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Abstract 

Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of 
accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules 
play an important role in every level of gene expression. Metastasis‐associated lung adenocarcinoma transcript‐1 
(MALAT1) is a highly conserved nucleus‑restricted lncRNA that regulates genes at the transcriptional and post‑tran‑
scriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed 
that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting 
multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can 
be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associ‑
ated with MALAT1 in CRC.
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Introduction
Colorectal cancer (CRC) or colorectal adenocarcinoma 
is a complex and the third cause of malignancies in the 
world [1, 2]. CRC usually arises from the hyper-prolifer-
ative glandular and epithelial cells in the large intestine 
[3]. Several environmental and genetic factors can stimu-
late the accumulation of mutations and oncogenes, and 
inhibit tumor suppressor genes in colon epithelial cells 
[4]. Currently, surgical resection [5], chemotherapy [6], 
and radiotherapy [7] are the common types of treat-
ments for CRC [8]. Recently, molecular targeted therapy 
has emerged as a novel treatment option for targeting 
CRC cells [9, 10]. Some studies provided evidence that 
cancer-specific long non-coding RNAs (lncRNAs) can 
be utilized for anti-CRC drugs [11, 12]. LncRNA (> 200 

nucleotides in length) are transcribed RNA molecules 
that directly or indirectly regulate a variety of biological 
functions [13]. It has been shown that many lncRNAs 
are involved in human diseases and cancers through the 
induction of cell cycle progression, invasion, and metas-
tasis [14]. Metastasis‐associated lung adenocarcinoma 
transcript‐1 (MALAT1) is a conserved and well-charac-
terized lncRNA that plays an important role in various 
biological processes through diverse mechanisms [15]. 
Under hypoxia conditions, MALAT1 plays an important 
role in inflammation, angiogenesis, and metastasis [16].

The expression of MALAT1 was first detected in 
patients with non-small cell lung cancer (NSCLC) [17, 
18]. The expression of MALAT1 has been upregulated 
in multiple cancer types include liver [19], cervix [20], 
breast [21], colorectal [22], renal [23], prostate [24], 
gastric [25] and other cancers [26, 27]. In tumor cells, 
MALAT1 by targeting several transcription factors, 
growth factors, hormones, and epigenetic histone modi-
fications can mediate cancer cell proliferation, tumo-
rigenicity, autophagy, epithelial-mesenchymal transition 
(EMT), metastasis, and drug resistance phenotypes [28–
31]. Recent studies elucidated the role of MALAT1 in 
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CRC cell growth, migration, invasion, and metastasis [32, 
33]. MALAT1 was reported to target several CRC-related 
pathways such as Wnt/β-catenin, YAP, SOX9, RUNX2, 
Snail, EGF, PI3K/AKT/mTOR, P53, and VEGF [34, 35]. 
Besides, MALAT1 by suppressing multiple microR-
NAs (miRNAs) plays a pivotal role in CRC pathogenesis 
[36, 37]. miRNAs are epigenetic modulators that target 
mRNAs and function in various biological and pathologi-
cal processes [38].

Therefore, MALAT1 can be a potent biomarker for 
CRC prediction and diagnosis [39, 40]. In this review, 
we summarized MALAT1-related signaling pathways in 
CRC.

Biogenesis of MALAT1
MALAT1 (known as nuclear-enriched abundant tran-
script 2 (NEAT2) or hepcarcin (HCN)) is the most widely 
investigated lncRNA and RNA polymerase II transcripts 
that localizes to nuclear speckles [41, 42]. MALAT1 
coding gene is located on human chromosome 11q13.1 
(> 8000 nucleotides) [28] and functions in alternative 
splicing [26]. The MALAT1 precursor contains a highly 
conserved triple-helix element at the 3′ end named 
MALAT1-associated small cytoplasmic RNA (mascRNA) 
that protects the 3′ end from degradation and facilitates 
the localization of MALAT1 [43, 44]. mascRNA with a 
tRNA-like structure is separated from MALAT precur-
sor by tRNA endonucleases RNase P to generate pre-
mature MALAT1 [45, 46]. RNase P can also generate a 
61-nt tRNA-like small RNA at the 5’ end of the abundant 
MALAT1 transcript which is exported to the cytoplasm 
[47]. Pre-mature MALAT1 with a short poly(A) tail-like 
moiety is cleaved by tRNA endonucleases RNase Z in the 
nucleus, prior to addition of the CCA motif. After pro-
cessing, mascRNA with CCA trinucleotide tail exported 
to the cytoplasm, while the stable MALAT1 transcript 
accumulates in the nucleus [48] (Fig. 1).

MALAT1 interacts with multiple miRNAs and small 
nuclear RNAs (snRNAs) to regulate various biological 
processes in human tissues [46]. It has been reported that 
several nuclear speckles such as RNPS1 (RNA-binding 
protein with serine-rich domain 1), SRm160 (serine/argi-
nine-rich (SR)-related protein), and IBP160 (intron bind-
ing protein) regulate the proper localization of MALAT1 
to nuclear speckles [17]. MALAT1 also changes the dis-
tribution of SR splicing factor (SRSF), SON1, hnRNPC, 
and hnRNPH1 as pre-mRNA splicing factors [17, 49]. 

MALAT1 can target polycomb repressive complex 
2 (PRC2) components (enhancer of Zeste 2 (EZH2), 
SUZ12, and EED), increase trimethylation of histone H3 
at lysine 27 (H3K27me3), and decrease target gene or 
miRNA expression [50]. Down-regulation of MALAT1 
influenced the distribution of SR proteins and changed 
splicing of pre-mRNA [51]. Nowadays, various specific 
gene manipulation methods using siRNAs, miRNAs, and 
shRNA mediated the knockdown of MALAT1 have been 
introduced for diagnostic, prognostic, and therapeutic 
values of MALAT1 and its downstream targets [17, 52]. 
Although the exact mechanism of MALAT1 is unclear, 
its expression is misregulated in numerous human malig-
nancies. MALAT1 as a competing endogenous RNA 
(ceRNA) can sponge miRNAs to inhibit their expression 
and stimulate their downstream targets.

MALAT1 was suggested to be a prognostic marker in 
multiple cancerous tissues. Below, we summarized the 
overview function of MALAT1 in colorectal cancer.

The role of MALAT1 in colorectal cancer
The MALAT1 fragment at the 3’ end is known to be 
associated with CRC cell metastasis [47, 53]. How-
ever, the exact mechanisms of MALAT1 in CRC are 
not fully understood. Previous studies have established 
that MALAT1 promotes CRC cell proliferation, apop-
tosis, migration, metastasis, and angiogenesis (Table  1). 
MALAT1 by targeting several signaling pathways and 
miRNAs plays a pivotal role in CRC pathogenesis (Fig. 2).

Based on a previous study, MALAT1 as a prognostic 
risk factor decreased the survival outcomes of patients 
with CRC [54]. In advanced CRC patients, overexpres-
sion of MALAT1 is associated with drug resistance [22]. 
MALAT1 is able to increase oxymatrine resistance and 
the invasion ability of CRC cells [55]. MALAT1 by tar-
geting at least 243 genes stimulates tumor development 
and enhances CRC cell invasion. The expression of PRKA 
kinase anchor protein 9 (AKAP-9) has been recognized 
that was increased in CRC tissues with lymph node 
metastasis [35].

A study reported that tumor-associated dendritic 
cells (TADCs) promoted migration and EMT in CRC 
[56]. C–C motif ligand 5 (CCL5) is a chemokine that 
mimics the impact of TADCs on CRC cells. There-
fore, the inhibition of CCL5 expression via neutraliz-
ing antibodies or siRNA reduced cancer progression 
by TADCs. It has been suggested that Snail as the 

(See figure on next page.)
Fig. 1 Characterization of MALAT1. MALAT1 contains a highly conserved triple‑helix element at the 3′ end named MALAT1‑associated small 
cytoplasmic RNA (mascRNA) that protects the 3′ end from degradation and facilitates the localization of MALAT1. mascRNA is a tRNA‑like structure 
that is separated from MALAT precursor by tRNA endonucleases RNase P. Then, pre‑mature MALAT1 with a short poly(A) tail‑like moiety is cleaved 
by tRNA endonucleases RNase Z. MALAT1 plays functional roles in transcriptional regulation, translation activation, epigenetic regulation, RNA 
processing, physiological processes, and cancer
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Fig. 1 (See legend on previous page.)
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downstream target of MALAT1 participates in TADC-
mediated CRC progression [56].

Further studies have found that MALAT1 can tar-
get miR-619-5p and increase the clinicopathological 
features of patients with CRC [57]. In CRC, MALAT1 
through interaction with EZH2 can inhibit the expres-
sion of E-cadherin and induce Oxaliplatin (Ox) resist-
ance. Also, MALAT1 interacts with miR-218 to 
enhance EMT, metastasis, and FOLFOX resistance 
[22]. MALAT1 by targeting miR-363-3p can enhance 
EZH2 expression levels and promote CRC cell prolif-
eration [58].

PTBP2 or PTB (polypyrimidine-tract-binding protein) 
is a proto-oncogene that promotes the growth of CRC 
cells [59]. SFPQ or PSF is a PTB-associated splicing fac-
tor and a tumor suppressor gene that binds to PTBP2 
[60]. MALAT1 has been observed that interacts with 
SFPQ, releases PTBP2 from the SFPQ/PTBP2 complex 
(SFPQ-detached PTBP2), and accelerates tumor growth 
and metastasis [61, 62].

Sex-determining region Y (SRY)-box  9 (SOX9) is a 
transcription factor that participates in CRC oncogenesis 
and metastasis [63]. MALAT1 by suppressing miR-145 

Table 1 MALAT1‑related signaling pathways in colorectal cancer (CRC)

MALAT1: Metastasis‐associated lung adenocarcinoma transcript‐1; AKAP-9: PRKA kinase anchor protein 9; CRC: Colorectal cancer; ABC: ATP-binding cassette 
transporters; BCRP: Breast cancer resistance protein; MDR: Multi-drug resistance proteins; YAP1: Yes-associated protein 1; DCP1A: mRNA‐decapping enzymes 1a; 
EZH2: Enhancer of Zeste 2; LC3-II/I: Microtubule-associated protein 1A/1B-light chain 3; SQSTM1: Sequestosome-1; ADAM17: A disintegrin and metalloprotease 
metallopeptidase domain 17; Ox: Oxaliplatin; PFS: Progression-free survival; PERK: Protein kinase R (PKR)-like ER kinase; IRE1: Inositol-requiring enzyme 1; ATF4: 
Transcription factor 4; XBP1: X-box-binding protein 1; QK: QUAKING; HMGB1: High motility group box protein 1; FUT4: Fucosyltransferase 4

MALAT1 Results Refs.

Stimulate Suppress

WNT/β‑catenin – Promote CRC cell invasion and metastasis [69]

SFPQ
PTBP2

– Accelerate CRC cell growth and metastasis [62]

AKAP‑9 – Stimulate CRC cell growth and invasion [35]

Snail − Promote CRC cell EMT and migration [56]

– miR‑619‑5p Increase the clinicopathological features of patients with CRC [57]

EZH E‑cadherin
miR‑218

Enhance CRC cell EMT, metastasis, and chemoresistance [22]

SOX9 miR‑145 Promote CRC cell proliferation and migration [64]

DCP1A miR‑203 Enhance CRC cell proliferation and invasion [65]

HMGB1 miR‐129‐5p Enhance CRC cell proliferation [67]

ABC, BCRP, MDR1, MRP1 miR‑20b‑5p Enhance CRC cell migration and reduce apoptosis and the sensitivity to 
drug

[70]

YAP1,
VEGFA, SLUG, TWIST

miR‑126‑5p Stimulate EMT and angiogenesis in CRC cells [72]

LRP6/β‑catenin,
RUNX2

miR‑15s Enhance CRC cell metastasis [73]

– miR‑194‑5p Enhance CRC cells migration and invasion [74]

EZH2 miR‑363‑3p Promote CRC cell proliferation [58]

LC3‑II miR‑101
p62/SQSTM1

Stimulate CRC cell proliferation and autophagy [76]

– miR‑101‑3p Promote CRC cell viability [78]

Wnt/β catenin,
Bcl‑2

Caspase‑3,
Bax

Enhance CRC cell proliferation and decrease apoptosis [68]

ADAM17 miR‑324‑3p Reduce the Ox‑sensitivity in CRC cells [82]

– hsa‑miR‑194‑5p Decrease the PFS rate [83]

RAB14 miR‑508‑5p Promote CRC cell progression [85]

IRE1/XBP1 and PERK/ATF4 – Promote CRC cell migration and metastasis [91]

FUT4
PI3K/AKT/mTOR

miR‑26a/26b Promote CRC cell invasion and tumorigenesis [94]

lincRNA‑ROR, lncRNA‑p21, p53 – Increase CRC cell tumorigenesis [95]

DANCR QK Suppress apoptosis in CRC [96]
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could accelerate SOX9 mediated CRC cell proliferation, 
migration, and tumorigenesis (MALAT1/miR-145/SOX9 
axis) [64].

MALAT1 has been proved that directly stimulates 
the expression of the mRNA‐decapping enzymes 1a 
(DCP1A), down-regulates miR-203, and enhances CRC 

Fig. 2 MALAT1‑related signaling pathways in CRC. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role 
in CRC pathogenesis
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cell proliferation and invasion (MALAT/miR-203/
DCP1A axis) [65].

High mobility group box protein 1 (HMGB1) is a 
nuclear protein that enhances CRC cell development 
[66]. MALAT1 by targeting miR-129-5p increased the 
expression of HMGB1 (MALAT1/miR-129-5p/HMGB1 
axis) and enhanced the proliferation of CRC cells [67].

Moreover, MALAT1 through the activation of Wnt/β-
catenin signaling enhances CRC cell proliferation and 
reduces apoptosis (caspase-3 and Bax reduced, Bcl-2 
increased) [68]. Resveratrol has been shown that down-
regulates MALAT1 mediated the Wnt/β-catenin signal 
pathway and reduces CRC cell invasion and metastasis 
[69]. Therefore, the knockout of MALAT1 suppressed 
CRC cell migration and proliferation [54, 68].

MALAT1 by targeting key molecules participating in 
drug resistance, including breast cancer resistance pro-
tein (BCRP), ATP-binding cassette transporters (ABC), 
and multi-drug resistance proteins (MDR1 and MRP1) 
can increase the metastasis and invasion of CRC cells. 
Also, MALAT1 blocks the expression of miR-20b-5p and 
enhances CRC cell tumorigenesis. Hence, inhibition of 
MALAT1 reduced cell migration and promoted the sen-
sitivity of CRC cells to 5-FU [70].

Yes-associated protein 1 (YAP1) has been reported that 
increases proliferation and migration of CRC cells [71]. 
YAP1 by targeting the MALAT1/miR-126-5p axis can 
stimulate vascular endothelial growth factor (VEGFA), 
SLUG, and TWIST as metastasis-associated molecules 
and control EMT and angiogenesis in CRC cells. miR-
126-5p by blocking SLUG, TWIST, and VEGFA has a 
tumor suppressor role in CRC [72].

RUNX2 (Runt-related transcription factor 2) is a key 
transcription factor and proto-oncogene that plays an 
important role in various tumors. miR-15s by suppress-
ing LRP6 expression (Wnt receptor) can block activa-
tion of β-catenin signaling. MALAT1 interacts with 
IRES domain in the 5′UTR of the RUNX2 mRNAs and 
increases translational levels of RUNX2. MALAT1 also 
via miR-15s/LRP6/β-catenin signaling positively regu-
lates RUNX2 expression and enhances CRC cell metas-
tasis [73].

MALAT1 was recently investigated that suppressed 
miR-194-5p and enhanced the migration and invasion 
of CRC cells [74]. In CRC tissues and cell lines, micro-
tubule-associated protein 1A/1B-light chain 3 (LC3-II/I) 
reflects autophagosome formation [75]. There is a posi-
tive correlation between MALAT1 and LC3-II mRNA 
levels in CRC cells. MALAT1 by binding to miR-101 
can stimulate CRC cell proliferation and LC3-II-induced 
autophagy, and suppress the expression of Sequesto-
some-1 (p62/SQSTM1) as an autophagosome cargo pro-
tein [76].

miR-101-3p was also reported to play as a tumor 
suppressor in various neoplasms [77]. A recent study 
confirmed that MALAT1 targeted miR-101-3p in radio-
resistance cells and promoted CRC cell viability [78].

It has been found that high-dose Vitamin C adminis-
tration has an inhibitory effect on MALAT1 and CRC 
metastasis [79].

A disintegrin and metalloprotease metallopeptidase 
domain 17 (ADAM17) is a protease for epidermal growth 
factor receptor (EGF-R) ligand processing [80]. It has 
been recently shown that ADAM17 can accelerate the 
tumorigenesis of CRC [81]. MALAT1 through suppres-
sion of miR-324-3p and stimulation of ADAM17 (as a 
target of miR-324-3p) could reduce the Ox-sensitivity of 
CRC cells in xenograft tumor mice treated with Ox [82]. 
Besides, MALAT1 was identified to inhibit the expres-
sion of the hsa-miR-194-5p and decrease the progres-
sion-free survival in patients with CRC [83].

RAB14 is a small GTPase member of the RAS onco-
gene family that enhances CRC cell proliferation [84]. 
MALAT1 as a ceRNA can target miR-508-5p and RAB14 
(as a target of miR-508-5p) promote CRC progression 
[85].

Based on previous studies, endoplasmic reticulum 
(ER) stress through the unfolded protein response (UPR) 
pathway is contributed to CRC metastasis [86, 87]. It 
has been found that the protein kinase R (PKR)-like ER 
kinase (PERK), inositol-requiring enzyme 1 (IRE1), and 
transcription factor 6 (ATF6) activate signaling pathways 
involved in the UPR [88]. ER stress by suppressing cyclin 
D1 (cell cycle machinery) and inducing apoptosis plays 
an important role in CRC metastasis [89]. Thapsigargin 
(TG) is an ER stress inducer that stimulates cell migra-
tion [90]. TG-induced MALAT1 is associated with the 
expression of the PERK and IRE1 pathways. Moreover, 
in CRC tissue samples, MALAT1 is positively regulated 
with the X-box-binding protein 1 (XBP1) and ATF4 bind-
ing sites. Therefore, the IRE1/XBP1 and PERK/ATF4 
signaling pathways are involved in MALAT1-induced 
CRC progression [91].

Exosomes also play critical roles in the progression 
of CRC [92, 93]. A previous study showed that highly 
metastatic CRC-derived exosomes could accelerate the 
fucosyltransferase 4 (FUT4) levels (a key enzyme of fuco-
sylation), invasion, and metastasis in primary CRC cells. 
They indicated that MALAT1 by targeting miR-26a/26b 
promoted FUT4-associated fucosylation, stimulated the 
PI3K/AKT/mTOR pathway, and increased CRC cell pro-
liferation and tumorigenesis (MALAT1/miR-26a/26b/
FUT4 axis) [94].

A study identified that MALAT1 can interact with lin-
cRNA-ROR, lncRNA-p21, p53 and increase the tumori-
genesis of CRC cells [95].
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The RNA-binding protein QUAKING (QK) is involved 
in apoptosis and the RNA stability of MALAT1. Recently, 
DANCR (lncRNA) was found to mediate the interac-
tion between QK and MALAT1 (DANCR/QK/MALAT1 
axis), increase the anti-apoptotic function of MALAT1, 
and reduce Doxorubicin (Dox)-induced apoptosis in 
CRC cells [96].

Therefore, compared to traditional methods, MALAT1 
can be a novel biomarker for the early diagnosis and 
prognosis of CRC.

Conclusion
In this review, we highlighted the recently reported 
mechanism of MALAT1 in CRC. MALAT1 targets sev-
eral signaling pathways such as Wnt/β-catenin, YAP, 
SOX9, RUNX2, Snail, EGF, PI3K/AKT/mTOR, and 
VEGF. Besides, MALAT1 has been found to modify miR-
NAs-associated drug sensitivity in CRC. Although these 
studies showed that MALAT1 plays a pivotal role in CRC 
tumorigenesis, the exact mechanisms whereby MALAT1 
stimulates CRC development or invasion remains largely 
unclear. Taken together, the MALAT1-mediated treat-
ment can be a critical therapeutic target for chemother-
apy and radiotherapy sensitization.
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