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Integrative analysis identifies CXCL11 
as an immune-related prognostic 
biomarker correlated with cell proliferation 
and immune infiltration in multiple myeloma 
microenvironment
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Abstract 

Purpose: The interaction between tumor cells and tumor microenvironment (TME) has an important impact on 
progression and prognosis of multiple myeloma (MM), and has been proven to be promising therapeutic targets. This 
study intended to explore the relationship between TME and prognosis and identify valuable biomarkers of MM.

Methods: The transcriptomic and clinical information of MM retrieved from the Gene Expression Omnibus (GEO) 
were used to establish the model. The curve of Kaplan–Meier survival and the time-dependent receiver operating 
characteristic (ROC) were used to appraise the predictive ability. A nomogram was established for clinical application. 
Furthermore, the CIBERSORT algorithm was used to investigate the relation between IRGPI with the infiltration of 
immune cells. We also used histology, as well as in vitro and in vivo experiments to validate these findings.

Results: The results demonstrated an immune-related gene-based prognostic index (IRGPI) combined with clinical 
information. Patients were separated into high- and low-risk groups based on risk score, which had significantly dif-
ference in survival status and immune infiltrations. Furthermore, we identified CXCL11 as a key factor, which posi-
tively promotes the progression of MM and correlate with macrophage M2-like polarization and tumor immune cells 
infiltration.

Conclusion: Our findings suggest the IRGPI significantly demonstrate the differential prognosis and prediction of 
immune cells infiltration. It provides some insights into the complex interaction between myeloma tumor cells and 
the TME, as well as in the development of a novel biomarker target for anti-MM therapy.
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Introduction
Multiple myeloma (MM) is a clonal proliferative het-
erogeneous disorder of plasma cells. Among all hema-
tological malignancies, it accounts for an almost 17% 
prevalence rate, with an increasing incidence, glob-
ally [1, 2]. As a kind of malignancy, where a preferen-
tial localization of clonal plasma cells occurs in bone 
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marrow (BM). The MM cells proliferation and the 
altered BM microenvironment suppress immunity and 
evade immune surveillance[3]. The impact of tumor 
genetic composition on the tumor microenvironment 
(TME) will help to provide diagnostic and prognostic 
biomarkers for MM patients, as well as novel therapeu-
tic targets for therapy [4–7].

Immunotherapy uses a variety of immune cells either 
to suppress or kill tumor cells, lowering the incidence 
of tumor recurrence and metastasis [8, 9], on the other 
hand, can only benefit a small number of patients. Recent 
investigations have indicated that TME, mainly com-
posed of stromal cells, immune/inflammatory cells, and 
their corresponding cytokines, plays a significant role in 
tumor progression, development, immune evasion, and 
treatment resistance [10, 11]. Studies have confirmed that 
the types and proportions of immune cells in TME may 
influence both treatment response and clinical outcome 
[12]. Immune-related genes (IRGs) have been increas-
ingly confirmed to have a vital role in different kinds of 
malignancies [13–15]. The biomarkers related to TME 
are potential in the prediction, treatment, and prognosis 
of cancers [16, 17]. Therefore, the analysis of the complex 
interaction between them will help to provide novel ave-
nues for clinical application.

Tumor-associated macrophages (TAMs) are the key 
components of TME. A high extent of TAMs infiltra-
tion is related to poor disease prognosis in many types 
of tumors, drawing attention towards their prognostic 
relevance [18–21]. TAMs are usually differentiated into 
either the anti-tumor M1 subtype or tumor-promoting 
M2 subtype. It is generally considered that M2 has poor 
reactive nitrogen and antigen presentation ability, which 
can inhibit anti-tumor immunity and promote tumor 
progression [22, 23]. Furthermore, TAMs in the body 
are largely polarized to M2-like phenotypes in advanced 
stages of cancer [24]. Evidences showed that increased 
levels of M2 macrophages  in bone marrow microen-
vironment were also revealed to tuomor progression 
and poor prognosis in MM [25, 26]. Therefore, we have 
focused on the the relationship between macrophage and 
MM cells and selected M2 macrophage as our cell model 
in our verification study.

In this study, we firstly investigated the prognostic sig-
nificance of IRGs family members in MM to develop an 
individualized model, and further identified CXCL11 
as a key regulator. As a potential therapeutic target 
which linked to the recruitment and infiltration of mac-
rophages in TME, the expression of CXCL11 and its 
biological roles were further investigated and explored 
in  vitro and in  vivo functional experiments. In general, 
these findings suggested the potential prognostic signifi-
cance of CXCL11 in TME, which may help to provide a 

potential target for the prognosis prediction and therapy 
of MM in the future.

Materials and methods
Patients and clinical samples
The RNA profiles and related clinical information of 
all cohorts were gathered from the Gene Expression 
Omnibus (GEO) databases: GSE136324, GSE57317, and 
GSE4581 cohorts. Samples were excluded if available 
survival data were lacking. Additional file  5: Table  S1 
provides a comprehensive description of patient char-
acteristics in the cohorts. The IRGs were acquired from 
the ImmPort dataset (https:// www. immpo rt. org/ home). 
The relative gene expression was normalized using the 
“limma” R package. A workflow chart describing the 
samples utilized at each stage of analysis is presented 
in Fig. 1. Furthermore, GSE118985 and our own cohort 
were selected to help verify and screen the key factor. The 
30 MM samples (newly diagnosed with MM and normal 
samples)were obtained from the Sun Yat-sen University 
Cancer Center (SYSUCC). The study was conducted after 
approval through SYSUCC ’s internal review and ethics 
boards.

Identification and verification of the prognostic signature
The GSE136324 cohort was segregated into  training 
cohort and validation cohort according to the ratio of 4:1.
GSE57317 and GSE4581 cohorts were chosen as external 
validation cohorts. Initially, univariate Cox regression 
was used to look for IRGs with prognostic value (p < 0.05) 
due to the survival data, and a venn diagram was gener-
ated to visualize the intersections of the three cohorts. 
Cancer Cell Line Encyclopaedia (CCLE) was used to fur-
ther confirm these prognostic-related IRGs at the cellular 
level.The least absolute shrinkage and selection operator 
(LASSO) Cox regression assessment was used for ascer-
taining the most suitable weighting coefficient for the 
IRGs [27]. Next, the maximum likelihood estimator was 
penalized using tenfold cross-validation. Furthermore, 
the essential penalty parameter λ values were identified 
using the penalized maximum likelihood estimator’s 
minimum criteria. Finally, a general formula based on 
the training cohort was employed for the calculation of 
the metabolic risk score. Accordingly, the patients were 
assigned into two groups, namely high risk (HR) and low 
risk (LR) (Additional file 1: Fig. S1).

To further verify the effect of the model, Kaplan–
Meier analyses of survival were performed between 
groups. Additionally, the sensitivity and specificity of 
IRGPI were studied via time-dependent receiver oper-
ating characteristic (ROC) curve assessment (Fig.  2). 
Moreover, a nomogram was created to exhibit features 
for overall survival (OS) integration and visualization, 

https://www.immport.org/home
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with the consistency index (C-index) and the curve of 
calibration were employed to assess the nomogram’s 
predictive power (Fig. 3).

Gene ontology (GO) analysis is a common and use-
ful method for annotating genes and products,as well 
as for identifying characteristic biological attributes of 
high-throughput genome or transcriptome data [28]. 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) is 
a well-known database for systematic analysis of gene 

functions in biological pathways linking genomic and 
higher-order functional information [29]. We used the 
GO and KEGG pathways to reveal potential underlying 
of the risk score.

The GSEAv4.0.2 software (http:// softw are. broad insti 
tute. org/ gsea/ login. jsp) and c2.cp.kegg.v7.0.symbols 
gene sets were employed to elucidate the physiologi-
cal pathways associated with the HR and LR patient 
cohorts. NOM p-value < 0.05 was deemed significant.

Fig. 1 Flow chart of the evaluation and selection of IRGPI

http://software.broadinstitute.org/gsea/login.jsp
http://software.broadinstitute.org/gsea/login.jsp
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Comprehensive analysis of immune status in HR and LR 
groups
Based on RNA-sequencing data, immune cells infil-
tration and the populations of 22 different types of 
infiltrating immune cells were evaluated using CIBER-
SORT [26] algorithm (p < 0.05) (Fig. 4).

Cell culture and co‑culture
All cell lines, including THP-1,U266, MM.1S, RPMI8226 
and H929 were obtained from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA), and 
maintained in a 37  °C humid chamber with 5% CO2. 
RPMI-1640 medium supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin was used 

Fig. 2 Time-dependent ROC analysis, survival outcome analysis and Kaplan- Meier analysis and risk score analysis for the IRGPI accurately 
predicts survival of MM patients in LR and HR. A Kaplan–Meier curve of the prognostic model in the training cohort the validation cohorts, B 
Time-dependent ROC curves analyses of the model in all cohorts, C Risk score distribution of the prognostic model on the training cohort the 
validation cohorts

(See figure on next page.)
Fig. 3 IRGPI is significantly correlated with a variety of clinicopathological factors in MM patients and validates survival prediction. A Univariate(top) 
and Multivariate(bottom) COX analysis in training cohort and internal validation cohort. B The heatmap of the IRGPI and clinicopathological 
characteristics at different risk levels for training cohort and internal validation cohort. Each column showing gene expression or clinicopathological 
state represents a sample, and each row represents one characteristic or gene in the model. C A nomogram was built based on R-ISS and risk score, 
with calibration plot of the nomogram and time-dependent receiver operating characteristic (ROC) curves of nomograms were compared based 
on 1-, 5-, and > 5-year OS of the cohort. D GO analysis and KEGG pathway analysis shows the top 20 representative pathways in HR in the training 
cohort (p < 0.05)
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Fig. 3 (See legend on previous page.)
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as a complete cultivation milieu (RPMI 1640, FBS and 
Pen-Strep were from Gibco). THP-1 cells were activated 
to form macrophages using 100  nmol/L PMA (Sigma–
Aldrich) for 24  h. Then the primary macrophages were 
stimulated with IL-4 (Sigma-Aldrich) at 20 ng/mL as M2 
macrophages. For the coculture assay, MM cells were 
plated on the upper chamber of 0.4  μm pore transwell 
inserts (Corning),with PMA-stimulated THP-1 cells 
plated into the lower chamber.

Quantitative Real‑time PCR
Total RNA was isolated by the TRIzol reagent method 
(Thermo Fisher Scientific, USA). PrimeScript™ RT Mas-
ter Mix (Takara Bio, USA) was used for cDNA synthe-
sis, using RNA as a template. RT-qPCR was performed 
for genes expression analysis using TB  Green® Premix 
Ex Taq (Takara Bio, USA) and The primer sequences 
were showed in Additional file 6: Table S2. GAPDH was 
selected as the endogenous control. The comparative Ct 
method is used to calculate the relative quantification.

Cell proliferation, apoptosis, transfection and viral 
infection
Cell Counting Kit-8 (CCK-8) were used to measure cell 
proliferation. Cells were plated onto a 96-well plate, with 
10  µL CCK-8 reagents (Dojindo, Kumamoto, Japan) 
added to each well. After culture for another 1–2  h, a 
microplate reader was used tomeasure the absorbance at 
450  nm. Cell apoptosis was detected by FITC-Annexin 
V/PI apoptosis detection kit (KeyGEN, China) in accord-
ance with the manufacturer’s instructions.

For transfection experiments, CXCL11 knockdown 
(sh-CXCL11) and scrambled control(sh-control) plas-
mids were constructed by GenePharma Co(Shanghai, 
China). After transfection of HEK293T cells for 72 h, the 
viral supernatants were collected and infected MM cells. 
The viral particles were harvested and concentrated by 
ultracentrifugation. MM cells were infected with recom-
binant virus particles in the presence of 6 μg/ml of poly-
brene (Sigma, USA). Puromycin (2 µg/mL) (Sigma, USA) 
positively selected infected cells after expansion and 
maintenance. The transfection efficiency was analyzed by 
western blotting.

Immunohistochemical staining (IHC) and flow cytometry
All biopsy specimens were cut into 4  µm sections. For 
thermally induced epitope repair, a modified citrate 
buffer was used after dewaxing with xylene. Following 
blocked with 10% goat serum, the samples were incu-
bated with the specific monoclonal antibody at 4  °C 
overnight. To determine specific protein expression, 
modified horseradish peroxidase (HRP) system was 
used. The specimens were used to perform IHC staining 
with CD206 antibody (Abcam, ab64693) and CXCL11 
antibody (Abcam, ab235977). An electron microscope 
(Olympus, Tokyo, Japan) was used to acquire high-res-
olution microphotographs. The corresponding relative 
integrated optical density (IOD) of protein expression 
levels in the IHC slices was analyzed using ImageJ 
software.

Macrophages were co-cultured after 72 h of cultivation 
and then labeled with FITC-conjugated anti-CD206 anti-
body (BD, Franklin Lakes, NJ,USA) in accordance with 
the manufacturer’s instructions prior to detection with 
flow cytometry.After incubated for 30 min and analyzed 
with a flow cytometer (Beckman Coulter).

Western blotting
Cells were lysed with the mixture of RIPA buffer (Key-
GEN, China) and protease inhibitor. The BCA method 
was used to calculate the protein concentration.The 
extracted proteins were separated on 10% sodium dode-
cyl sulphate–polyacrylamide gel (SDS-PAGE) and trans-
ferred to polyvinylidene fluoride (PVDF) membranes.The 
primary antibodies included GAPDH (Abcam,ab128915), 
CD206(Abcam,ab64693), CXCL11(Abcam, ab181035), 
Bax (CST, 2774), Caspase3 (CST, 9662), followed by goat 
anti-rabbit IgG H&L (HRP) (Abcam,ab205718). The sig-
nal was detected by ECL chemiluminescence detection 
system (Bio-Rad, USA).

Xenograft tumor model
BALB/C nude mice (4–5 weeks old, 16–22 g) were used 
for the experiment in  vivo. After randomly assigned 
into two groups, they were injected with sh-control or 
sh-CXCL11 U266 cells (1 ×  107). The volume of tumors 
were measured in every 3 days and calculated as follows: 
volume =  (LxW2)/2(L and W are the longest and short-
est diameters, respectively). The weight of body were also 

Fig. 4 Analyses of immune cell infiltration. A Correlations of IRGPI with immune cell infiltration (The blue and red violin represented the IRGPI LR 
and HR group, respectively. The white points inside the violin implicated median values). B, C Significant correlations of 3-IRGs (CD70, CXCL11, HGF) 
with M0 macrophages, M1 macrophages and M2 macrophages in MM. D A brief process for M2 macrophage induction. The CD206 expression of 
M2 macrophages was determined by flow Cytometry (E) and Western blot analysis (F). G qRT-PCR analysis of 3-IRGs after MM cells co-cultured with 
M2 macrophages. Data were presented as the mean ± SD from three independent experiments. *p < 0.05; **p < 0.01, ***p < 0.001

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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measured.Animal experiment was performed following a 
protocol approved by the Animal Care and Ethics Com-
mittee of Sun Yat-sen University.

Statistical analysis
Student’s t test or a one-way ANOVA was performed for 
the assessment of continuous variables, and the Fisher 
exact test or Chisq test was used to assess categorical 
variables via SPSS computer program version 25 (IBM 
Corporation, Armonk, NY, USA). R computer program 
version 3.6.3 (http:// www.R- proje ct. org) was employed 
to conduct statistical assessments. The outcomes were 
given as mean ± SD of all 3 experiments. All the statis-
tical studies were two-sided, and a p-value cutoff < 0.05 
was regarded significant statistically.

Results
Patient selection and characteristics
A total of three cohorts, 1207 samples with relevant RNA 
profile and corresponding clinical information from the 
GEO database were included in our analysis (Additional 
file  5: Table  S1). The GSE136324 cohort was randomly 
assigned to two groups: training cohort and internal vali-
dation cohort. The GSE57317and GSE4581 were chosen 
as the external validation cohorts. GSE118985 and the 
SYSUCC cohorts were used in the validation part. Fig-
ure 1 summarizes our research design.

Identification of a prognostic IRGs signature
First, the survival-associated IRGs were identified by uni-
variate Cox regression in training cohort and validation 
cohort. Only IRGs with a significant value of p < 0.05 were 
selected in each cohort. The overlapping showed 11 IRGs 
(DEFA5, CAMP, CD70, CTSG, CXCL11, HGF, LTBP1, 
CXCL13, CMTM2, PROK2 and CLEC11A) were iden-
tified as survival-associated IRGs. And the interaction 
of the survival-associated IRGs proteins were summa-
rized alone by STRING (https:// string- db. org/) (Addi-
tional file  1: Fig. S1A, B).We then explored the mutant 
variants of the gene panel in CCLE, and the copy num-
ber change data were obtained from cBioportal (http:// 
www. cbiop ortal. org/) [30]. It can be seen that the most 
common mutation type of these genes is based on gene 
amplification and deletion. As shown in Additional file 1: 
Figures S1C.

Finally, the 11 survival-associated IRGs were used to 
create a prognostic model utilizing the LASSO regres-
sion analysis. The IRGPI based on the 6-prognostic gene 
model was constructed, by the minimum criteria optimal 
λ value, on the basis of the penalized maximum likeli-
hood estimator of 1000 bootstrap replicates, as shown in 
Additional file 1: Fig. S1D, E. The following equation was 
used for this model:

IRGPI predicts survival of MM patients
According to the formula above, patients were further 
divided into low-risk (LR) and high-risk (HR) groups 
employing the median threshold of risk scores. The 
survival outcome, the risk score, and genes expression 
profile of patients were studied in Fig. 2. Afterward, the 
time-dependent ROC curves were used to determine 
the reliability of IRGPI. In the training cohort, the area 
under the curve (AUC)for 1-, 3-, 5- and > 5-year sur-
vival showed good predictability in Fig.  2B. Further-
more, risk score was evaluated by the same formula 
mentioned above in the validation cohorts, with the 
median value of the training cohort’s being used as the 
threshold value. As shown in Fig. 2A, the LR showed a 
substantially longer OS time and better prognosis than 
did the HR groups(p < 0.05) in all cohorts.

Univariate and multivariate Cox analysis
In addition to the metabolic risk score, we comprehen-
sively considered clinical characteristics, such as age, 
β2-MG, and stage to perform univariate and multivariate 
Cox regression analyses. This allowed us to determine the 
significance of the IRGPI on OS. The risk score remained 
an independent prognostic indicator for OS after adjust-
ment of other clinical confounding variables in multi-
variate Cox analysis with a hazard ratio of 2.852 [95% CI 
1.909–4.262] in the training cohort and 2.743 [95% CI 
1.29–7.754] in internal validation cohort (Fig.  3A). Fur-
thermore, the distribution of clinicopathological features 
and gene expression in different risk groups was shown in 
Fig. 3B. As expected, patients with higher risk levels were 
associated with an older age, higher level of β2-MG and 
higher stage, along with a tendency to poorer survival 
status. Some of the distribution tendencies are not obvi-
ous due to the limited sample size.

Construction and detection of the predictive nomogram
A nomogram was used for combining the conventional 
prognostic indicators and the International Staging 
System (ISS) stage, to provide a more accurate analy-
sis model. To verify the prediction power of the nomo-
gram, the consistency index (C-index) and the calibration 
curve were employed; the C-index of the nomogram 
was greater than stage and signature alone,. The AUCs 
of receiver operating characteristic (ROC) curve created 
with the combined score, was greater than conventional 

Risk score = − 0.14 X DEFA5 level + 0.39 X CD70 level

− 0.01 XCTSG level + 0.20 X CXCL11 level

+ 0.11 XHGF level − 0.20 X LTBP1 level.

http://www.R-project.org
https://string-db.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
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R-ISS scores and genetic risk category (Fig. 3C). The sta-
bility and accuracy of this nomogram can suggest that it 
might be used in clinical decision-making.

We performed GSEA in training cohort to explore 
immune-related pathways and other enriched KEGG 
pathways associated with immune co-variates. Sig-
nificantly enriched pathways were observed in the HR, 
most of which were immune-related pathways. Fig-
ure 3D showed top 20 representative pathways in HR in 
training cohort (p < 0.05). In general, immune cascade 
reaction, immune deficiency, protein processing, T cell 
receptor signal transduction, virus carcinogenesis and 
other mechanisms were validated as enriched in HR. 
Other classical pathways, including cell cycle and cell 
metabolism, can affect the structural and functional 
abnormalities of cell components were shown in GO 
analysis. This provides a theoretical basis for the fol-
low-up mechanism exploration and verification.

Correlation analysis of immune infiltrating cells in MM 
microenvironment and identified CXCL11 as a key factor
To further study  the possible implications of IRGPI 
on TME, we focused on the different kinds of invad-
ing immune cells in MM. The difference in 22 kinds of 
tumor-infiltrating immune cells between the LR and HR 
groups was estimated using CIBERSORT (Fig.  4A). In 
general, IRGPI is statistically correlated with the extent of 
immune cells infiltration, which may reflect the status of 
TME to some level.

In order to identify the key prognostic factor related to 
prognosis and immune infiltration, we further analyzed 
the IRGs in the model. The prognostic value of IRGs was 
further analyzed by Kaplan–Meier after classification as 
high levels and low levels based on the corresponding 
optimal cut-off value in the training cohort. As shown 
in Additional file 2: Fig. S2A–F, the expression of CD70, 
CXCL11 and HGF was negatively correlated with favora-
ble outcomes, whereas the expression of DEFA5, CTSG 
and LTBP1 was positively correlated with favorable out-
comes. This is consistent with the effect of our model. 
Among them, the survival differences of CD70, CXCL11 
and LTBP1 were statistically significant (P < 0.05). 
Next, we performed ROC analysis for these IRGs as 
well(Additional file  2: Fig. S2G–L). The AUC values of 
CD70, CXCL11, HGF, DEFA5, CTSG and LTBP1 was 
0.651, 0.684, 0.601, 0.546, 0.400 and 0.337, respectively. 
Among them, the AUC of HGF, CD70 and CXCL11 are 
greater than 0.6, which has relatively good predictive 
significance. This indicated that these three genes have 
promising diagnostic efficiency for MM.

We then focused on three genes (CD70, CXCL11, and 
HGF) which negatively correlated with favorable out-
comes to further validate the key factor involved in tumor 

immune infiltration, especially the correlation with mac-
rophages was mainly focused on. The CIBERSORT analy-
sis revealed the umor-associated macrophages (M0, M1, 
M2) are plotted according to three genes expression level. 
As shown in Fig.  4B, the level of M2 macrophages was 
significantly upregulated in the group with high expres-
sion of CXCL11 (p < 0.0001) compared to CD70(p < 0.05) 
and HGF(p < 0.05). Similarly, the CXCL11 expression 
was strongly correlated with level of M1 macrophages 
(CXCL11 p < 0.0001, vs CD70 p < 0.05, vs HGF p > 0.05). 
Figure 4C showed the expression of CXCL11 and its pos-
itively correlations with macrophages, particularly M2 
(r = 0.29, p < 2.2e−16), while CD70 (r = 0.091, p = 0.0073) 
and HGF (r = 0.0026, p = 0.94) were not as relevant. Col-
lectively, these data indicated that CXCL11 may affect 
macrophage polarization and likely enhance immune 
infiltration cells differentiation.

Furthermore, we induced M2 macrophages via PMA 
and IL-4 as the cell model, with the expression of CD206, 
a marker of M2 polarization for verification (Fig. 4D–F). 
After co-cultured with M2 macrophages for 48  h, qRT-
PCR analysis showed that CXCL11 was the most highly 
expressed among the 3-IRGs in MM cells (Fig. 4G). This 
indicated that CXCL11 had significantly correlations 
with macrophages polarization. Thus, we identified it as 
a key factor for futher functional tests. We further used 
the GSE118985 cohort to verify expression levels of the 
IRGs. The expression of these genes tested in MM tissues 
was significantly different from that in normal tissues, 
and CXCL11 was significantly higher (Additional file  3: 
Fig. S3A). Validation of the expression of 3-IRGs in nor-
mal tissues and tumor tissues in our cohort are shown in 
Additional file 3: Fig. S3B and Fig. 5B.

CXCL11 expression is increased in MM and associated 
with poor prognosis in MM patients
To evaluate the expression of CXCL11, we first used qRT-
PCR and western blot analysis. The results suggested 
that the expression of CXCL11 in MM tissues increased 
compared with non-tumor tissues (Fig. 5A, B). The cor-
relation between CXCL11 overexpression and poor OS 
was analyzed by Kaplan–Meier based on GSE136324 
(Fig. 5D). Figure 5C showed that elevated CXCL11 levels 
with ISS stage. Immunohistochemistry analysis showed 
CXCL11 and CD206 was overexpressed in MM tissues 
as compared with normal tissues (Fig. 5E). These findings 
verified that CXCL11 might be an oncogenic role and a 
key factor in macrophages polarization.

CXCL11 regulates cell proliferation and apoptosis in vitro, 
associated with macrophage M2‑like polarization
The expression of CXCL11 in myeloma cells was 
detected by qRT-PCR (Fig. 6A), U266 and RPMI 8226 
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Fig. 5 CXCL11 expression is associated with prognosis of MM. A Western blot analysis, qRT-PCR analysis (B) of CXCL11 expression in MM tissues 
and normal control. C The CXCL11 expression varies with the stage of the patient. DThe relationship between the expression of overall survival and 
CXCL11. E The images of immunohistochemistry for MM and normal tissues. (The date in C, D were collected from GSE136324). *p < 0.05; **p < 0.01, 
***p < 0.001

Fig. 6 Knock-down of CXCL11 affects MM cells proliferation, apoptosis and macrophages M2-like polarization in vitro. A The mRNA expression of 
CXCL11 in MM cell lines. B CCK-8 assays revealed that CXCL11 downregulation decreased MM cell proliferation. C, D. Apoptosis analysis by flow 
cytometry in U266 and RPMI 8226 cell lines (C.U266; D.RPMI 8226). E CD206 protein expression in macrophages was analyzed by western blot assay 
at 72 h following co-culture. F The expression of M1 and M2 polarization-related markers in macrophages co-cultured with U266 and RPMI 8226 
cells transfected with sh-CXCL11 or control was detected by qRT-PCR. Data were presented as the mean ± SD from three independent experiments. 
*p < 0.05; **p < 0.01, ***p < 0.001

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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cells were chosen for the subsequent experiment.We 
then stably suppressed CXCL11 in the two cell lines by 
lentiviral transfection. Figure 6B showed the decrease 
of cell growth rate in sh-CXCL11 group than sh-con-
trol group in U266 and RPMI 8226 cells by CCK-8 
assays. Flow cytometry analysis revealed a higher per-
centage of apoptosis in sh-CXCL11 groups than sh-
control groups (Fig.  6C, D). Also apoptosis marker 
detection using western blotting to support the results 
of flow cytometry to some extent (Additional file  3: 
Fig. S3C). These data suggested the potential critical 
roles of CXCL11 on proliferation and apoptosis of MM 
cells Additional file 4.

We then explored the potential influences of 
CXCL11 on macrophages using in  vitro co-culture 
system. The expression of CD206, a marker of M2 
polarization, detected by western blot analysis after 
co-cultured 72 h, decreased in sh-CXCL11 groups than 
those in sh-control groups (Fig. 4E). In addition, qRT-
PCR analysis was performed to quantify the expression 
of M1(IL-12p40, TNF-α) and M2(IL-10, TGF-β) mark-
ers. Figure  6F showed that expression of M1 markers 
and reduced expression of M2 markers in sh-CXCL11 
group increased after co-cultured compared with sh-
control groups. These findings proposed that CXCL11 
may have a potential regulatory role in the M2-like 
polarization of macrophages.

CXCL11 promotes macrophage polarization and xenograft 
growth in vivo
To study CXCL11 tumor-immune infiltration in the liv-
ing system, an in vivo model was developed. The CXCL11 
stable knockdown or sh-control cells were injected sub-
cutaneously into two groups of nude mice. We assessed 
the growth of tumor activity and found that the size of 
tumors in the sh-CXCL11 group were substantially 
smaller than tumors in the sh-control group (Fig.  7A, 
B). Moreover, the flow cytometry demonstrated a reduc-
tion in the population of infiltrated M2 macrophages 
in the sh-CXCL11 group (Fig.  7C). Immunostaining 
revealed that the expression of CXCL11 and CD206 of 
sh-CXCL11 group was lower than that in control groups 
(Fig.  7D). These findings supported that knock-down of 
CXCL11 suppressed tumorigenicity and its involvement 
in regulating the infiltration of M2 macrophages.

Discussion
After years of continuous evaluation and progress on var-
ious prognostic markers of MM, there is still no effective 
biomarker to estimate the therapeutic response to immu-
notherapy and the response to the bone marrow micro-
environment [31]. There is evidence that the connection 
between MM tumors and their microenvironment has a 
significant role in the progression of MM and the pos-
sibility of therapeutic response to immunotherapy [32]. 

Fig. 7 Downregulation of CXCL11 suppressed tumorigenesis in vivo. A Representative images of tumors removed from the mice. B Body weight 
and tumor volumes in two groups were observed on the indicated days and tumor weight were shown after removed. C Flow cytometry to detect 
the expression of CD206 in macrophages in primary tumors in the two groups. D IHC analysis of CXCL11 and CD206 in primary tumors of two 
groups. Data were presented as the mean ± SD from three independent experiments. *p < 0.05; **p < 0.01
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This emphasizes the clinical value of exploring prognos-
tic biomarkers for MM immunotherapy. According to the 
characteristics of MM and predictable treatment results, 
exploring more personalized treatments and will help 
clinical decision-making. Therefore, exploring the IRGPI 
closely related to the TME of MM can provide potential 
targets for immunotherapy. It may also increase the accu-
racy of the prognostic score, detect high-risk patients in 
a more personalized and specific way, and establish indi-
vidual treatment strategies for MM patients.

In the present study, we revealed CXCL11 as a regulat-
ing factor by using GEO database for analysis and experi-
mental for validation. First, the IRGPI was established 
based on 6 genes (DEFA5, CD70, CTSG, CXCL11, HGF, 
LTBP1). which were independent prognostic factors for 
OS. The model proved to be a valid prognostic immune-
related biomarker for MM patients, BDNF is consid-
ered to be an effective protective factor to participate in 
the pathogenesis of glioblastoma [33]. CD70 had been 
proven to play a role in TME through its effect on human 
T cells and has become an emerging target for cancer 
immunotherapy [34, 35]. Studies have shown that CTSG 
down-regulation was observed in AML patients, and its 
targeting and inhibition may offer a way for leukemia 
cells to elude cellular surveillance systems by inhibiting 
the breakdown of foreign proteins [36], and consistent 
with our research findings. HGF is believed to promote 
the various types of tumor formation and progression 
and may contribute to the either primary or acquired 
mechanism of resistance to cancer immunotherapy [37, 
38]. LTBP1 can be inhibited by other enzymes, leading 
to the maintenance of tumor cell growth under hypoxic 
conditions [39]. Our model demonstrates enhanced OS 
in LR versus HR patients in both training and validation 
cohorts. A nomogram was also created to estimate sur-
vival and validated the model using a time-dependent 
ROC curve. As compared to alternative staging systems, 
our findings showed that the model had a higher prog-
nostic value.

Considering the non-negligible role of immune cells 
infiltration in the myeloma microenvironment, we then 
used the CIBERSORT method to evaluate the potential 
of IRGPI to reflect immune cells infiltration. In general, 
a large number of activated plasma cells are contributed 
to immune response and related to poor prognosis [40], 
which is also applied to memory B cells [41]. Among 
the three genes with promising diagnostic efficiency, 
CXCL11 is most closely related to the M2 macrophages 
we focused on. As shown in Fig.  4, the proportion of 
M2 macrophages in the CXCL11 high expression group 
was remarkably increased compared with that in the 
low expression one.Moreover, the level of CXCL11 was 

most strongly correlated with M2 macrophages. It can be 
speculated that the high expression of CXCL11 promotes 
the differentiation of macrophages into M2 macrophages, 
thereby accelerating the progression of MM. In verifica-
tion of the gene expression, CXCL11 expressed the high-
est amount in the simulated co-culture system of MM 
cells and M2 macrophages. Therefore, we chose it for fur-
ther functional testing.

CXCL11, a member of the CXC chemokine fam-
ily, can predict therapeutic sensitivity as potential bio-
markers in TME. It performs a task in the regulation of 
immune cell migration, activation, and differentiation, 
becoming a new target for immunotherapy [42] and an 
essential role in a variety of tumors [43–46]. The micro-
environment and cells of the bone marrow induce the 
paracrine or autocrine production of cytokines, promot-
ing the progression of the tumors [42, 43]. Cytokines, in 
turn, stimulate cancer cell proliferation, differentiation, 
and apoptosis, establishing a complex dynamic network 
[44–46]. The microenvironment and chemokines also 
play a significant interaction in the incidence and pro-
gression of MM [47, 48]. Both RNA-sequencing data of 
GEO database and qRT-PCR detection revealed that high 
expression of CXCL11 is correlated with poor OS. Func-
tions experiments showed that CXCL11 has oncogenic 
roles for it drives MM progression in  vitro and in  vivo. 
CXCL11 knock-down affected MM cellular proliferation 
and apoptosis. To futher explore the correlation between 
CXCL11 and the infiltration of the macrophages, co-
cultured model was established, revealing it promote 
macrophage M2-like polarization. Moreover, M2 mac-
rophage infiltration was abrogated by knockdown of 
CXCL11 in xenograft tumor. The results verified a sub-
stantial correlation between the CXCL11 expression and 
the infiltration of the macrophages.

This research had some limitations. Firstly, it was a 
retrospective study with selection bias. The fact that the 
lacking of the data from some cohorts in validation may 
affect the prognosis of patients, and the results obtained 
from large data sets convincingly support our con-
clusions. In addition, the mechanism of CXCL11 and 
immune cell recruitment in the TME deserves further 
study. Looking forward to performing detailed molecu-
lar mechanisms and large-scale prospective studies in the 
future to fully verify our findings.

Conclusions
In conclusion, we developed a novel prognostic sig-
nature according to IRGs. According to the IRGPI, 
MM patients were categorized into low- and high-
risk groups and explored their association with TME. 
We further identified CXCL11 not only a prognostic 
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indicator but may also reflect immune status by influ-
encing the recruitment of M2 macrophages, promoting 
tumor cell proliferation. It might have influence on the 
tumor microenvironment remodeling, thereby affecting 
the growth of MM. These findings suggested CXCL11 
as a novel biomarker with certain value for the progno-
sis and treatment of MM patients.
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