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Abstract 

Background: The tumor microenvironment contributes to tumor initiation, growth, invasion, and metastasis. The 
tumor microenvironment is heterogeneous in cellular and acellular components, particularly structural features and 
their gene expression at the inter-and intra-tumor levels.

Main text: Single-cell RNA sequencing profiles single-cell transcriptomes to reveal cell proportions and trajectories 
while spatial information is lacking. Spatially resolved transcriptomics redeems this lack with limited coverage or 
depth of transcripts. Hence, the integration of single-cell RNA sequencing and spatial data makes the best use of their 
strengths, having insights into exploring diverse tissue architectures and interactions in a complicated network. We 
review applications of integrating the two methods, especially in cellular components in the tumor microenviron-
ment, showing each role in cancer initiation and progression, which provides clinical relevance in prognosis, optimal 
treatment, and potential therapeutic targets.

Conclusion: The integration of two approaches may break the bottlenecks in the spatial resolution of neighboring 
cell subpopulations in cancer, and help to describe the signaling circuitry about the intercommunication and its exact 
mechanisms in producing different types and malignant stages of tumors.
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Background
Cancer was viewed as a heterogeneous disease with a 
succession of genetic changes which led to the conversion 
of normal cells into malignant cells [1]. In 1889, Paget 
first came up with the theory of “seed and soil,” postulat-
ing the relationship between tumor and tumor micro-
environment (TME) [2]. TME comprises cellular and 
acellular components such as stromal cells, myeloid cells, 

lymphoid cells, and extracellular matrix (ECM). Now it’s 
evident that TME plays an essential role in tumorigen-
esis, having diverse capacities to induce both beneficial 
and adverse consequences in tumor initiation, growth, 
invasion, and metastasis [3, 4]. However, there are still 
many unexplored questions in this field. The emerging 
problem is how to explore and manage TME diversity, 
given that both structural features and gene expression 
in TME are particularly heterogeneous at the inter-and 
intra-tumor levels [4, 5]. Interactions like intercellular 
communication need to be investigated forward, as TME 
is a complex, spatially restricted network [6, 7].

Technological developments have advanced our 
understanding of tumor biology. Many researchers 
have utilized RNA-sequencing (RNA-seq) based on 
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next-generation sequencing (NGS) to measure tissue 
transcriptomes [8, 9]. Traditionally, bulk RNA-sequenc-
ing (bulk RNA-seq) is widely used to sequence a mixture 
of RNA transcripts from the whole tissue profiling aver-
ages of cellular expression [10]. Nevertheless, it has lost 
information about cellular heterogeneity. Single-cell RNA 
sequencing (scRNA-seq) improves and makes it possible 
to profile the transcriptome of single cells and infer cell 
type and trajectory [11, 12]. Whereas, scRNA-seq has 
failed to acquire spatial information, which is critical to 
understanding the functionality and pathological changes 
of tissues that are dissociated in suspension [9, 12, 13]. 
In addition, spatially resolved transcriptomics (SRT) has 
been developed to reveal spatial information and study 
spatial heterogeneity with the drawbacks of coverage or 
depth of transcripts. Computational developments have 
enabled the combination of scRNA-seq and spatial tran-
scriptomics data to get through their limitations and 
make use of their favorable factors.

Developments and limitations of SRT
SRT technologies can be divided into four categories: 
technologies based on microdissected gene expression, 
in situ hybridization (ISH) technologies, in situ sequenc-
ing (ISS) technologies, and in situ capturing technologies 
[14].

The typical microdissected method is laser capture 
microdissection (LCM), which cuts out tissue regions 
precisely and isolates specific, pure cells from their het-
erogeneous environments by a laser beam under a micro-
scope [15]. LCM sequencing (LCM-seq) combining LCM 
with RNA-seq profiles gene expression of selected tissue 
regions, elucidating cellular heterogeneity and spatial 
variance with low throughput and requirements in a large 
number of cells [16]. Geo-seq using scRNA-seq coupled 
with LCM advances the analysis at a resolution of as few 
as 10 cells. Yet, it’s still laborious and can’t attain single-
cell resolution [17].

ISH technologies are early attempts to visualize gene 
expression in fixed tissue, as exemplified by single-mol-
ecule RNA fluorescence in  situ hybridization (smFISH). 
Many short oligonucleotide probes labeled with fluoro-
phores are hybridized to different regions of the same 
mRNA transcript [18–20]. SmFISH has high sensitiv-
ity and subcellular spatial resolution but a low target 
throughput of around 1–4 transcripts and up to 100 cells 
per handle [18, 19, 21, 22]. ISH technologies also include 
multiplexed error-robust fluorescence in  situ hybridiza-
tion (MERFISH), sequential fluorescence in situ hybridi-
zation (seqFISH), and ouroboros smFISH (osmFISH).

ISS technologies are methods for parallel targeted 
analysis of short RNA fragments in morphologically pre-
served cells and tissue [23]. ISS technologies encompass 

ISS using padlock probes, fluorescent in site RNA 
sequencing (FISSEQ), and spatially resolved transcript 
amplicon readout mapping (STARmap) [14]. ISS using 
padlock probes is the first ISS approach that can detect 
single nucleotide variants (SNV) compared to ISH. In 
human breast cancers, ISS detected targeted mRNAs 
and measured 31 genes at a subcellular spatial resolu-
tion of about 450 cells per single handle [23]. Some stud-
ies have concluded that ISH and ISS technologies are 
image-based in situ transcriptomics because they are all 
targeted in situ methods using probes to represent quan-
titative RNA analysis characterized by great depth and 
low coverage [11]. The principle of in situ capturing tech-
nologies is to capture transcripts in  situ, then sequence 
them ex-situ.

Ståhl et al. first proposed spatial transcriptomics (ST), 
depositing a customized slide with a diameter of 100 μm 
microarray features over an area of 6.2  mm by 6.6  mm 
to capture transcripts. There are over 200 million oligo-
nucleotides used to capture mRNAs in each of the 1007 
features. Each microarray feature contains unique DNA-
barcoded probes including a cleavage site, a T7 amplifica-
tion and sequencing handle, a spatial barcode, a unique 
molecular identifier (UMI), and an oligo (dT) VN-cap-
ture region. After capturing and reverse-transcribing 
mRNA, cDNA synthesis from tissue with arrayed oligo-
nucleotides on a surface is carried out. Then, RNA-seq is 
used to image gene expression while maintaining posi-
tional information [9]. Although this method could pro-
vide spatially resolved whole-transcriptome information 
and be more accessible, its limitations in resolution and 
depth can’t be ignored.

Integration approaches of scRNA‑seq and SRT
Each current method of SRT mentioned above has its 
strengths and drawbacks. Hence, to meet the demands of 
exploring spatial patterning of gene expression at a single 
cell even subcellular resolution in an intricate environ-
ment, it’s necessary to integrate scRNA-seq and SRT to 
maximize the benefits. Two approaches currently exist 
for the integration of non-spatial scRNA-seq and SRT: 
(i) experimental improvement strategies, (ii) computing 
strategies.

One of the experimental improvement strategies called 
XYZeq improves experiments by using two rounds of 
split-pool barcoding to encode the spatial information 
at single-cell resolution from a sample into scRNA-seq 
[24–26]. ST is applied to a tissue sample in the first round 
aiming to get positional information. The innovative step 
in the second round is to remove intact cells from micro-
arrays, pool them, and amplify indexing with a combina-
torial barcode per single cell and sequence. This method 
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maps a single cell’s physical location in the array by spa-
tial barcode [26].

Advances in computing techniques have made copy 
number inference and fusion transcription recognition 
possible [27]. Mapping and deconvolution are two key 
steps to achieving this goal. The mapping process is to 
distribute cell types and states based on scRNA-seq to 
each cell spatially resolved by image-based in  situ tran-
scriptomics. It also predicts the  locations of spatially 
confined and dispersed subpopulations [10, 28, 29]. 
Deconvolution is the process of estimating cell-type 
proportions in spatial data at a microdissected or in situ 
capturing spot, informed by single-cell data [30]. Here 
is a workflow for integration (Fig. 1). The first step is to 
establish discrete cell subtypes through scRNA-seq and 
investigate tissue structures of interest from spatial data, 
which comes from the same or different biopsy as well 
as reference databases. Then, mapping or deconvolu-
tion as in silico strategies is applied to scRNA-seq and 
SRT data to understand the architecture of the cell-type 
distribution and the putative mechanisms of intercel-
lular communication based on this architecture [10]. 
Computing strategies have overcome drawbacks of each 
technology and provided spatially resolved whole-tran-
scriptome information at single-cell resolution yield-
ing greater coverage and depth. Mapping could create 
spatially resolved maps at single-cell resolution. Decon-
volution strategies enable estimating cell-type propor-
tions and characterizing specific gene expression and 
other biological processes. However, the  integration of 
scRNA-seq and image-based in situ transcriptomics has 
not been specifically addressed by most mapping models. 

Besides, since  ST is a newly emerging technology, only 
a few models are applied in this field and its efficacy 
needs to be developed [10]. Deconvoluted tissues are 
limited in the spatially resolved at the original scale of 
ST arrays and ignore the adjacent tissues [31]. With the 
developments of SRT, more and more integrating models 
may be explored to face the challenges of mapping and 
deconvolution.

Application of integration in TME
Recent work in combining scRNA-seq with spatial 
technologies has focused on tissue homeostasis, tissue 
development, disease, and tumor microenvironment. 
The integration of two approaches may break the bot-
tlenecks in the spatial resolution of neighboring cell sub-
populations in cancer, and help to describe the signaling 
circuitry about the intercommunication and its exact 
mechanisms in producing different types and malig-
nant stages of tumors. The TME is the most widely used 
area in SRT, and it is closely related to cancer malignant 
behaviors, which are governed by crosstalk within and 
across all cellular compartments [32–35]. In addition, 
a modern (though not exhaustive) list of key molecular 
markers of cell populations discussed below in the TME 
with their characteristics is given in Table  1. A deeper 
study of intricate spatial patterning of single cells brings 
biological insight into cellular and spatial heterogeneity 
between and within tumors in a complex environment. 
Moreover, it also has the potential to explain how TME 
affects cellular infiltration and interaction, which repre-
sent an attractive target for treatment and prognosis.

Fig. 1 A workflow for integration
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Here, we show applications of integrating scRNA-
seq with SRT in cellular components in TME. Combin-
ing datasets of scRNA-seq and ST could map signaling 
between adjacent tumor and TME cells at the leading 
edge, suggesting advances in mapping cellular cross-
talk at leading-edge niches [35]. Furthermore, we give 
a schematic overview of the applications of integration 
methods on the different populations present within the 
microenvironment (Fig. 2).

Stromal cells
TME is composed of tumor cells and nearby endoge-
nous stromal cells [57, 58]. Stromal cells recruited from 
the local host stroma range in types and include CAFs 
(cancer-associated fibroblasts) and MSCs (mesenchymal 
stem cells) that promote extracellular matrix remodeling, 
cellular migration, angiogenesis, and evasion of immu-
nosurveillance in tumor growth and development [58, 
59]. Reactive stroma can be regarded as an emerging 
hallmark of cancer initiation and progression. Berglund 
et al. revealed an unexplored landscape of heterogeneity 
through spatial maps of prostate cancer. It enabled de-
novo characterization and delineation of reactive stroma 
in the proximity of cancer and inflammation, uncovering 

high levels of oxidative stress and ILK signaling within 
the reactive stroma. It indicated that cancer depended on 
stroma to release energy to support tumor growth and 
survival [60].

Cancer‑associated fibroblasts
CAFs are one of the dominant entities in the stroma of 
many cancers, including breast cancer, hepatic cell car-
cinoma, human squamous cell carcinoma, and lung 
cancers. CAFs are a heterogeneous population of irre-
versibly activated fibroblasts that serve distinct, critical 
functions in tumor metabolism, immunity, drug resist-
ance, negative regulation, tumorigenesis, and metasta-
sis [36, 61–63]. Besides, numerous studies have shown 
the metastasis potential of cancer cells depending on 
CAFs, like in lung cancer, squamous cell carcinoma lung 
metastasis, and colorectal cancer [38, 64–66]. It has 
distinct subsets of functional fibroblasts differentiated 
from resting fibroblasts, such as tumor-restraining (F1), 
tumor-promoting (F2), secretory (F3), and ECM-remod-
elling (F4) subtypes detected and identified by various 
means based on the expression of a limited set of cell 
surface markers, such as α-SMA, vimentin, FAP, PDPN, 
PDGFRα/β, FSP1, DDR2, and S100A4 [36–39]. Recently, 
some studies have identified CD10 and GPR77 as specific 

Table 1 Key molecular markers of each cell type in the TME

CAFs cancer-associated fibroblasts, MSCs mesenchymal stem cells, TAMs tumor-associated macrophages, DCs dendritic cells, cDCs conventional DCs, pDCs 
plasmacytoid DCs, MDSCs myeloid-derived suppressor cells, PMN-MDSCs granulocyte-like MDSCs, M-MDSCs monocytic MDSCs

Population Subtypes Marker References

CAFs – α-SMA, vimentin, FAP, PDPN, PDGFRα/β, FSP1, DDR2, S100A4, CD10, GPR77 [36–41]

MSCs – CD105+,  CD73+,  CD70+,  CD13+,  CD29+,  CD44+,  CD10+,  CD45−,  CD34−,  CD14− or 
 CD11b−,  CD79a−, HLA-DR−

[42–44]

TAMs M1 CD68, CD11b, CD80, CD86 [45, 46]

M2 CD68, CD11b, CD163, CD206

DCs cDC1 XCR1, CD45, CADM1, CLEC9A, CD141 [47, 48]

cDC2 CD45, CD1C, FcεR1A, CD172A

pDCs CD45RA, CD123, CD2

Endothelial cells – PECAM1, CD31, CD34, CD13, CD29 [49, 50]

CD4+ T cells – CD3+CD4+CD8− [51–54]

Th1 cells CXCR3

Th2 cells CCR4

Th17 cells CCR6

Th22 cells CCR10

Treg cells CD4+CD25+Foxp3+

CD8+ T cells - CD3+  CD8+CD4−

Tc1 cells CRCX3, IRF4

Tc2 cells CCR4, CRTH2, GATA3

Tc9 cells CRCX3, IRF4, IL9, IL10

Tc17 cells CCR6, IL23R, IRF4, IL17

MDSCs PMN-MDSCs CD11b+CD33+HLA−DR−/CD14−CD15+ [55, 56]

M-MDSCs CD11b+CD33+HLA−DR−/CD14+CD15−
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fibroblast surface markers which facilitate live-cell sort-
ing of CAFs in breast cancer [40, 41].

In breast cancer, four subpopulations of CAFs, such as 
vascular CAFs, matrix CAFs, cycling CAFs, and devel-
opmental CAFs, and their distinct gene programs were 
revealed by scRNA-seq with high resolution [67]. A 
single-cell and spatially resolved atlas of human breast 
cancers described the cellular architecture and spatially 

restricted interactions with the immune system. Stereo-
scope belongs to deconvolution as a strategy of combin-
ing scRNA-seq and ST, of which two datasets came from 
different breast cancer tissue samples. Stereoscope iden-
tified spatially distinct subpopulations of CAFs, with 
myofibroblast-like enriched in invasive cancer regions, 
while inflammatory CAFs were scattered in invasive 
cancer, stroma, and TIL-aggregate regions in different 

Fig. 2 A schematic overview: application of integration for cell types in the TME. CAFs: cancer-associated fibroblasts; MDSCs: myeloid-derived 
suppressor cells; MSCs: mesenchymal stem cells; TAMs: tumor-associated macrophages; DCs: dendritic cells; SCC: squamous cell carcinoma; HCC: 
hepatocellular carcinoma; PDAC: pancreatic ductal adenocarcinoma
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clinical subtype samples. In addition, this study also 
explored the top ligand-receptor interactions between 
most CAFs and  CD4+/CD8+ T cells, suggesting that 
CAFs may directly regulate immune cells [49]. Moreover, 
inflammatory CAFs were enriched in the stress-response 
region of pancreatic ductal adenocarcinoma (PDAC) 
[32].

As for the human liver microenvironment, this study 
applied scRNA-seq, LCM-seq, and smFISH in cholan-
giocarcinoma, colorectal liver metastasis, and benign tis-
sue samples. A developed approach named AutoGeneS 
deconvoluted scRNA-seq with transcriptomics of LCM 
tissue to obtain zonation patterns of human hepatocytes 
when prior knowledge of landmark genes was lacking [68, 
69]. This study revealed the far distance between CAFs 
and endothelial cells, and the interactions between CAFs 
and scar-associated macrophages (SAMs). CAFs, which 
were most abundant in the fibrotic zones, produced most 
of the collagen and lamina proteins, interacting with inte-
grin receptors on tumor cells [70].

In a study of human squamous cell carcinoma, CAFs 
were modulated by an immunosuppressive tumor-spe-
cific keratinocyte subpopulation that expressed immu-
notherapy resistance genes in a fibrovascular niche at the 
tumor borders through ligand-receptor communications 
[10, 35]. By using the deconvolution strategy, this study 
indicated the contribution of CAFs to tumor progression, 
immunosuppression, and heterogeneity.

Thus, researchers propose a cellular, molecular, and 
spatial functional taxonomy of CAFs by using the inte-
gration of scRNA-seq and ST, opening up the possibility 
for the development of novel targeted drugs aiming to 
block CAFs-immune or CAFs-tumor cell signaling [49, 
67, 70].

Mesenchymal stem cells
MSCs are multipotent stromal cells that can differenti-
ate into cells of the mesodermal lineage providing struc-
tural support to organs, synthesizing and remodeling the 
ECM, and regulating development [71]. MSCs play an 
important role in tumor development at various stages 
of progression, which modifies several effector func-
tions [72, 73]. MSCs generally express CD105, CD73, 
CD70, CD13, CD29, CD44, and CD10, and lack expres-
sion of CD45, CD34, CD14 or CD11b, CD79a or CD19, 
and HLA-DR [42–44]. Recent studies have found that 
MSCs may differentiate at the site of the tumor and inter-
act with tumor cells through paracrine signaling. Cross-
talk between tumor cells and MSCs has been shown to 
increase metastatic potential. In colorectal cancer, MSCs 
have been found to increase tumor migration and inva-
sion through IL-6/JAK2/STAT3 signaling, providing a 
novel therapeutic or preventive target [74].

Lee et  al. used XYZeq in hepatocellular carcinoma 
(HCC) and found that MSCs have differentially expressed 
genes regulating ECM. It suggested that hepatocellular 
carcinoma cells may induce a local gene expression pro-
gram in MSCs nearby that could contribute to malignant 
remodeling of the ECM. The location of the tumor cells 
and non-tumor cells may determine heterogeneous gene 
expression in MSCs. Transcriptionally variable genes 
within MSCs were driven by their location within the 
complex tissue architecture [26]. Observations in breast 
cancer showed MSCs were often spatially segregated 
underscoring the role of TME in their differentiation 
and migration. These findings suggested it was possible 
to block stromal signaling or differentiation as therapeu-
tic strategies [49]. It has an advantage for joint analysis 
of spatial and single-cell transcriptomic to reveal not only 
local information but also migration-associated tran-
scriptomic programs in MSCs.

Tumor‑associated macrophages (TAMs)
Many supporting cells having distinct functions during 
tumorigenesis are derived particularly from the mye-
loid lineage especially TAMs (tumor-associated mac-
rophages) [4, 75]. TAMs polarize into two functional 
phenotypes: the M1 state (pro-inflammatory and anti-
tumor) and the M2 state (anti-inflammatory and pro-
tumor) [34]. The distinct two phenotypes may influence 
cancer progression and overall survival [76]. CD68 and 
CD11b are co-markers for M1 and M2 macrophages [45]. 
CD80, CD86 are specific for M1 subtypes, while CD163, 
CD206 are specific for M2 subtypes [45, 46]. The exist-
ing problems with TAMs are that this classification is 
oversimplified because it does not fully represent the 
complexity of macrophage activation and its positional 
patterns [4, 77]. Macrophages have a leading position 
in pathophysiological responses, such as TME, which 
paves the way to tumorigenesis [78, 79]. In progressive 
cancer, TAMs recruited to TME are fast becoming a key 
instrument in cancer cell proliferation, immunosuppres-
sion, and angiogenesis in support of tumor growth and 
metastasis [79, 80]. In colorectal cancer, Yu et  al. have 
found that TAMs play a key role in cancer proliferation 
depending on MMP1 via accelerating cell cycle transition 
[81]. Wei et al. have shown the crosstalk between TAMs 
and colorectal cancer cells which is associated with 
cancer migration, invasion, and circulating tumor cell-
mediated metastasis [82]. Dora et al. have characterized 
TAMs in neuroendocrine-high and -low small cell lung 
cancer [76]. Furthermore, spatial density and distribu-
tion and gene expression of TAM phenotypes have been 
shown prognostic value in non-small-cell lung carcinoma 
(NSCLC) [83].
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10 × Chromium (scRNA-seq), 10 × Genomics (ST), 
and their deconvolution method were used to identify 
two large TREM2-high lipid-associated macrophages 
(LAMs) that were similar to the PD-L1+ macrophage 
population associated with high clinical grade and 
exhausted T cells in breast cancers [49, 84]. Addition-
ally, LAMs and  CXCL10hi macrophages were relevant to 
immunosuppression and were paratactic to PD-1+ lym-
phocytes. As TAMs were associated with poor prognosis 
and are emerging targets for cancer immunotherapy, nine 
ecotypes driven by cells spanning the major lineages in 
primary breast cancers were defined. The cellular com-
position and tumor biology of each ecotype were similar 
[49, 84–86].

Elosua-Bayes et  al. developed SPOTlight, a deconvo-
lution that enabled the integration of ST with scRNA-
seq data in PDAC publicly available reference, finding 
a remarkable enrichment in the  tumor region of pro-
inflammatory M1 TAMs while anti-inflammatory M2 
TAMs were enriched in normal pancreas tissue, endothe-
lial, and endocrine cells in different tissue regions [87]. In 
another PDAC study, M2 TAMs were most enriched in 
the ducts, while inflammatory M1 TAMs expressing IL1B 
were more enriched in the stroma and cancer regions, 
which was consistent with Bayes’s study [32, 88]. It illus-
trated opposite positional patterns of enrichment in two 
subtypes of macrophages through MIA. The multimodal 
intersection analysis (MIA) approach integrated scRNA-
seq and spatially barcoded oligo-deoxythymidine micro-
arrays. Moncada et  al. used two melanoma ST samples 
to validate MIA, in which macrophages were restricted 
to the melanoma region periphery or a particular region 
within the larger annotated melanoma area, indicating 
that macrophages were in spatially restricted regions in 
melanoma [32].

Therefore, a detailed subpopulation of TAMs with 
expression levels for genes and their specific relation-
ships in positional patterns can be revealed by integrat-
ing methods, which may have the potential to refine 
classification.

Dendritic cells
Dendritic cells (DCs) are potent antigen-presenting 
cells, which can present antigen to T cells and activate 
these cells to enhance the immune response [89]. Previ-
ous studies have distinguished two types of DCs: one is 
conventional DCs (cDCs), while another is plasmacytoid 
DCs (pDCs) [90]. Human cell surface markers of pDCs 
are CD45RA, CD123, and CD2 [47]. Besides, cDCs have 
two subsets, cDC1 and cDC2, with distinct cell surface 
markers and functions [48]. cDC1 are generally defined 
by XCR1, CD45, CADM1, CLEC9A, and CD141, while 
cDC2 are described by CD45, CD1C, FcεR1A, CD172A 

[47]. DCs are a promising therapy in cancer treatment. 
In early-stage PDAC, overcoming cDCs deficiency has 
led to disease restraint. Otherwise, in advanced PDAC, 
restoration of cDC function has led to restoring tumor-
restraining immunity [91]. In addition, functional DCs in 
tumor regions were excluded from lung cancers dynami-
cally, which may support malignant progression [92].

In transcriptional profiling of human breast cancer, 
Wu et al. identified three types of DCs, cDCs, pCDs, and 
LAMP3 high DC population, which was not previously 
detected in single-cell studies of breast cancer [49]. In 
PDAC via high throughput single-cell sequencing and 
MIA, two subpopulations of DCs, A and B, were identi-
fied. Subpopulation A was enriched in pancreatic tissue, 
while subpopulation B was enriched in the ducts of the 
tissue [32].

Endothelial cells
Tumor endothelial cells play a critical role in cancer cell 
metastasis and dormancy exhibiting unique phenotypic 
and functional characteristics when compared to normal 
endothelial cells [93]. Many studies have shown that the 
proliferation and motility of tumor endothelial cells are 
associated with several pathological processes for tumor 
progression and metastasis, such as microvessel sprout 
formation and angiogenesis [94]. PECAM1, CD13, CD29, 
CD31 and CD 34 are main markers for endothelial iden-
tification [49, 50]. In breast cancer, Ma et al. have identi-
fied the heterogeneity of endothelial cells and indicated 
its potential role in contributing to cancer metastasis 
[95]. Besides, lung cancer cells have been shown to pro-
mote endothelial cell tube formation which changes the 
TME to facilitate tumor growth [94]. In colorectal cancer, 
TME-dependent heterogeneity of tumor endothelial cells 
regulated by SPARCL1 has promoted tumor cell dor-
mancy and vessel homeostasis [96]. Furthermore, Meng 
et al. have shown the role and mechanism of Hsp90β in 
tumor endothelial cell-dependent angiogenesis and its 
therapeutic value in hepatocellular carcinoma [97].

Three endothelial states (s1, s2, and s3) were identified 
through a single-cell and spatially resolved atlas of human 
breast cancers. These three states mainly in the normal, 
stroma, and lymphocytes areas were dynamic and inter-
convertible, suggesting that these endothelial cells may 
serve as resident cell types in the TME [49]. Otherwise, 
in one PDAC sample, endothelial cells were significantly 
enriched in the interstitium using integration of two 
advanced techniques [32]. These insights, such as reveal-
ing spatial information of different subpopulations of 
endothelial cells, may provide a deeper understanding of 
cancer metastasis and dormancy.
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CD4+ and  CD8+ T cells
Tumor-infiltrating lymphocytes (TIL) play a crucial role 
in TME, which is associated with cancer progression, 
response to therapy, and clinical outcomes [98]. In addi-
tion, studies of TIL mainly focus on T cells. T cell infil-
tration formed in human cancer is a regulator of natural 
disease progression and also determines the probability 
of clinical response to cancer immunotherapy, which may 
provide potential prognostic value [99]. There are three 
main types of T cells: helper T cells  (TH cells/CD4+ T 
cells), cytotoxic T cells  (TC cells/CD8+ T cells), as well 
as regulatory T cells  (Treg cells).  CD4+ T cells generally 
express  CD3+CD4+CD8−, while  CD8+ T cells generally 
express  CD3+  CD8+CD4− [53].  CD4+CD25+Foxp3+ are 
used to describe  Treg cells [51, 52]. In addition, different 
subsets of  CD4+ and  CD8+ T cells have their specific 
markers, such as Th1 cells (CXCR3), Th2 cells (CCR4), 
Th17 cells (CCR6), Th22 cells (CCR10), Tc1 cells (CRCX3 
and IRF4), Tc2 cells (CCR4, CRTH2, and GATA3), Tc9 
cells (CRCX3, IRF4, IL9, and IL10), Tc17 cells (CCR6, 
IL23R, IRF4, and IL17) [53, 54].  CD8+ T cells encounter 
dysfunction and exhaustion due to immunosuppression 
within the TME during tumor development and progres-
sion [100].  CD4+ T cells play a key role in the adapted 
immune system, which can variously target tumors either 
directly by eliminating tumor cells through cytolytic 
mechanisms or indirectly by modulating TME [101–
103]. Hiraoka et al. have indicated that deeper infiltration 
by both  CD8+ and  CD4+ T cells presents a better prog-
nosis for patients with NSCLC [104]. Another study has 
mapped the heterogeneity of TILs in NSCLC, which may 
attribute to cancer immunotherapy [105]. Yang et al. have 
shown the association between  CD8+ and  CD4+ T cell-
related genes and colon cancer prognosis [106]. In addi-
tion, high infiltration of lymphocytes has been observed 
in one subpopulation characterized by low peroxisome 
and high TIM3 of colorectal cancer [107].

SPOTlight applied to PDAC samples annotated 12  T 
cells and predicted the proportion within each capture 
spot. Recently activated  CD4+, pre-exhausted  CD8+, 
and proliferative  CD8+ T cells significantly increased in 
tumor regions, while most transitional memory  CD4+ 
T cells were in normal tissue. Intriguingly, recently acti-
vated  CD4+ T cells co-localized with pre-exhausted 
 CD8+ T cells in tumor areas and could not be detected 
through their presence alone, indicating a possible tar-
get for precise pathology assessments [87]. In breast 
tumor samples, 18  T-cell and innate lymphoid clusters 
were identified. One subset of exhausted  CD8+ T cells 
named LAG3/c8 in triple-negative breast cancer (TNBC) 
had higher expression of PD-1, LAG3, and the ligand-
receptor pair of CD27 and CD70, known to enhance 
T cell cytotoxicity [49, 108]. In human squamous cell 

carcinoma,  CD8+ T cells were observed to co-localize 
with  Treg cells in the compartmentalized tumor stroma, 
which showed a feature of potential immunosuppression 
[35]. Such visualization underlined interactions between 
T cells that mediate the tumor immune environment and 
can shed new light on the peculiarities of tumor micro-
environments [10, 87].

Myeloid‑derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are a het-
erogeneous population of immature myeloid cells with 
immunosuppressive functions. When in pathological 
conditions, especially cancer, the differentiation, and 
maturation of immature myeloid are stopped leading 
to the  expansion of MDSCs in  vivo [109]. MDSCs con-
sist of two large groups of cells: granulocyte-like MDSCs 
(PMN-MDSC or G-MDSC) and monocytic MDSCs 
(M-MDSCs) [110, 111]. PMN-MDSCs can be described 
as  CD11b+CD33+HLA−DR−/CD14−CD15+, while 
M-MDSCs can be defined as  CD11b+CD33+HLA−DR−/
CD14+CD15− in human [55, 56]. MDSCs play an impor-
tant role in immune surveillance in TME via immuno-
suppressive mechanisms, such as metabolic mechanisms, 
STAT signaling pathway, and endoplasmic reticu-
lum stress in lung cancers [112]. Besides, high levels of 
MDSCs have been associated with resistance to several 
therapeutic strategies, like chemotherapy and immuno-
therapy with a poor prognosis [112]. Huang et  al. have 
found modulating MDSCs in TME may improve the effi-
cacy of EZH2 inhibitors to suppress antitumor immunity 
[113]. Another study also showed the potential thera-
peutic target of PMN-MDSC to overcome resistance 
to immune checkpoint inhibition in NSCLC [114]. In 
colorectal cancer, reprogramming MDSCs may have the 
potential to enhance the efficacy of therapeutic strategies 
[115].

Multimodel profiling of cutaneous squamous cell car-
cinoma, MDSCs were identified and highly expressed 
several potential mediators of  Treg recruitment, such as 
CCXL9/10/11, CCL4, and CCL20, via the integration 
of scRNA-seq and ST [35]. In addition, extensive auto-
crine and paracrine interactions between MDSCs and 
tumor-specific keratinocytes revealed cellular crosstalk 
at leading-edge niches [35]. However, most studies have 
just identified myeloid cells without identifying MDSCs 
when using scRNA-seq and ST techniques. MDSCs have 
emerged as an important contributor to tumor progres-
sion, so it’s quite important to reveal the spatial infor-
mation and cellular interactions of MDSCs, which may 
benefit cancer therapeutic strategies.
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Conclusions
Integrating scRNA-seq with SRT is beneficial in under-
standing cell-type proportions to the proximity of tis-
sue architecture. It also helps to study intercellular 
communications through expressions of ligands and 
receptors in TME, which may be beneficial to define 
disease subtypes, provide potential therapeutic targets, 
and predict prognosis. Additionally, integrating meth-
ods can be used to describe the atlas at the single-cell 
resolution of healthy or diseased tissues and explore 
normal tissue homeostasis and tissue ontogeny at key 
points. Nowadays, SRT is growing at a rapid pace with 
improvements in resolution, sensitivity, throughput, as 
well as accessibility. Despite deconvolution and map-
ping algorithms, new learning algorithms are exploited 
to define the most relevant features of biological 
function in SRT. However, it’s costly when applying 
scRNA-seq and SRT using matched samples or pub-
licly available references. Considering the original scale 
of the ST technology, deconvolved mixtures are still 
only spatially resolved and the proximity structure of 
cell types cannot be recovered. Recently, real-time cell 
tracking based on SRT at single-cell resolution has been 
developed to monitor spatially resolved intercellular 
tissue dynamics in real-time elucidating metastatic pro-
gression and immune cell dynamics in disease, which 
has an extensive prospect in cancer research.
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