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Abstract 

Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide 
range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the 
application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heteroge-
neity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). 
Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses 
(OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for 
overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death 
(ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and 
tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, 
we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells 
to reach potent tumor-specific immunity.

Keywords: Oncolytic virus (OV), Chimeric antigen receptor (CAR) T-cell therapy, Immunogenic cancer cell death 
(ICD), Immunotherapy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Cancer therapies nowadays concentrate on trigger-
ing controlled immunogenic apoptosis in tumor cells. 
However,  systemic treatment-related toxicity is still a 
significant restriction in chemotherapy. Oncolytic viro-
therapy has emerged as a new cancer treatment strategy 

that addresses drug accessibility and chemotherapy side 
effects [1]. Oncolytic viruses (OVs) enter tumor cells 
preferentially, proliferate, and ultimately induce cell lysis, 
unleashing additional synthesized  viruses, which target 
and destroy neighboring cells [2]. Likewise, OVs poten-
tially stimulate adaptive immunity against infected tumor 
cells by lysis of tumor cells and subsequent release of 
tumor-associated antigens (TAAs), damage-associated 
molecular patterns (DAMPs), and pathogen-associated 
molecular patterns (PAMPs). These processes result 
in the stimulation of antigen-presenting cells (APCs) and 
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the priming  of anti-tumor adaptive immune responses 
[3].

Immunogenic cell death (ICD) offers a potential 
approach to improving the efficacy of cancer therapy. It 
is a functionally distinct response pathway that involves 
the development of cellular stress, followed by cell 
death and the release of a variety of DAMPs [4]. In fact, 
ICD promotes the development of innate and  adaptive 
immune responses by increasing adjuvanticity via DAMP 
release and antigenicity through APC recruitment [5]. 
Treatment-driven ICD has been shown to induce anti-
tumor  immune responses that enhance the therapeutic 
advantages of conventional anti-tumor radiotherapies 
and chemotherapies [6–8]. There are several ICD induc-
ers, such as radiation, anthracycline chemotherapeutics, 
and high hydrostatic pressure; alongside these, OVs have 
developed as a new class of therapeutic approaches capa-
ble of inducing ICD [9–11]. CAR T-cell therapy is a type 
of cellular therapy in which a patient’s T lymphocytes 
are redirected to precisely target and destroy cancer cells 
[12].

Monotherapy methods for  cancer therapy  are likely 
to fail because of inter- and intra-patient  heterogene-
ity of cancer, the diverse nature of cancer cells genomes, 
and the dynamic condition of the tumor milieu. A  syn-
ergy between OVs and CAR T-cells seems to be the ideal 
way to organize a multi-pronged attack on several fronts 
against frequently quickly developing targets [13]. OVs 
have the ability to operate in combination with CAR 
T-cells, assisting them in overcoming some of the many 
hurdles encountered in solid tumors. First, OVs can lead 
to the release of danger signals through ICD that may 
reverse tumor immunosuppression, enabling expansion, 
activation, and recruitment of CAR T-cells in the tumor 
microenvironment (TME) [14]. Second,  the selective 
directed lytic function of OVs on tumor cells causes lysis 
of infected tumor cells  and subsequent  TAAs release, 
which may trigger a tumor-specific  immune  response 
that has the potential to prevent tumor escape due to loss 
of antigen or antigen heterogeneity. Third, therapeutic 
transgenes may be inserted into OVs, potentially enhanc-
ing the effector capabilities of T cells [15].

Here, we provide a review of the biological causes of 
ICD and its potential role in the induction of anti-tumor 
immunity through OVs replication within cancer cells, 
and also the synergistic combination of OVs with CAR 
T-cell to achieve potent tumor-specific immunity.

Cell death pathways in cancer
Cell death is an essential process in biological activities 
and plays an important role in homeostatic equilibrium 
[16]. Mammalian tumors gradually lose their ability to 
launch  apoptotic cell death processes, making them 

resistant to apoptosis-targeting chemotherapeutic treat-
ments [17]. As a result, alternative cell death mechanisms 
must be discovered in order to develop effective cancer 
therapies.

Apoptosis, pyroptosis, necroptosis, ferroptosis, and 
autophagy-dependent cell death are among the cell death 
pathways identified thus far, all of which are categorized 
as ICD [18–20]. Apoptosis is a kind of non-inflammatory 
programmed cell death that may be triggered by either 
intrinsic or extrinsic stimuli. Apoptosis, mediated by 
caspase-2, -3, -6, -7, -8, and -9, is involved in a number 
of pathological conditions, notably cancer [21, 22]. The 
intrinsic apoptosis pathway, which involves mitochon-
dria, is activated by a variety of microenvironmental 
stimuli, including loss of growth factor signaling or fatal 
events within the cell, such as DNA damage, reactive oxy-
gen species (ROS) excess, hypoxia, or chemotherapeutic 
drugs [18, 23–25]. The extrinsic apoptosis pathway, on 
the other hand, is triggered as specific ligands released by 
other cells stimulate the transmembrane death receptors. 
Tumor necrosis factor (TNF) is a class of proteins that 
includes death receptors. TNF receptors also contain a 
cysteine-rich extracellular subdomain that enables them 
to identify their ligands precisely, as well as a cytoplas-
mic domain termed as the "death domain (DD)" that is 
responsible for conveying the death signal from the cell’s 
surface to intracellular pathways [26]. Since there is no 
loss of membrane integrity, apoptosis is typically thought 
to be a non-immunogenic type of cell death that prevents 
the leakage of intracellular contents. On the other hand, 
apoptosis  has recently been discovered to be immuno-
genic, through the release of DAMPs, under stress situa-
tions like chemotherapies or physical modalities [27].

Pyroptosis is a kind of programmed cell death that 
often takes place in response to intracellular patho-
gen infection. It is characterized by swelling of cell  and 
plasma membrane disruption, allowing cytosolic con-
tents to escape into the extracellular environment. How-
ever,  it is increasingly being studied as a potential cell 
death mechanism in cancer therapy. Gasdermins, inflam-
masomes, and pro-inflammatory cytokines are all essen-
tial components of pyroptotic cell death pathways and 
have been implicated in the onset and development of 
cancer. Interfering with these pathways might be a prom-
ising therapeutic option for cancer treatment [28, 29]. 
Pyroptosis might be induced by two different inflamma-
some pathways: canonical and non-canonical. Caspase-1 
is responsible for canonical pyroptosis, which is activated 
by a variety of PAMPs and DAMPs, while non-canonical 
pyroptosis is triggered by intracellular lipopolysaccha-
ride (LPS) and involves human caspase-4/-5 [30–32]. 
Inflammation-induced tumor development may originate 
from Caspase-1 deficiency [29]. Cell swelling and plasma 



Page 3 of 21Mardi et al. Cancer Cell International          (2022) 22:168  

membrane rupture characterize necrosis, which is com-
monly induced by major chemical or physical stressors 
such as the presence of toxins or trauma [33]. Different 
types of cell death have been discussed in Table 1.

Necroptosis is a kind of necrosis that is characterized 
by caspase-independent cell death and, unlike apopto-
sis, induces inflammation through the release of DAMPs 
[34]. It is primarily triggered by receptor-interacting pro-
tein 1 (RIP1), RIP3, and mixed lineage kinase domain-like 
(MLKL) protein  [35]. New evidence shows that necrop-
tosis  has pro- or anti-tumoral effects on cancer growth 
and progression. Necroptosis induction in tumor cells 
has been investigated as a possible cancer treatment 
approach [34]. Cancer cell necroptosis is thought to be 
an ICD  that triggers anti-tumor immunity. Although 
increased necroptosis leads to cancer cells death, exces-
sive cell death also raises the likelihood of surviving cells 
proliferating and metastasizing by promoting the pro-
duction of ROS, inflammation, and immune suppression 
[36–38]. Necroptosis also promotes myeloid cell-induced 
adaptive immune inhibition, which leads to cancer devel-
opment. As a result, the overall effect of necroptosis on 
cancer cells has remained elusive.

Ferroptosis is a newly found form of  controlled cell 
death defined by the accumulation of lipid ROS to lethal 
levels in the presence of iron [39]. Unlike necroptosis and 
apoptosis, ferroptosis is independent of receptor-inter-
acting protein 1 kinase (RIPK1) and caspase activity [40]. 
Ferroptosis was first characterized in 2012 as a distinct 
process from apoptosis, necrosis, and autophagy. How-
ever, recent findings have described ferroptosis as a form 
of autophagy-dependent cell death [41]. High-mobility 
group box 1 (HMGB1) is released by cancer cells during 
ferroptosis in an autophagy-dependent mechanism [42]. 
It is a critical protein needed for cancer cell immuno-
genicity as a major DAMP [43].

Interestingly, it has been hypothesized that cancer 
cells that have escaped conventional types of cell death 
mechanism may preserve or acquire ferroptosis sensitiv-
ity Emerging evidence suggests that triggering ferroptosis 
might be leveraged to treat cancer, particularly aggressive 
tumors that are resistant to conventional therapies [40]. 
Many recent studies in this area have concentrated on 
designing and developing anti-cancer drugs based on fer-
roptosis induction [44]. Even in chemo-resistant cancers, 
strategies that manipulate ferroptosis induction have 
been shown to successfully suppress tumor growth [45]. 
In this regard, Wang et al. showed that  CD8+ T lympho-
cytes cause ferroptosis in tumor cells in  vivo, providing 
the first direct proof of a link between anti-tumor immu-
nity and ferroptosis [46].

As a result, most cancers have an inherent resistance 
to apoptosis, thus, inducing cell death pathways other 

than apoptosis, like necroptosis, pyroptosis, and ferrop-
tosis, has turned into a noteworthy cancer therapeutic 
method. Moreover, the combination of other immuno-
therapy approaches, such as immune checkpoint inhibi-
tors (ICIs), with stimulation of necroptosis, pyroptosis, 
and ferroptosis, have been demonstrated to synergisti-
cally increase anti-cancer efficacy [47].

Immunogenic cell death pathway
ICD is a new concept in tumor cell death that involves 
both innate and adaptive immune responses and gives an 
enhanced immunogenic anti-cancer  effect to cytotoxic 
medicines [48, 49]. So far, only a few cytotoxic drugs 
have been shown to stimulate anti-cancer immunity via 
triggering ICD [50]. ICD is characterized by changes in 
the cell surface composition as well as the leak of sign-
aling molecules. These signals enhance the tumor anti-
gen presentation  to T lymphocytes by triggering a set 
of receptors expressed by dendritic cells (DCs). In fact, 
ICD is a key mechanism for stimulating the immune cells 
against tumor cells [48].

Dying cells release  chemicals that the immune cells 
may exploit as adjuvants or  danger  signals. DAMPs are 
the general name for these signals which are the chemi-
cals that mediate immunogenicity and adjuvanticity of 
dying cells and are essential for ICD’s ’anti-cancer vac-
cination effect’ [51–53]. Interestingly, anti-cancer vacci-
nation effects have been observed in vivo after  injection 
of dying cancer cells subcutaneously  undergoing ICD 
[54]. Pattern recognition receptors (PRRs) on DCs, 
such as Toll‐like receptors (TLRs) and NOD‐like recep-
tors (NLRs), recognize DAMPs, which then stimulate 
tumor‐specific immune responses [55, 56]. DAMPs 
released during ICD comprise chaperones of  endoplas-
mic reticulum (ER)  such as  heat-shock proteins (HSPs) 
and calreticulin (CALR) [57], type I interferons (I-IFNs), 
non-histone chromatin-binding protein HMGB1 [58, 
59], ATP [60], annexin A1 (ANXA1) [61], and cancer 
cell-derived nucleic acids [62]. DAMPs recruit ligands 
on DCs and trigger DC maturation, which enhances 
the antigen uptake by DCs. Subsequently, by presenting 
antigens, DCs trigger T cell-specific responses that elimi-
nate further tumor cells. In the context of strong stimu-
lation of the anti-tumor immune responses, DAMPs 
enable tumor antigens to be cross-presented to  CD8+ T 
cells [63, 64]. Finally, ICD induction leads to long-term 
immunity against tumor cells [65].

Multiple cell death pathways initiated by OVs
OVs destroy cancer cells by inducing a variety of cell 
death pathways. Apoptosis, necroptosis, autophagic cell 
death, and pyroptosis are among them, each of which 
serves as the primary death form for a specific OV. 
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OV-induced cancer cell death is primarily immuno-
genic and has the potential to elicit anti-tumor immune 
responses [10]. OVs are a category of biological agents 
that have the potential to treat cancer. This approach 
has been used in a number of clinical studies that are 
now underway or have recently been completed. In 
2015, talimogene laherparepvec became the first OV 
to receive the food and drug administration (FDA) 
approval in the United States, marking a breakthrough 
in the setting [66, 67].

OV‑mediated induction of cell lysis
OVs provide an interesting therapeutic combination of 
cancer cell lysis and immune activation, making them 
promising in situ cancer vaccines as well as they are easy 
to combine with other drugs [67]. The release of cellu-
lar debris and viral antigens in the TME stimulates the 
immune responses [67] (Fig.  1). OVs induce oncolysis, 
which is followed by the production of infectious viral 
progeny that spreads to surrounding tumor cells, as well 
as subproducts such as viral particles, PAMPs, DAMPs, 
tumor cell debris, and TAAs. All of these activities 

Fig. 1 Mechanism of immunogenic cell death induction via oncolytic viruses and priming of anti-tumor specific responses mediated by antigen 
presenting cells. Oncolytic viruses (OVs) attack and destroy tumor cells preferentially. Lysis of tumor cells releases TAAs and PAMPs which trigger 
PRRs, which then produce inflammatory cytokines and antiviral type I IFNs. Viruses can activate cell death pathways, resulting in immunogenic cell 
death phenotypes such as necroptosis, pyroptosis, immunogenic apoptosis, and autophagic cell death. Subsequently DAMPs such as ATP, HMGB1, 
CALR, and type I IFNs are released by ICD from dying cancer cells. Antigen-presenting cells, such as DCs, are recruited to the tumor site. P2Y2 and 
P2X7 are purigenic receptors that increase DC recruitment and maturation, respectively, when extracellular ATP binds to them. CALR enhances 
phagocytosis and the production of proinflammatory cytokines through binding to LRP1. Also, binding HMGB1 to TLR-4, promote cytokine 
production and cross-presentation of antigen. IFNs bind to IFNR and promote the production of a vast number of IFN-stimulated genes that help 
to induce adaptive immune responses. Mature DCs can present cancer-related Ags to cancer-specific T cells, resulting in anti-tumor immunity and 
cytolysis mediated by perforin and granzyme B. HMGB1 High mobility group box 1, ATP adenosine triphosphate, type-I IFN type-I interferon, CALR 
calreticulin, PRR Pattern Recognition Receptor, TLR4 Toll-like receptor 4, LRP1 low density lipoprotein receptor–related protein 1, IFNAR interferon-α/β 
receptor, DAMPs Damage-associated molecular patterns, ICD Immunogenic cell death, TAAs tumor-associated antigens, PAMPs Pathogen-Associated 
Molecular Pattern, DCs Dendritic cells
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contribute to the local and systemic stimulation of innate 
and adaptive anti-cancer immune responses [9, 68, 69]. 
Because OVs predominantly replicate in tumor cells, 
they can be designed to express transgenes that enhance 
their  immuno-stimulatory capabilities, as well as to 
regulate the TME to improve the eradication of tumors 
by the immune cells [70]. Various kinds of OVs have 
been employed as natural or manufactured vectors for 
the treatment of cancer, such as vaccinia viruses (VVs), 
adenoviruses (Ads), measles viruses (MVs), herpes sim-
plex viruses (HSVs), vesicular stomatitis viruses (VSVs), 
Coxsackie viruses, Seneca Valley viruses (SVVs), New-
castle disease viruses (NDVs), Myxoma viruses (MYXVs), 
polioviruses, parvoviruses, and retroviruses [71].

Deficiency in innate immunity potentially enables OVs 
to infect and propagate [72]. Antiviral I-IFN signaling is 
defective in many cancer cells but not in healthy ones, 
allowing for selective virus replication [73]. The concur-
rence of viral infection and cell lysis, which triggers the 
release of tumor antigens and DAMPs, may overcome the 
immunosuppressive features of the  TME and enhance 
anti-cancer immunity [67]. APCs release cytokines as 
virus replication and tumor cell  lysis  progress, gradu-
ally attracting other adaptive immune cells. The eventual 
aim of this immune stimulation procedure is to prime T 
cells toward targeted tumor antigens so that adaptive 
immunity can be established [74]. Multiple clinical trials 
have demonstrated evidence of OV-induced anti-tumor 
immune responses. For example, patients diagnosed 
with melanoma who treated Talimogene laherparepvec 
(T-VEC) (an example of Herpesviruses) or coxsackievirus 
(an example of Picornaviruses) in separate clinical tri-
als had a higher amount of  CD4+ and  CD8+ T cells than 
untreated ones [75–77].

Most OVs induce cell lysis in a variety of ways through-
out their entire life cycle. Retroviruses, for example, have 
the potential to be beneficial agents since they easily 
infect mitotic cells and disseminate rapidly, however they 
do not necessarily lead to cell lysis [78].

OV‑mediated induction of autophagy and necroptosis
OVs have been found to disrupt the intracellular 
mechanism of autophagy [79]. Moreover, autophagy 
has been shown in many cancer models to either pro-
mote carcinogenesis or function as a tumor suppressor 
[80]. Autophagy is a catabolic process that generates 
energy through the lysosomal breakdown of intracellu-
lar components in response to various stimuli, includ-
ing  hypoxia,  nutrient  shortage, and infection [81]. 
Through promoting oncolysis and ICD, autophagy can 
boost replication and infectivity of  the OVs 
and  improve their anti-tumor effects [71]. For exam-
ple, oncolytic paramyxoviruses have been discovered to 

trigger autophagy and cause tumor cell death. Indeed, 
autophagy induction has been shown to improve 
tumor cell immunogenicity by releasing DAMPs and 
TAA and activating autophagy-related ICD. TAAs are 
then cross-presented to  CD8+ T lymphocytes via the 
major histocompatibility complex class I (MHC-I), 
resulting in effective priming of the immune response 
against tumor [82]. However, some research showed 
that autophagy can decrease the cytotoxicity and anti-
tumor activity of OVs via supplying tumor cells with 
survival resources [71]. OVs induce autophagy, which 
suppresses anti-virus innate immune responses, allow-
ing viruses to replicate more rapidly. While I-IFN sign-
aling deficiency in cancer cells is a positive factor for 
OV replication within tumor cells, there is data that 
several cancer cells maintain the I-IFN responses that 
drive resistance of tumor cells against oncolytic viro-
therapy [83]. Nevertheless, other research suggests 
that oncolytic Ad-induced autophagy may have no 
impact on viral replication in infected cancer cells. In 
this regard, Yokoyama et  al. showed that OBP-405, an 
oncolytic Ad, has a significant anti-cancer impact on 
glioblastoma cells. Additionally, the cytotoxicity of 
OBP-405 was diminished following pharmacological 
inhibition of autophagy [84]. Autophagy not only plays 
an important function in infectivity and replication of 
the OVs, but it also plays a role in oncolytic virother-
apy by mediating ICD [85]. Liikanen et al., for instance, 
reported that combining oncolytic Ads  5/3-D24-GM-
CSF with temozolomide (TMZ) reduced tumor devel-
opment, promoted autophagy, and triggered ICD 
through increasing ATP secretion, CALR, and HMGB1 
expression [86]. Also, OBP-301 was shown to cause 
autophagic cell death via the E2F1‐microRNA‐7‐epider-
mal growth factor receptor (E2F1-miR7-EGFR) path-
way. Mechanistically, MiR-7 upregulation is induced by 
increasing E2F1 expression and suppressing oncogenic 
EGFR expression, which reduces cell survival and pro-
motes autophagy [87]. Numerous OVs have been dem-
onstrated to regulate autophagy to activate both innate 
and adaptive immune responses through promot-
ing  antigen presentation and cytokine production [3]. 
Table  2 summarizes recent advancements in oncolytic 
immunotherapy employing OV-mediated autophagy.

Jing Ma et  al. showed that Ad, SFV, and VV could 
induce various ICD while also stimulating anti-tumor 
immune responses [88]. They demonstrated that 
autophagy is typically activated by the Ad-infection of 
cancer cells. Moreover, Ad stimulates necroptotic and 
pyroptotic cell death processes. In contrast, SFV infec-
tion mainly triggers immunogenic apoptosis, whereas VV 
infection induces necroptosis [88]. Previous research has 
shown that autophagy activation by an oncolytic virus 
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infection, as well as the viruses’ effects on autophagy, are 
complicated and virus-specific [71].

The biological response of glioblastoma cells to NDV 
infection has recently been recognized as necropto-
sis [89]. TNF members, TLRs, and  DNA and RNA 
sensors can all trigger necroptosis, which is a type of 
programmed cell death that is not dependent on caspase 
8. The receptor-interacting protein kinase 1 (RIPK1)-
RIPK3 complex is required for signal transduction, and 
Necrostatin-1 inhibits this complex [90].

In another study, Chen et  al. demonstrated that ste-
reotactic body radiotherapy (SBRT) in combination with 
oncolytic VV can induce necroptosis of tumor cells and 
activate macrophages via the production of DAMPs, 
resulting in significant anti-tumor immunity. As a result, 
combination therapy has the potential to be widely 
applied in clinical cancer treatment [91].

OV‑mediated induction of apoptosis
OVs can preferentially propagate in tumor cells and 
trigger apoptosis without destroying healthy tissues, 
making them a hopeful approach in cancer treatment 
[92]. OVs  might be equipped with  pro-apoptotic genes, 
which are commonly lost in cancer [93]. Several studies 
reported that OVs could induce apoptosis, For example, 
Washburn et al. revealed that NDV stimulates apoptosis 
in cancer cells and directly provokes the innate immune 
system via enhanced cytokine production like type I IFN, 
RANTES (CCL5), GM-CSF, and IL-12  and enhanced 
antigen presentation [94]. VSV stimulates apoptosis in 
tumor cells rapidly and efficiently, which is the founda-
tion for its oncolytic capability [1]. Also, Miyagawa et al. 
demonstrated that the urokinase-specific oncolytic Sen-
dai virus has therapeutic efficacy in anaplastic thyroid 
carcinoma (ATC) mice models by induction of apoptosis. 
As a result, the Sendai virus could be used to treat ATC 
[95]. Another research examined how VSV wild type (wt) 
and M51R-mutant matrix protein (mMP) affected apop-
tosis, necroptosis, pyroptosis, and autophagy in esopha-
geal squamous cell carcinoma (SCC). Their findings 
showed that VSV has an oncolytic function in tumor cells 
via apoptosis, necroptosis, and autophagy, but not pyrop-
tosis [96]. Furthermore, Zhang and colleagues designed 
an oncolytic adenovirus that carried the TSLC1 (a tumor 
suppressor gene)  and targeted the Wnt signaling path-
way. Their findings reveal that recombinant adenovirus 
significantly reduces cancer-stem-like cell proliferation in 
HCC models through inducing apoptosis and autophagy 
[97].

Moreover, Parvoviruses, such as parvovirus H-1 
(H-1PV), can attack and lyse cancer cells preferentially. 
Anti-cancer immunity is also induced by parvoviruses, 
which leads the immune system to kill tumor cells. The 

direct stimulation of apoptosis through parvoviral pro-
teins NS1 is one of the proposed mechanisms of anti-
cancer action [98].

OVs and oxeiptosis
Oxeiptosis is a non-inflammatory,  caspase-independent, 
ROS-sensitive and, an immune-silent  form of cell death 
that is essential for protecting against inflammation pro-
duced by ROS or ROS-producing agents such as viral 
infections [99]. Influenza A virus  leads to  ROS produc-
tion, which is detected by Kelch-like ECH-associated 
protein 1 (KEAP1). KEAP1 stimulates the transcription 
factor nuclear factor erythroid 2-related factor 2 (NRF2), 
which aids cell survival when ROS levels are low. Further-
more, KEAP1 binds to and deactivates the mitochondrial 
phosphatase PGAM5. At greater concentrations, KEAP1 
loses contact with the phosphatase, triggering oxeipto-
sis [99, 100]. The cell is protected from more immuno-
genic types of death by participating in this form of cell 
death [99]. Furthermore, PGAM5 mutant mice have 
been observed to respond to influenza A virus infection 
with increased necrotic histology and quick death [99]. 
Through unharmed oxeiptotic signaling, a malignant 
tumor may preserve itself against ROS-induced immuno-
genic types of cell death, possibly reducing the efficiency 
of oncolytic viruses.  Oxeiptotic cell death Downregu-
lation in the TME  appears to be a viable method for 
improving oncolytic virotherapy [101].

OVs and pyroptosis
Pyroptotic cells, like apoptotic cells, utilize "eat-me" and 
"find-me" signals to  promote macrophage phagocytosis, 
probably due to ATP release and phosphatidylserine (PS) 
exposure [102]. However,  apoptotic cells release ATP 
less effectively than necrotic and pyroptotic cells [102]. 
Moreover, unlike apoptosis, pyroptosis is caused only by 
caspase-1 activity, which is initiated by the creation of a 
cytosolic complex known as the "inflammasome," result-
ing in extremely inflammatory consequences [20]. Pyrop-
tosis may be induced by some OVs like herpes simplex 
virus type 2 (HSV-2) mutant, ΔPK [103]. In this context, 
Wang et  al. discovered that NDV triggers the NLRP3 
inflammasome, albeit the method by which inflamma-
some components detect NDV and whether this stimu-
lation contributes to NDV’s oncolytic properties remain 
unclear [104]. Also, Oncolytic HSV-1 RH2 was shown 
to release HMGB1,  ATP  and promote CALR transloca-
tion to the cell membrane, resulting in cell death with 
apoptosis and pyroptosis [105]. Overall, research on OV-
induced pyroptosis and its specific processes and effects 
on cancer cells are still in their early phases, requiring 
additional research.
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Destruction of tumor cells is mediated by OVs through 
two key processes: direct lysis of tumor-infected cells and 
indirect stimulation of host tumor-specific  immunity 
[106]. OVs infect and proliferate in tumor cells, trigger-
ing lysis of tumor cells and the release of additional viral 
progeny which disseminate to cancer  cells in the sur-
rounding area. As a result, cancer cells treated with onco-
lytic viruses can initiate different cell death and release 
TAAs, DAMPs, and inflammatory cytokines, in order to 
restore the TME and provoke anti-tumor immunity [20, 
52, 106].

Effects of oncolytic viruses on the cancer‑immune 
microenvironment
Tumor  cells use various strategies to escape and inhibit 
anti-tumor  immunity, leading to  a "cold"  immunosup-
pressive TME. TME contains tumor cells, blood vessels 
with endothelial cells, extracellular matrix (ECM), can-
cer-associated fibroblasts (CAFs), and a few infiltrating 
immune cells, such as regulatory T-cells (Tregs), mye-
loid-derived suppressor cells (MDSCs), and tumor-asso-
ciated macrophages (TAMs). These immune cells  have 
immunosuppressive features  and, in collaboration with 
other cells in TME, generate and release growth fac-
tors, cytokines, and other chemicals that lead to the for-
mation of an immunosuppressive TME [107].

Oncolytic virotherapy is developing as a success-
ful strategy for restoring tumor immunosuppression 
[108]. OVs proliferate preferentially in tumor  cells and 
destroy them by triggering ICD. Tumor cell lysis induced 
by OVs is correlated with the release of DAMPs, PAMPs, 
TAAs,  and pro-inflammatory  cytokines, all of which 
lead  to the recruitment of immune cells in the TME 
and the DCs maturation, therefore stimulating anti-
tumor  immune responses. Generally, OVs  appear to 
function in a multimodal manner, triggering ICD  and 
powerful anti-tumor immunity [107, 109].

OVs are stimulators of the immune system
To achieve  the greatest anti-tumor impact before viral 
clearance, OVs must be engineered to proliferate and 
propagate rapidly inside tumors, but not in normal cells 
[110]. Several research on the genetic modification of 
OVs to selectively infect and eradicate tumor cells, as well 
as to improve anti-tumor immunity, have been under-
taken [109, 111].

To promote viral propagation within the tumor cells, 
OVs may have anti-vascular effects and destroy the extra-
cellular matrix. Also, within the microenvironment, 
OVs boost interactions between cytokine-induced killer 
cells, fibroblasts, and cancer cells, resulting in increased 
death of tumor cells [112]. Equipping viruses with immu-
nomodulatory molecules like cytokines, which enhance 

the recruitment of immune cells to the tumor site, may 
augment anti-tumoral immune responses [113]. How-
ever, since viruses are identified as pathogens by the 
immune system, the ensuing antiviral response might 
represent a considerable obstacle for OVs [110]. For this, 
Li et al. revealed that repeated intratumorally delivery of 
the virus may boost the efficacy of anti-cancer treatment 
in a Syrian hamster model, providing a novel strategy to 
bypass antiviral immune response [110].

Tumor  cells modify  TME by producing high  levels of 
VEGF, death ligands (PD-1, FasL, and TRAIL),  anti-
inflammatory cytokines, and several metabolites such as 
NO, RNS, and indoleamine 2 3-dioxygenase (IDO) [114]. 
These immunosuppressive agents not only decrease anti-
tumor immunity, but also trigger  stroma cells, and 
enhance tumor progression. Furthermore, Tregs, TAMs, 
and MDSCs can facilitate angiogenesis, tumor develop-
ment, and metastasis by producing immunosuppressive 
agents  including  IDO, transforming growth factor-beta 
(TGF-β), ROS, arginase I, interleukin (IL)-10, and PD-L1 
[115, 116].

On the other hand, killing local tumor cells may reverse 
the immunosuppressive features of  the TME, allow-
ing for enhanced TAAs release, cross-presentation to 
 CD8+ T cells, and recruitment of anti-tumoral effector 
T cells [117]. All viruses trigger tumor cell lysis, result-
ing in the release of DAMPs, which stimulates  phago-
cytosis and DC maturation [118]. DCs are recruited to 
the TME through ICD by binding HMGB1 and ATP to 
TLR4 and P2Y2, respectively. If dying tumor cells exhibit 
CALR, which binds to SR-A,  LRP1,  and SREC-1 on 
DCs, they will be phagocytosed quickly [9, 119] (Fig. 1). 
Also, binding HMGB1 to TLR-4 promotes cytokine pro-
duction and  cross-presentation of antigen. IFNs  bind 
to IFNR  and promote the production of a vast number 
of IFN-stimulated genes that help to induce adaptive 
immune responses. Mature DCs can present TAAs to 
cancer-specific T cells, resulting in anti-tumor immunity 
and cytolysis mediated by perforin and granzyme B [9].

According to research, tumor cells infected with Sem-
liki Forest virus (SFV) elicited considerable T helper 1 
(Th1)-cytokine production by DCs and triggered acti-
vation of antigen-specific T-cell [118]. Also, Feng-Ying 
Huang et  al. demonstrated that NDV-MIP3 could pro-
duce humoral and cellular immunity and induce tumor 
lysis through ICD. Anti-tumor immune responses of 
NDV-MIP3(a recombinant oncolytic Newcastle virus 
expressing MIP-3α) were partly reliant on  CD8+ T cells 
and partially dependent on  CD4+ T cells [120]. Don-
nelly et al. revealed that the MVs improve innate immune 
response against tumors and MV-mediated cell death can 
stimulate adaptive immune responses against melanoma. 
Indeed, since inflammatory cytokines such I-IFNs and 
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HMGB1 are released and stimulate DCs through MV-
infected tumor cells, ICD occurs in human melanoma 
cells and enhances anti-tumor immune responses [121].

A number of viruses have progressed to the clinical 
stage in the treatment of cancer. For example, T-Vec, 
based on HSV-1, has been demonstrated to enhance 
tumor-specific  CD8+ T cells while decreasing the num-
ber of Tregs. T-Vec has also been studied in a phase III 
trial in melanoma patients [66, 122], leading to FDA 
approval in 2015 for the melanoma patients as the first 
OV [66].

Since the stimulation of DCs is necessary for the activa-
tion of cytotoxic T cells, investigation on ICD has mostly 
concentrated on the DC–T cell axis. On the other hand, 
other effector cells probably have a function in ICD. 
Despite the fact that both NK and B cells play essential 
functions in anti-cancer responses, only NK cells have 
been studied in the field  of ICD [9]. Tumor cell infec-
tion  by various OVs induces the release of TAAs inside 
the TME, facilitating the detection of TAA-loaded can-
cer cells by CD4 + T cells [123]. In conclusion, the anti-
cancer immune response induced by OV was revealed to 
overcome the immunosuppressive TME.

OV‑mediated induction of ICD
The potential of oncolytic immunotherapy to induce 
an anti-cancer immune response is dependent on ICD 
induction upon OV infection of tumor cells. Tumor cells 
may evade the immune system by altering their antigens 
and becoming undetectable to leukocytes, in a process 
known as immuno-editing. When OVs enter tumor cells, 
an inflammatory reaction is elicited, making the immune 
system more effective against virus-infected tumor cells. 
This is attributable to the fact that viruses can induce 
ICD [74].

Several studies have been undertaken in this area; for 
example, Takasu et al. examined the impact of oncolytic 
HSV-1 on DAMP production in squamous cell carci-
noma (SCC) cells. They found that oncolytic HSV-1 RH2 
induces SCC cells to produce DAMPs, which causes cell 
death. This immunogenic form of death may promote the 
potential of oncolytic HSV-1 to elicit anti-tumor immu-
nity [105]. Furthermore, recent studies demonstrate 
that oncolytic NDV caused CALR exposure, HMGB1 
and HSP70/90 release, as well as ATP secretion, result-
ing in ICD induction in melanoma cells [124]. Moreover, 
Wang et al. revealed that NDV/FMW, an oncolytic NDV 
strain FMW, triggered the production and exposure of 
various ICD markers in prostate cancer cells, including 
CALR, HSP70/90, and HMGB1. They also proposed that 
combining STAT3 inhibition with oncolytic NDV could 
enhance NDV-based anti-cancer actions in prostate can-
cer [125].

Interestingly, a lot of work has gone towards design-
ing OVs which encode transgenes that trigger ICD in 
order to stimulate the immune system towards cancers 
[122, 126, 127]. For example, Zhu et al. have shown that 
the MV-Hu191 (Hu191 measles virus) strain is a suit-
able vector for foreign gene expression and can induce 
ICD, resulting in anti-tumor immune responses against 
nephroblastoma [128]. Also, Somma et  al. claimed that 
using the adenovirus dl922-947, which has been designed 
to enable preferential propagation in tumor cells, might 
induce anti-tumor immune responses against Malignant 
pleural mesothelioma (MPM). They revealed that infec-
tion  with  dl922-947  had cytotoxic effects on MPM cell 
lines, influencing cell cycle progression, viability, and 
modulating ICD indicators such as HMGB1, ATP release, 
and calreticulin surface exposure [129].

Despite the OVs having the potential to induce tumor-
specific immunity by stimulating T cells and NK cells 
through ICD, the immune system also can attack the OV 
by stimulating anti-viral pathways like type I IFN and 
neutralizing antibodies [130]. Therefore, the interaction 
between the immune system and OVs involves restrictive 
and stimulatory activities.

CAR T cells characterization
CARs have an extracellular binding domain made up of a 
single-chain fragment variable (scFv) of antibody for rec-
ognition of HLA-independent antigen, also a transmem-
brane domain, and one or even more TCR intracellular 
signaling domains made up of a CD3 chain [131].

ScFv recognition domain allows CAR to bind to tumor 
cell-specific  antigens. The initial concept connected 
scFv to an intracellular signaling component consisting of 
a part of the CD-3ζ  chain to trigger activation of T cell 
upon antigen binding [132]. These two components are 
linked by a transmembrane domain and an extracellular 
hinge domain, leading in the simple form of CAR, known 
as a first-generation of CAR [133]. Soon after, attempts to 
enhance the existing CAR molecule resulted in the devel-
opment of second and third-generation CAR structures 
that included signaling endodomains like CD28, 4-1BB 
(CD137), and inducible T cell co-stimulator (ICOS) in an 
effort to mimic the co-stimulation provided by APC dur-
ing TCR recognition [134, 135]. Signaling domains from 
cytokine receptors or inducible production of inflam-
matory cytokines like IL-18 or IL-12 were introduced to 
fourth and fifth-generation CAR T-cells [136, 137].

Immunogenic cancer therapies and efficacy 
of anti‑tumor CAR T cell therapy
CAR T-cell therapy is a  therapeutic T cell engineer-
ing approach, in which T lymphocytes obtained from 
patients  are modified in  vitro to display artificial 
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receptors directed to a specific  antigen of the tumor 
[138]. In fact, CAR T-cells enable T cells to bind specific 
antigens in the surface of tumor cells via an scFv recog-
nition domain, resulting in HLA-independent  tumor 
cell death. CAR T-cells establish an immune synapse, 
which is necessary for their cytotoxic activity. To their 
anti-tumor activities, these cells can use the Fas and Fas 
ligand axis, perforin and granzyme axis, and production 
of cytokines to sensitize of tumor stroma [133].

CAR T-cells have been extensively utilized in several 
hematologic malignancies in recent years, and owing to 
their efficacy in improving patient outcomes, the FDA 
approved them for lymphoma and leukemia [139]. In B 
cell malignancies such as non-Hodgkin lymphoma, acute 
lymphoblastic leukemia, and chronic lymphocytic leuke-
mia, treatment with CD19-specific CAR T-cell demon-
strated highly promising outcomes [140]. However,  the 
usage of CAR T-cells in solid cancers has been met with 
some  challenges, including CAR T-cell frailty in the 
immunosuppressive TME, restricted trafficking capacity, 
heterogeneity of tumor antigens, difficulty in identifying 
the ideal TAA target, and reduced proliferation and per-
sistence of CAR T-cells in tumor site [141, 142]. The main 
goal of CAR-T immunotherapy is to alter T cells so that 
they can recognize and destroy cancer cells more effec-
tively [138]. CAR T-cells would serve as a "living drug" 
against tumor cells after being administered to effectively 
treat a cancer patient. When CAR T-cells interact  with 
their specific antigens on the tumor cell’s surface, they 
attach to them, get triggered, and eventually destroy 
them [143].

To develop a great response, CAR-T cells must enter 
tumor cells, detect their relevant antigen, and fulfill their 
cytotoxic role in the TME, and then develop and per-
sist as memory T cells that provide long-term immunity 
[144]. The poor results of CAR T cells in clinical studies 
of solid tumors suggested that monotherapy with CAR 
T cells is insufficient for the effective treatment of these 
malignancies, and that combination of  them with other 
complementary treatments may be more helpful for can-
cer patient treatment [145].

Combination of oncolytic virotherapy and CAR T 
cell therapy to maximize immunogenicity
The existence of three  signals is required for  anti-
tumor T cell stimulation: a signal triggered by the T-cell 
receptor (TCR) interaction with antigen (Signal 1), a sig-
nal triggered by the interactions of the co-stimulatory 
molecules with cognate ligands upon  APCs (Signal 2), 
and eventually, a signal triggered by the involvement of 
pro-inflammatory cytokines  (Signal 3). The capacity 
to produce signals 1 and 2 is present in the second and 
third generations of CAR T-cells [146]. While ex  vivo 

stimulation of CAR T-cells with cytokines can recapitu-
late signal 3 before delivery, and it may be further facili-
tated by altering the capacity of CAR T-cells to generate 
their cytokines and also to convey a series of cytokines 
sequentially as adoptive cellular immunotherapy [147–
149]. The ability of OVs to induce I-IFN in the TME has 
recently been discovered. Also, the capacity of I-IFNs 
to activate Signal 3 in T cells has been discovered, so if 
OVs injected at the TME could increase the synthesis of 
this cytokine, it could be inferred that OVs have the abil-
ity to strengthen the cytotoxic activity of CAR T-cells on 
the TME; also, they could improve the safety of this ther-
apeutic approach. Furthermore, I-IFNs have been shown 
to boost the cytolytic activity of T cells, increase clonal 
proliferation and also most critically, promote differentia-
tion of T cells to memory cells [149, 150].

Overall, OVs play a key role in the first three phases of T 
cell therapy (Step 1: T cell priming, Step 2: trafficking and 
infiltration of T cells, and Step 3: circumventing immune 
suppression) [151]. The immunosuppressive TME is a 
major barrier to the utilization of CAR T immunother-
apy in solid tumors. T cells that have entered the tumor 
must struggle with inhibitory factors and immunosup-
pressive cells like TAMs in the TME. Immunosuppressive 
cells may release powerful immunosuppressive media-
tors, including TGF, IL-10, arginase, and indoleamine 
2,3-dioxygenase (IDO). OVs may overcome immunologi-
cal suppression through eliciting robust, pro-inflamma-
tory Th1 cell immune responses that significantly alter 
the TME [151]. However, despite this positive effect of 
OVs in altering immunosuppressive TME, it has become 
obvious that not all virus-induced outcomes are advan-
tageous to CAR T, raising the issue of whether viruses 
operate as valets, directing CAR T to its active site, or 
vandals, triggering chaos and death in both tumor and T 
cells [13].

Tumor immune escape owing to loss of antigen is 
another challenge that CAR T-cells face. Target anti-
gen availability on the tumor cell’s surface is crucial for 
CAR-T cell activation. On the other hand, Solid tumors 
are characterized by highly heterogeneous expression 
of antigen that may be totally absent. CAR-T cells are 
unable to detect antigen-negative tumor cells, allow-
ing tumor development to proceed [152]. To address 
this, OVs may provide a suitable environment for T-cell 
growth and activity in malignant cells by selective lysis 
of tumor-infected cells and conveying danger signals. 
Another intriguing method is to employ CAR T-cells to 
transfer the OV to the tumor site [153]. The OVs loading 
on effector T cells could protect it against neutralizing 
antibodies and provide anti-cancer action following the 
viral release in the TME [154]. Transfer of OVs by CAR 
T-cells might improve the delivery of virus to the tumor 
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site, and following oncolysis could recruit more CAR-T 
cells, forming a positive feedback loop [15].

In summary, it can be said that OVs could enhance the 
recruitment, activation, and expansion of CAR T cells by 
generating I-IFNs and switching the tumor milieu from 
immunologically "cold" to a "hot" state [14]. Moreover, 
recently a novel method has been developed which uses 
OVs as tumor-tagging to express specific antigen (like 
CD19) on tumor cells as a target for CAR T-cells (Fig. 2) 
[155].

Also, to circumvent depending on a tumor’s native 
antigens, Aalipour et al. developed a thymidine kinase-
disrupted VV for the specific delivery of CD19 to 
cancer cells. Furthermore, an in  vitro investigation 
confirmed that CD19-CAR T-cells increased cytotoxic 
effect against two different  cancer cell lines.  Finally, 
they discovered that delivering CD19 to cancer  cells 
could enhance CAR T-cells efficacy against tumor cells 
that displayed low amounts of antigen, indicating that 

it may be used to address antigen low evasion [156]. In 
another animal model, researchers designed a recombi-
nant Ad encoding CD19 tag (AdC68-TMC-tCD19) that 
may be used to mark multiple solid cancers for recog-
nition of  anti-CD19-CAR T. As a result, this modified 
Ad could produce the generic tag and form immuno-
logical synapses between cancerous cells and CAR 
T-cells. Surprisingly, after injection of CAR T-cells, all 
of these tagged animals survived, and tumor progres-
sion was substantially suppressed by 92 percent in the 
premixed mouse model. They also constructed the rep-
licative AdC68-Sur-E1A-TMC-tCD19 by combining the 
oncolytic capacity with tumor tagging. An oncolytic 
tagging method was shown to greatly increase mice 
survival and destroy existing tumors in mice models 
[157]. An oncolytic VV was modified to display the 
truncated CD19 (CD19t) molecule for selective deliv-
ery to tumor cells in a similar study by Park et al. Their 
findings showed that injecting OV19t into the tumor 

Fig. 2 OVs could enhance the recruitment, activation, and expansion of CAR T cells by generating type I INFs and switching the tumor milieu from 
immunologically "cold" to a "hot" state. On the one hand, OVs cause tumors to die through immunogenic cell death (ICD), remove physical barriers, 
and send out a warning signal to T cells. OVs, on the other hand, can express the CD19 upon tumor cells as a specific target for CAR-T, enhancing 
CAR-T-mediated lysis. OVs oncolytic viruses, CAR-T cell Chimeric antigen receptor T cell, ICD Immunogenic cell death, TAAs tumor-associated antigens
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cells upregulate CD19t at the cell surface and facilitates 
tumor cell death after treatment with CD19-specific 
CAR T-cells [158].

Through the production of PAMPs and DAMPs (such 
as HMGB1) that operate on Toll-like receptors, an onc-
olytic viral infection of tumor cells causes ICD  and an 
I-IFN response [159]. OV infection and following ICD of 
tumor cells have been shown to trigger innate and adap-
tive anti-tumor  immune responses that promote effec-
tor function and T-cell migration within the TME [159]. 
Following OV-induced necrosis and pyroptosis of virus-
infected tumor cells, tumor antigens attract Batf3 + DCs 
and scavenging macrophages, resulting in enhanced anti-
gen presentation and subsequent stimulation of specific 
 CD8+ and  CD4+ T lymphocytes against the tumor anti-
gen. These T cells can then traffic to tumor sites follow-
ing the chemokine gradients produced by DCs in TME. 
CXCL-9 and CXCL-10 are secreted by DCs in TME, 
which recruit  CD8+ T-cells, especially CAR T-cells, 
through CXCR3 [160].

Oncolytic virotherapy using modified Ad (OAd) may 
interrupt the TME by attacking tumor cells and adjacent 
stroma to increase the effectiveness of CAR-T cells, how-
ever, OAd delivery to solid tumors has proven challeng-
ing. In two different non-small cell lung cancer (NSCLC) 
models, researchers found that co-delivery of OAd and 
helper-dependent Ad (HDAd) expressing IL-12 and 
anti-programmed death-ligand 1 (PD-L1) by mesenchy-
mal stromal cells may both directly destroy tumor sphe-
roid formations in  vitro and boost responses of  CAR-T 
cells  against orthotopic tumors in  vivo. MSC-mediated 
systemic administration of a combinatorial Ad vector 
(Cad) boosted CAR-T cell recruitment and activation, 
as well as viral expression at the primary location of the 
tumor. Indeed, combining CAd MSCs with CAR-T cells 
promoted T cell penetration into  tumors, improved 
effector cell activity, and increased production of cytol-
ytic mediators IFN-γ, granzyme B, and perforin [161].

Various in vivo and in vitro studies have examined the 
possibility of synergistic effects of CAR T-cells and OVs, 
especially in solid tumors. For instance, the TGF-signal-
ing pathway is thought to be important for establishing 
immunosuppression in TME. In this way, Li et al. inves-
tigated the efficacy of combining rAd.sT, an oncolytic 
Ad that targeted the TGF-signaling pathway, with CAR 
T-cell treatment in triple-negative breast cancer cells 
(MDA-MB231). Finally,  they discovered that rAd.sT 
could destroy cancer cells and had significant anti-tumor 
activity in the initial stages, but  the anti-tumor impact 
decreased as the stage progressed. Despite this, CAR 
T-cell immunotherapy demonstrated the strongest and 
longest-lasting tumor-specific  response. Interestingly, 
CAR T combination with  rAd.sT produced the highest 

anti-cancer immune responses and therapeutic outcomes 
[162].

Considering the significance of numerous cytokines, 
chemokines, and adhesion molecules in recruiting endog-
enous CTLs into the TME, it’s possible that if an OV 
delivers these molecules, they could be attracted to tackle 
the obstacles of homing of CAR T-cell by improving their 
incursion to the tumor location [163]. Until now, a few 
preclinical and clinical investigations on the synergistic 
effects of  cytokine-armed OVs and CAR T-cell treat-
ment have been performed. For instance, Watanabe et al. 
employed an engineered adenoviral OV in pancreatic 
ductal adenocarcinoma (PDA) model that could generate 
either IL-2 or TNFα  in combination with a mesothelin-
directed 4-1BB-containing second-generation CAR. The 
generated  IL-2 and TNFα  both may inhibit the growth 
of cancer metastasis; hence the combination treatment 
was shown to increase the effectiveness of CAR T-cells. 
Moreover, the combination therapy was linked to mac-
rophage M1 subset deviation, which enhanced DC matu-
ration and local attraction of both transferred donor CAR 
T-cells and non-CAR host T cells via the TNF-inducible 
chemokine secretion  like CCL-2, CCL-5, and CXCL-10. 
Notably, Chmielewski and Abken demonstrated in both 
metastatic lung adenocarcinoma and pancreatic carci-
noma mouse models that IL-18-secreting CAR T-cells 
can stimulate a high T-bet and low levels of FoxO1 in 
CAR T-cells and enhance tumor penetration of  NKG2D+ 
NK cells while decreasing the rate of suppressive mac-
rophages and Tregs [164].

Also, in the syngeneic mouse mesothelioma model, 
direct intratumoral delivery of a CXCL-11 armed vaccinia 
OV strain resulted in an elevation in anti-tumor  cyto-
toxic T cell infiltration [165]. Furthermore, this model 
revealed considerable immune suppressive cytokines and 
chemokines downregulation such as CCL-22 (a Treg che-
moattractant), TGF, and Cyclooxygenase-2 (COX2), as 
well as  perforin and granzyme B overexpression simul-
taneously [165]. In the second investigation, Moon et al. 
assessed the synergistic activity of CXCL-11 and meso-
thelin-redirected CAR T-cells on patients  with  meso-
thelioma and a murine model. CXCL11 was transmitted 
to the specific tumor tissue in this investigation either 
by subcutaneous administration of a VV equipped with 
CXCL-11 (VV.CXCL-11) or by overexpression in  trans-
ferred  T cells adoptively  transfected with a lentiviral 
transgene cassette that produced a 4-1BB carrying both 
anti-mesothelin CAR T-cell and CXCL-11 [166]. Never-
theless, although both techniques were demonstrated to 
be capable of increasing the expression of  CXCL-11  in 
TME, only VV.CXCL11 was able to improve anti-tumor 
activity after adoptively transferring T cells utilizing mes-
othelin-redirected CARs [166]. Nishio et al. Showed that 
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equipping an oncolytic Ad (Ad524) with the chemokine 
RANTES and the cytokine IL15 could improve the 
migration and survival of CAR T-cells and suppress the 
growth of neuroblastoma in mice [167]. Also, the combi-
nation of RANTES and IL-15 was later shown in similar 
research to boost T-cell trafficking to tumor locations as 
well as generate a suitable environment inside the TME 
to promote the persistence of immune cells [168].

Recently, Huang et al. developed an IL-7-loaded onco-
lytic Ad (oAD-IL7) and combined it with B7-H3-specific 
CAR T-cells to treat orthotopically glioblastoma-grafted 
mice. They showed that combining oAD-IL7 with CAR 
T-cells contributed to the increased proliferation of  T 
cells and decreased apoptosis of T cells in vitro, as well as 
longer survival and lower tumor burden in vivo. Indeed, 
this research illustrated that oAD-IL7 is a potential sup-
plementary treatment for enhancing the therapeutic 
effectiveness of B7H3-CAR-T in glioblastoma through 
establishing stimulating signals for T cells that infil-
trate to tumor site [169]. Moreover, in another study 
to enhance CAR T-cells activity in a mouse model of 
head and neck squamous cell carcinoma, oncolytic Ad 
was equipped with the IL-12 (an immune-stimulatory 
cytokine) and a PDL1-blocking antibody,  combined 
with HER2/neu (human epidermal growth factor recep-
tor 2)-specific CAR T-cells for the treatment of head and 
neck cancer. Finally, it was discovered that CAd12-PDL1 
enhances the anti-tumor actions of HER2.CAR T cells, 
hence inhibiting the growth of  primary and metastatic 
cancers [170]. Furthermore, therapeutic transgenes can 
be expressed selectively in the TME by genetically engi-
neering OAds. In  this regard, Tanoue et al. developed a 
novel  method for  prostate cancer immunotherapy  that 
included an oncolytic Ad (Onc.Ad), HDAd expressing a 
PD-L1 blocking mini-antibody, and HER2.CAR T-cells. 
Their  findings  showed that this combination therapy 
improved anti-tumor immunity when compared to 
HER2.CAR T-cells therapy alone or HER2.CAR T-cells 
plus Onc.Ad, as well as the advantages of PD-L1 mini-
body created locally, outperform anti-PD-L1 immuno-
globulin (Ig)G infused [171].

Interestingly, combining OVs with some modified com-
pounds to engage the TCR complex of T cells has revo-
lutionized the potential of OV compounds to restore the 
suppressive TME and promote the increased tumor-spe-
cific  immune response. BiTEs are bispecific monoclonal 
antibodies composed of two linked single-chain vari-
able fragment (ScFv) antibody domains (anti-CD3 fused 
to an anti-TAA). OVs could  secrete BiTEs, which cause 
tumor cell death. These compounds were engineered to 
bind with both CD3 from the TCR complex and TAA on 
tumor cells simultaneously [172]. Although BiTEs can 
infect and proliferate in tumor cells, normal cells can 

resist OV infection. Expression of TAAs induced by OVs 
works in combination with BiTE and CAR T-cell thera-
pies [148].

Various research has investigated the potential synergy 
between OVs and BiTEs. In this way, Wang et al. devel-
oped a new T-cell engager armed VV (TEA-VVs) with 
the capacity to produce bispecific antibodies that engage 
with either EphA2 (an antigen in cell surface) or CD3. 
As a result, OV infection might trigger non-infected 
tumor cells to be eradicated by T cells. Furthermore, 
when this oncolytic therapy is combined with a HER2-
redirected CAR, the decrease in the survival of triple-
positive HER2/ EphA2/ A549 tumor cells is accelerated, 
indicating that this method is effective in addressing the 
heterogeneity of cold tumors and preventing CAR-medi-
ated antigen evasion [173]. The efficiency of combina-
tion  therapy was further strengthened by the previous 
research findings that showed the capacity of TEA-VV to 
proliferate in HER2- redirected CAR T-cells, indicating 
that CAR might be employed as a safe delivery vehicle 
for TEA-VV, protecting it from host exclusion [174] This 
unique technique might be used to treat tumor stroma 
and any other situation where specific  T cell  immune 
responses are restricted owing to immunosuppressive 
circumstances or physical limitations. In a xenograft 
mouse model of melanoma, Yu et  al. investigated the 
possibility of TEA-VV encoding BiTE targeting  murine 
CD3 and fibroblast activation protein (FAP). This in vitro 
investigation found that mFAP-TEA-VV may drive 
bystander elimination of noninfected FAP + stromal cells 
in the presence of murine T cells. Furthermore, in  vivo 
transfection of  mFAP-TEA-VV  led to increased viral 
titers and decreased metastatic cancer burden [175].

Porter et  al. recently published a  study that showed 
increased potency, breadth, and duration  of anti-cancer 
function  of CAR T-cells employing cytokine-expressing 
OV and  BiTE-checkpoint blockage. In this investiga-
tion, CD44 variant 6 (CD44v6) specific BiTE was exposed 
to CAdDuo, a binary Ad capable of producing  IL-12 
and  PD-L1Ab, to create CAdTrio [176]. Additionally, 
CD44v6 BiTE has been shown to improve the suscep-
tibility of CD44v6-expressing cancer  cell lines to the 
cytotoxic impact  of HER2-specific CAR T-cells. Also, 
in orthotopic  HER2−/−  CD44v6+ and  HER2+  cancers, 
CD44v6 BiTE was  observed to enhance the anti-cancer 
function of HER2-specific CAR T-cells [176]. In this 
regard, recently Shaw A.R et al. used an oncolytic adeno-
therapy which generates cytokine, immune checkpoint 
inhibition, and a protective switch (CAdTrio) to boost the 
potency, breadth, and duration of anti-PDAC HER2-spe-
cific CAR T-cell (HER2.CART) function. Eventually, they 
showed that CAdTrio and HER2.CARTs work together to 
remove metastatic pancreatic adenocarcinoma (PDAC), 
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and that they might be a potential combination  therapy 
for patients with PDAC [177].

At a low density of  antigen, EGFR.BiTE-armed Ad 
(OAd-BiTE) was shown to boost CAR T-cell anti-tumor 
activity. Furthermore, it was proposed that using the 
second-generation ICOS-armed anti-FRα  CAR in com-
bination with OAd-BiTE could perhaps bring some 
promising outcomes after it was discovered that hetero-
geneous expression of  FRα  could lead to  the  resistance 
inducing against single CAR T cells therapy in NSG mice 
with SKOV tumors [178].

Recently, Altomonte et al. demonstrated that combin-
ing CAR T-cells with fusogenic VSV-NDV improved 
CAR T-cell treatment in the melanoma immunocompe-
tent mouse models. They discovered that by increasing 
MHC-I expression and keeping low PD-L1 expression 
levels on cancer cells, this combination treatment had 
favorable impacts on the suppressive features of TME. 
Indeed, this combinatorial method in  vitro and in  vivo 
resulted in synergistic cytotoxic activity as well as 
increased T cell attraction to the site of virus-infected 
cancer  cells [179]. The hybrid VSV-NDV platform was 
reported as a chimeric OV capable of stimulating the 
immune system, with much superior safety and effi-
cacy compared to VSV after treatment response to a 
mouse hepatocellular carcinoma model [180]. Also, 
Wenthe et  al. evaluated the therapeutic efficacy of Ad 
expressing 4-1BBL and CD40L (LOAD703) in combina-
tion with CAR T-cell. They discovered that LOAD703 
can trigger  cell lines of B  cell lymphoma to enhance 
the expression of surface  T cell co-stimulatory mol-
ecules. Furthermore, lymphoma cells infected with 
LOAd703 increased the release of various chemokines 
(CCL3, CCL4, CXCL10,) that are important for homing 
of immune cells, resulting in increased migration of CAR 
T-cells. To summarize, the treatment with immune-stim-
ulatory LOAd703  is a promising method for inducing 
anti-tumor  immune cells  and enhancing CAR T-cell in 
B-cell lymphoma therapy [181].

These data  show that, while solid tumors are pro-
grammed to avoid immunotherapies, combining OVs 
and  CAR T-cell immunotherapy may overcome these 
escape mechanisms.

Hurdles of combination therapy with oncolytic 
viruses and CAR T cells
As there are so many OVs, predicting which one will 
perform better in synergy  with CAR T-cells is compli-
cated. Also, while the virus’s potential to attract effector 
T-cells to the tumor site is well established, developing 
optimal delivery methods and dosing regimens remains 
challenging [182, 183]. Intratumoral delivery of the OV 
leads to higher levels of virus in the infused cancers, but 

it is difficult to modify the immunosuppressive milieu in 
visceral tumors or metastases, and non-injected cancer 
lesions are far less likely to acquire any virus. Although 
systemic intravenous delivery is simpler to distribute and 
may be effective in reaching all metastasis sites, success-
ful  viral neutralization in the circulation, particularly 
with a large amount of neutralizing antibodies developed 
after the first administration of  the virus, will create a 
hurdle to repeated administration. As a result, finding 
techniques to protect given viral preparations against 
antibody inactivation seems to be a high priority [15, 
184].

It is also necessary to establish the order in which the 
OV and CAR T-cells are administered. The virus should 
theoretically be administered first to switch the tumor’s 
immunosuppressive microenvironment, followed by a 
direct lytic impact on infected tumor cells and the estab-
lishment of a more suitable environment for the recruit-
ment of CAR-T cells. Notably,  neoantigens produced 
by OVs during tumor cell lysis are much less immuno-
genic than viral antigens [185–187]. To improve epitope 
spread, new approaches are required to boost the immu-
nogenicity of tumor antigens while decreasing the immu-
nodominance of viral epitopes [188].

Moreover, a recent study showed that OV-associated 
I-IFN has a detrimental effect on CAR T-cell survival. 
Furthermore, a recent study found that OV-associated 
I-IFN has a negative effect on CAR T-cell survival, hence 
rendering CAR T-cells unresponsive to I-IFN, which 
enhances combination therapy [189].

Conclusion and outlook
To date, studies on solid tumors using a combination of 
CAR T-cell therapy and OV-based immunotherapy have 
shown a synergistic impact, addressing the fundamental 
drawbacks of each monotherapy separately. The options 
for combining multiple OVs with anti-tumor CAR T-cells 
are almost endless, and the broad usage of this approach 
offers hope for enhancing  solid tumor therapy. Inflam-
mation generated by OVs must be considered as a multi-
component event that might either be advantageous or 
detrimental to the development of anti-tumor immu-
nity.  Therefore, caution must be exercised when using 
treatments that target tumor inflammation, and such 
combination strategies should be tested in immunocom-
petent models with no restrictions on the cross-reactivity 
between CAR T-cells and their surroundings.

The capacity to further modify both CAR T-cells  and 
OVs  with customized transgenes extends the range of 
their combined usage and  foreshadows a time when a 
virtually infinite number of viral products and patient-
specific bespoke cellular  are routinely delivered to can-
cer patients. Employing OVs to enhance ICD holds a 
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lot of promise for reactivating tumor-specific immune 
responses in patients with cancer. This feature could 
provide a cancer therapy that is relatively cost-effective, 
short-term, and individualized. Finally, OVs can be effi-
ciently combined with CAR T-cells, assisting in over-
coming crucial hurdles in the battle against cancer by 
providing synergistic effects. Although many concerns 
must be addressed to completely realize the therapeu-
tic effect of OVs, oncolytic virotherapy will undoubtedly 
become a prominent part of future cancer treatments.
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