MXRA5 mutation frequency have 
a longer survival time [30]. However, in glioblastoma, 
MXRA5 mutations do not significantly alter prognosis 
[31]. This suggests that MXRA5 plays different roles 
in different tumours. KIF26B is a downstream tar-
get of the zinc finger protein Sall1, which is involved 

in the development of various tumours. Studies have 
shown that high KIF26B expression in colorectal can-
cer tissues can increase the proliferation, migration, 
and invasiveness of colorectal cancer cells and increase 
tumour depth and lymph node metastasis and that high 
KIF26B expression is closely related to poor prognosis 
[32]. Increased expression of KIF26B in gastric cancer 
is associated with tumour size, lymph node metasta-
sis positivity or distant metastasis and poor prognosis 
[33]. KIF26B also promotes the development and pro-
gression of breast cancer and plays a key role in breast 
cancer growth and metastasis [34, 35]. Downregulation 
of KIF26B inhibits the viability, proliferation and inva-
siveness of hepatocellular carcinoma cells [36]. VSIG4 
is a newly discovered immune checkpoint of the B7 
family of immunoregulatory proteins. Recent studies 
have shown that VSIG4 overexpression in advanced 
gastric cancer is independently and strongly associ-
ated with poor prognosis, which indicates its potential 
as an important prognostic indicator in advanced gas-
tric cancer [37]. Serum VSIG4 levels were found to be 
significantly increased in patients with lymphoma and 
can be used for lymphoma diagnosis [38]. In clear cell 
renal cell carcinoma, VSIG4 is upregulated and indi-
cates a poor prognosis [39]. The chemokine CXCL9 
plays an important role in the inflammatory process 
and angiogenesis and is also related to the occurrence, 
development and metastasis of tumours. CXCL9 is 
highly correlated with CD8 + T cells and natural killer 

Fig. 7 Transwell assays revealed that downregulation of KIF26B, VSIG4 or COL6A6 and upregulation of FOXJ1 or CXCL9 significantly inhibited the 
invasion (A) and migration (B) abilities of CAOV3 cells in vitro; downregulation of MXRA5 promoted the invasion and migration abilities of CAOV3 
cells
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(NK) cells in colorectal cancer and has an antitumour 
immune effect [40]. In bladder cancer, CXCL9 expres-
sion is negatively correlated with the recurrence rate, 
and high CXCL9 expression can improve the progno-
sis of bladder cancer patients [41]. Increased CXCL9 
expression in gastric cancer leads to decreased pro-
liferation and metastasis of gastric cancer cells [42]. 
COL6A6 is a beaded fibrocollagen located near the 
basement membrane and is involved in maintain-
ing epithelial and endothelial cell transformation [43]. 
COL6A6 upregulation significantly inhibits the prolif-
eration, invasiveness, migration and epithelial-mesen-
chymal transition (EMT) of pituitary tumour cells and 
significantly inhibits tumour size, tumour volume and 
tumour weight [44].

However, a limitation of this study is that some data 
lacked clinical follow-up information, and further genetic 
and experimental studies along with experimental veri-
fication are needed with larger sample sizes. Moreover, 
direct clinical application tests of this prognostic model 
will need to be conducted. We will further verify the pre-
dictive ability of the gene signature with clinical samples 
in a follow-up study. This study proposes that the predic-
tion model based on six genes is applicable, and the risk 
score, which can be calculated through an algorithm, can 
be used for risk classification prediction.

In summary, we established an invasion-related 6-gene 
signature to evaluate the prognosis of OC patients. Fur-
thermore, to verify the signature, we used the TCGA-test 
and GSE32062 and GSE17260 chip datasets for testing 
and finally obtained a good risk prediction effect in those 
datasets. Moreover, the results of the qPCR and immu-
nohistochemistry staining assays revealed that KIF26B, 
VSIG4 and COL6A6 were upregulated and that FOXJ1, 
MXRA5 and CXCL9 were downregulated in OC tis-
sues. The functional study showed that the expression of 
KIF26B, VSIG4, COL6A6, FOXJ1, MXRA5 and CXCL9 
can regulate the migration and invasion abilities of OC 
cells. These results suggest that the signature could 
potentially be used to evaluate the prognostic risk of OC 
patients.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12935- 022- 02502-4.

Additional file 1. KEGG pathway and GO functional enrichment analyses 
on the DEGs

Additional file 2. Prognostic analysis of the risk model and clinical 
features

Additional file 3. Transwell assays were used of A2780 cells

Additional file 4. Invasion-related gene sets

Additional file 5: Table S2. The clinicopathological characteristics of 
ovarian cancer tissues

Additional file 6. siRNA sequences and primers for qRT-PCR analysis

Additional file 7. 384 upregulated genes and 9 downregulated genes

Additional file 8. The detailed information of Go

Additional file 9. The detailed information of KEGG

Additional file 10. 7 prognosis genes

Acknowledgements
We would like to thank TCGA and GEO databases for the availability of the 
data.

Authors’ contributions
LYW and NL conceived and designed the study. LLL and JL performed the 
experiments. JL, LX, JZ, JY and TTW analysed the data and drafted the manu-
script. All authors read and approved the final manuscript.

Funding
This work was supported by National Natural Science Foundation of China 
(82172652) and Beijing Xisike Clinical Oncology Research Foundation 
(Y-MSDZD2021-0136 and Y-sy2018-261).

Availability of data and materials
The data and materials can be obtained from the first author and correspond-
ing author.

Declarations

Ethics approval and consent to participate
All patients signed informed consent forms provided by the Cancer Hospital, 
CAMS & PUMC. This study was approved by the Ethics Committee of the 
Cancer Institute (Hospital), CAMS & PUMC (17-099/1355).

Consent for publication
Written informed consent for publication was obtained from all participants.

Competing interests
The authors declare no competing interests.

Received: 28 June 2021   Accepted: 30 January 2022

References
 1. Timmermans M, Sonke GS, Van de Vijver KK, Aa MA. No improvement in 

long-term survival for epithelial ovarian cancer patients: a population-
based study between 1989 and 2014 in the Netherlands. Eur J Cancer. 
2018;88:31–7. https:// doi. org/ 10. 1016/j. ejca. 2017. 10. 030

 2. Sant M, Lopez M, Agresti R, Pérez M, Holleczek B, Bielska-Lasota M, 
Dimitrova N, Innos K, Katalinic A, Langseth H. Survival of women with 
cancers of breast and genital organs in Europe 1999–2007: results of the 
EUROCARE-5 study. Eur J Cancer. 2015. https:// doi. org/ 10. 1016/j. ejca. 
2015. 07. 022.

 3. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, 
Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer 
J Clin. 2018. https:// doi. org/ 10. 3322/ caac. 21456.

 4. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. 
Ovarian cancer. Nat Rev Dis Prim. 2016;2:16061.

 5. Mirzaei H, Yazdi F, Salehi R, Mirzaei H. SiRNA and epigenetic aberrations in 
ovarian cancer. J Cancer Res Ther. 2016;12:498–508.

 6. Pourhanifeh M, Darvish M, Tabatabaeian J, Fard M, Mottaghi R, Azadchehr 
M, Jahanshahi M, Sahebkar A, Mirzaei H. Therapeutic role of curcumin 
and its novel formulations in gynecological cancers. J Ovarian Res. 
2020;13:130.

https://doi.org/10.1186/s12935-022-02502-4
https://doi.org/10.1186/s12935-022-02502-4
https://doi.org/10.1016/j.ejca.2017.10.030
https://doi.org/10.1016/j.ejca.2015.07.022
https://doi.org/10.1016/j.ejca.2015.07.022
https://doi.org/10.3322/caac.21456


Page 13 of 13Liang et al. Cancer Cell International          (2022) 22:118  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 7. Rahimian N, Razavi Z, Aslanbeigi F, Mirkhabbaz A, Piroozmand H, Shahr-
zad M, Hamblin M, Mirzaei H. Non-coding RNAs related to angiogenesis 
in gynecological cancer. Gynecol Oncol. 2021;161:896–912.

 8. Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, 
Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, Razi E, 
Savardashtaki A, Mirzaei H. Quercetin and cancer: new insights into its 
therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10:32.

 9. Mirza M, Coleman R, González-Martín A, Moore K, Colombo N, Ray-
Coquard I, Pignata S. The forefront of ovarian cancer therapy: update on 
PARP inhibitors. Ann Oncol. 2020;31:1148–59.

 10. Keeler ER, Das PM, Bast RC, Lu KH. Ovarian cancer screening. Amsterdam: 
ScienceDirect; 2010. pp. 87–107.

 11. Muinao T, Dekaboruah H, Pal M. Diagnostic and prognostic biomarkers in 
ovarian cancer and the potential roles of cancer stem cells—an updated 
review. Exp Cell Res. 2017. https:// doi. org/ 10. 1016/j. yexcr. 2017. 10. 018

 12. Nossov V, Amneus M, Su F, Lang J, Janco J, Reddy ST, Farias-Eisner R. The 
early detection of ovarian cancer: from traditional methods to proteom-
ics. Can we really do better than serum CA-125? Am J Obstet Gynecol. 
2008;199:215–23.

 13. Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh 
Z, RohaniBorj M, Pourghadamyari H, Rahimian N, Hamblin M, Mirzaei H. 
Exosomal microRNAs and exosomal long non-coding RNAs in gyneco-
logic cancers. Gynecol Oncol. 2021;161:314–27.

 14. Razavi Z, Tajiknia V, Majidi S, Ghandali M, Mirzaei H, Rahimian N, Hamblin 
M, Mirzaei H. Gynecologic cancers and non-coding RNAs: epigenetic 
regulators with emerging roles. Crit Rev Oncol Hematol. 2021;157:103192.

 15. Ali A, Zhang F, Maguire A, et al. HDAC6 degradation inhibits the growth 
of high-grade serous ovarian cancer cells. Cancers. 2020;12:3734.

 16. Zhao H, Gao Y, Chen Q, Li J, Yue W. RAD51AP1 promote progression of 
ovarian cancer via TGF-β/Smad signaling pathway. SSRN J. 2019. https:// 
doi. org/ 10. 1111/ jcmm. 15877.

 17 Chen L, Cai S, Wang JM, Huai YY, Chu Q. BRDT promotes ovarian 
cancer cell growth. Cell Death Dis. 2020. https:// doi. org/ 10. 1038/ 
s41419- 020- 03225-y

 18. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, Xu L, Luo T, Yan H, Long 
Z, Shi A. CancerSEA: a cancer single-cell state atlas. J Nucleic Acids Res. 
2019. https:// doi. org/ 10. 1093/ nar/ gky939.

 19. Charoentong P, Finotello F, Angelova M, Mayer C, Trajanoski Z. Pan-cancer 
immunogenomic analyses reveal genotype-immunophenotype relation-
ships and predictors of response to checkpoint blockade. Cell Rep. 2016. 
https:// doi. org/ 10. 1016/j. celrep. 2016. 12. 019

 20. Bell D, Berchuck A, Birrer M, Chien J, Thomson E. Integrated genomic 
analyses of ovarian carcinoma TCGA Network. Nature. 2011;474:609–15. 
https:// doi. org/ 10. 1038/ natur e10166.

 21. Liang L, Gao C, Yang L, Sun M, Zhao Y. MiR-125a-3p/FUT5-FUT6 axis medi-
ates colorectal cancer cell proliferation, migration, invasion and patholog-
ical angiogenesis via PI3K-Akt pathway. Cell Death Dis. 2017;8:e2968.

 22. Liang L, Xu J, Wang M, Xu G, Zhang N, Wang G, Zhao Y. LncRNA HCP5 
promotes follicular thyroid carcinoma progression via miRNAs sponge. 
Cell Death Dis. 2018;9:372.

 23 Wang L, Wang L, Ma L, Liu J, Ma S. Identifying gene signature for the 
detection of ovarian cancer based on the achieved related genes. 
Gynecol Obstet Invest. 2016. https:// doi. org/ 10. 1159/ 00044 9160

 24. Sabatier R, Finetti P, Bonensea J, Jacquemier J, Adelaide J, Lambaudie 
E, Viens P, Birnbaum D, Bertucci F. A seven-gene prognostic model for 
platinum-treated ovarian carcinomas. Br J Cancer. 2011;105:304.

 25. Mariathasan S, Turley SJ, et al. TGFβ attenuates tumour response to PD-L1 
blockade by contributing to exclusion of T cells. Nature. 2018.

 26. Trinidad CV, Tetlow AL, Bantis LE, Godwin AK. Reducing ovarian cancer 
mortality through early detection: approaches using circulating biomark-
ers. Cancer Prev Res. 2020;13:241–52.

 27. Cochrane DR, Campbell KR, Greening K, Ho GC, Huntsman DGJ. Single 
cell transcriptomes of normal endometrial derived organoids uncover 
novel cell type markers and cryptic differentiation of primary tumours. J 
Pathol. 2020. https:// doi. org/ 10. 1002/ path. 5511.

 28. Liu L, Zhang P, Shao Y, Quan F, Li H. Knockdown of FOXJ1 inhibits the 
proliferation, migration, invasion, and glycolysis in laryngeal squamous 
cell carcinoma cells. J Cell Biochem. 2019;120:15874–82.

 29. Abedalthagafi M, Wu M, Merrill P, Du Z, Woo T, Sheu S, Hurwitz S, Ligon K, 
Santagata S. Decreased FOXJ1 expression and its ciliogenesis programme 

in aggressive ependymoma and choroid plexus tumours. J Pathol. 
2016;238:584–97.

 30. Torricelli F, Saxena A, Nuamah R, Neat M, Bille A. Genomic analysis in 
short- and long-term patients with malignant pleura mesothelioma 
treated with palliative chemotherapy. Eur J Cancer. 2020;132:104–11.

 31. Rahane C, Kutzner A, Heese K. A cancer tissue-specific FAM72 expression 
profile defines a novel glioblastoma multiform (GBM) gene-mutation 
signature. J Neuro Oncol. 2019;141:57–70.

 32. Wang J, Cui F, Xiao W, Xue Y, Peng Z. Elevated kinesin family member 26B 
is a prognostic biomarker and a potential therapeutic target for colorectal 
cancer. J Exp Clin Cancer Res. 2015;34:13.

 33. Zhang H, Ma R, Wang X, Su Z, Chen X, Shi D, Guo X, Liu H, Gao P. KIF26B, a 
novel oncogene, promotes proliferation and metastasis by activating the 
VEGF pathway in gastric cancer. Oncogene. 2017;36:5609–19.

 34. Gu S, Liang H, Qi D, Mao L, Mao G, Qian L, Zhang S. Knockdown of KIF26B 
inhibits breast cancer cell proliferation, migration, and invasion. Onco-
Targets Ther. 2018;11:3195–203.

 35. Teng Y, Guo B, Mu X, Liu S. KIF26B promotes cell proliferation and migra-
tion through the FGF2/ERK signaling pathway in breast cancer. Biomed 
Pharmacother. 2018;108:766–73.

 36. Li H, Shen S, Chen X, Ren Z, Li Z, Yu Z. miR-450b-5p loss mediated KIF26B 
activation promoted hepatocellular carcinoma progression by activating 
PI3K/AKT pathway. Cancer Cell Int. 2019;19:205.

 37. Kim S, Roh J, Lee H, Ryu M, Park Y, Park C. Expression of the immune 
checkpoint molecule V-set immunoglobulin domain-containing 4 is 
associated with poor prognosis in patients with advanced gastric cancer. 
Gastric Cancer. 2021;24:327–40.

 38. Yuan S, Wang Y, Luo H, Jiang Z, Song S. Serum soluble VSIG4 as a surro-
gate marker for the diagnosis of lymphoma-associated hemophagocytic 
lymphohistiocytosis. Br J Haematol. 2020. https:// doi. org/ 10. 1111/ bjh. 
16299.

 39. Hu D, Zhou M, Zhu X. Deciphering immune-associated genes to predict 
survival in clear cell renal cell cancer. BioMed Res Int. 2019;2019:2506843.

 40. Yu L, Yang X, Xu C, Sun J, Fang Z, Pan H, Han W. Comprehensive analysis 
of the expression and prognostic value of CXC chemokines in colorectal 
cancer. Int Immunopharmacol. 2020;89:107077.

 41. Kubon J, Sikic D, Eckstein M, Weyerer V, Stöhr R, Neumann A, Keck B, 
Wullich B, Hartmann A, Wirtz R, Taubert H, Wach S. Analysis of CXCL9, PD1 
and PD-L1 mRNA in stage T1 non-muscle invasive bladder cancer and 
their association with prognosis. Cancers. 2020. https:// doi. org/ 10. 3390/ 
cance rs121 02794.

 42. Chen Y, Zhang J, Gong W, Dai W, Xu X, Xu S. miR-588 is a prognostic 
marker in gastric cancer. Aging. 2020;13:2101–17.

 43. Voiles L, Lewis D, Han L, Lupov I, Lin T, Robertson M, Petrache I, Chang H. 
Overexpression of type VI collagen in neoplastic lung tissues. Oncol Rep. 
2014;32:1897–904.

 44. Long R, Liu Z, Li J, Yu H. COL6A6 interacted with P4HA3 to suppress the 
growth and metastasis of pituitary adenoma via blocking PI3K-Akt path-
way. Aging. 2019;11:8845–59.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.yexcr.2017.10.018
https://doi.org/10.1111/jcmm.15877
https://doi.org/10.1111/jcmm.15877
https://doi.org/10.1038/s41419-020-03225-y
https://doi.org/10.1038/s41419-020-03225-y
https://doi.org/10.1093/nar/gky939
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1038/nature10166
https://doi.org/10.1159/000449160
https://doi.org/10.1002/path.5511
https://doi.org/10.1111/bjh.16299
https://doi.org/10.1111/bjh.16299
https://doi.org/10.3390/cancers12102794
https://doi.org/10.3390/cancers12102794

	Establishment and validation of a novel invasion-related gene signature for predicting the prognosis of ovarian cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Data download
	Comparative analysis of immune scores between molecular subtypes
	Construction of a prognostic risk model
	Specimen collection
	Cell culture and treatments
	Total RNA extraction and quantitative real-time PCR
	IHC staining analysis
	Transwell assays
	Statistical analysis

	Results
	Identification of two molecular subtypes based on invasion-related gene profiles
	Comparative analysis of immune scores between the two molecular subtypes
	Comparison of the identified molecular subtypes and existing subtypes
	Construction and evaluation of a prognostic risk model
	Verification of the prognostic risk model
	Prognostic analysis of the risk model and clinical features
	Performance of the risk score for different clinical features and molecular subtypes
	Relationship between the risk score and pathways
	Univariate and multivariate analyses of the 6-gene signature
	Construction of a nomogram integrating the risk score and clinical features
	Model comparison and immunotherapy cohort prediction
	Expression of the signature genes in OC tissues
	Biological functions of the signature genes in OC cells

	Discussion
	Acknowledgements
	References




