
Wu et al. Cancer Cell International          (2022) 22:220  
https://doi.org/10.1186/s12935-022-02640-9

REVIEW

Advances in biomarkers and techniques 
for pancreatic cancer diagnosis
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Abstract 

Pancreatic cancer is the most lethal type of malignancy and is characterized by high invasiveness without severe 
symptoms. It is difficult to detect PC at an early stage because of the low diagnostic accuracy of existing routine 
methods, such as abdominal ultrasound, CT, MRI, and endoscopic ultrasound (EUS). Therefore, it is of value to develop 
new diagnostic techniques for early detection with high accuracy. In this review, we aim to highlight research pro-
gress on novel biomarkers, artificial intelligence, and nanomaterial applications on the diagnostic accuracy of pancre-
atic cancer.
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Introduction
Pancreatic cancer (PC) is the second leading cause of 
cancer-related deaths in the United States, and the esti-
mated numbers of new cases and deaths are 60,430 and 
48,220 in 2021, respectively. The 5-year survival rate is as 
low as 10%, despite the advent of new drugs in the past 
decade [1]. The imperceptible symptoms at an early-stage 
cause patients to miss their best chance for diagnosis and 
therapy. It is generally accepted that the combination 
of surgical resection with postoperative chemotherapy 
serves as the most effective strategy for PC treatment. 
Surgical resection alone may provide a cure for PC at 
an early stage, especially for tumors with a diameter less 
than 1 cm. Moreover, surgical resection achieved a 5-year 
survival rate of 80.4% for PC patients whose tumors were 

1 cm or less. When PC patients have UICC stage 0, stage 
I A, and stage I B disease, the postoperative 5-year sur-
vival rates are 85.8%, 68.7%, and 59.7%, respectively [2].

Traditional diagnostic methods
At present, there remain challenges in developing imag-
ing examination and tumor markers for early-stage PC 
diagnosis. The imaging diagnostic methods include 
abdominal ultrasound, CT, MRI, and endoscopic ultra-
sound (EUS) [3]. Ultrasound examination sometimes has 
difficulty accurately capturing small PC lesions due to the 
interference of gases in the gastrointestinal tract, pre-
venting it from being a screening method for early-stage 
PC detection [4]. Enhanced CT is the first choice for the 
diagnosis of early-stage PC, with an overall sensitivity 
between 76 and 92%. However, if PC tumors less than 
2 cm in diameter were included in the CT detection, the 
sensitivity dropped to 63–77% [5]. MRI can complement 
CT in the diagnosis of PC with sensitivity and specific-
ity both at 89% [6, 7]. The detection rates of EUS for PC 
in stage 0 and stage I were 45.5% and 81.8%, respectively, 
compared with 9.7% and 63% for CT and 9.7% and 39.1% 
for MRI [8]. As an invasive examination causing wounds, 
EUS still requires improvement for the accuracy of early-
stage PC diagnosis. In addition, the diagnostic accu-
racy is affected by the subjectivity of different clinicians. 
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Therefore, there is an urgent need to develop novel diag-
nostic agents and methods. Our review highlights the 
research progress of novel biomarkers, artificial intelli-
gence technology, and new nanomaterials in the diagno-
sis of early-stage PC which can be resected more easily.

Advance of biomarkers related to pancreatic 
cancer
Serum molecules, including CA19-9, CA125, and CEA, 
are widely used tumor markers for routine PC detection. 
Serum marker detection is superior to the abovemen-
tioned traditional methods in terms of high reproduc-
ibility, good patient compliance, easy follow-up, and low 
cost. According to previous research, the median sensi-
tivity and specificity of CA19-9 are 79% and 82%, respec-
tively [9]. However, CA19-9 is not tumor type-specific 
because of its elevation in other malignancies, includ-
ing colorectal cancer, cholangiocarcinoma, hepatocar-
cinoma, gastric cancer, and even benign diseases, such 
as obstructive jaundice, cirrhosis, cholangitis, and other 
gastrointestinal diseases [10]. Notably, a high CA19-9 
level usually suggests advanced PC instead of early-stage 
PC, especially for tumors with a diameter less than 3 cm 
[11, 12]. Of note, the combination of CA19-9, CEA, 
CA125, and CA242 showed high sensitivity and specific-
ity for PC diagnosis, with up to 90.4% and 93.8%, respec-
tively, which are significantly higher than the accuracy of 
a single serum marker [13].

Molecular biomarkers
DNA methylation
It is believed that DNA methylation plays an important 
role in the initiation and progression of PC by rebal-
ancing tumor suppressor genes and proto-oncogenes 
[14–16]. The detection of DNA methylation in periph-
eral blood is prevalent for PC diagnosis. Promoter DNA 
methylation of ADAMTS1 and BNC1 was significantly 
associated with PC in a cohort of 123 patients with PC, 
20 patients with pancreatic intraepithelial neoplasia and 
30 patients with pancreatitis, with sensitivities of 79% 
and 48% and specificities as high as 92% and 89%, respec-
tively. Additionally, the sensitivity and specificity of the 
two-marker combination for PC diagnosis are 81% and 
85%, respectively [17]. Moreover, the DNA methylation 
of ADAMTS1 and BNC1 was reported to be an ideal bio-
marker for PC TNM stage estimation. In regard to stage 
I PC patients, the percentages of ADAMTS1 and BNC1 
DNA methylation were 87.5% and 62.5%, respectively; for 
stage IIa, the percentages were 77.8% and 55.6%, respec-
tively; for stage IIb, the percentages were 90% and 65%, 
respectively; and for late-stage (III + IV), the percent-
ages were almost 100%. When the two markers were used 
together, the percentages were 100%, 88.9%, 100%, and 

100% in patients at stages I, IIA, IIB, and III/IV, respec-
tively, suggesting an inspiring translational future [18].

Another study in Japan revealed that DNA methyla-
tion of CDO1 was related to the early diagnosis of PC 
based on pancreatic cytology specimens from 37 patients 
with PC and 6 patients with benign pancreatic disease (4 
chronic pancreatitis and 2 autoimmune pancreatitis). The 
results showed that CDO1 promoter methylation was 
detected in 35/37 (94.6%) PC patients with methylation 
values (MV) higher than 5.0, while it was not detected 
in benign diseases (statistically significant, AUC = 0.96, 
0.0001) [19]. Furthermore, a case–control study on 
CD1D DNA methylation was performed in 61 PC 
patients (stage I, II), 22 patients with chronic pancreatitis, 
and 19 healthy people with pancreatic juice specimens. 
Compared with healthy people and chronic pancreatitis 
patients, the AUC value of CD1D methylation in the pan-
creatic juice of PC patients was 0.92, with a sensitivity of 
75% and a specificity of 95% [20]. The DNA methylation 
of biomarkers for PC detection is displayed in Table 1.

Noncoding RNAs
MicroRNAs  Noncoding RNAs play important roles in 
PC development. In a study of blood samples from 409 PC 
patients, 25 chronic pancreatitis patients, and 312 healthy 
people, ectopic expression of microRNAs was found in 
the serum of PC compared with chronic pancreatitis and 
healthy people. Compared with the control, 38 microR-
NAs were detected with ectopic expression in early-stage 
PC patients, and 14 were used to set up two panels for 
diagnosis (Panel I: miR-145, miR-150, miR-223, miR-636; 
Panel II: miR-26b, miR-34a, miR-122, miR-126, miR-145, 
miR-150, miR-223, miR-505, miR-636, miR-885-5p). The 
two panels were applied to a validation cohort including 
180 cases of PC, 1 patient with chronic pancreatitis, and 
199 healthy controls. The AUC of Panel I was 0.86, and the 
diagnostic sensitivity was 85% with a specificity of 64%. 
Panel II achieved an AUC of 0.93, diagnostic sensitivity 
of 85% and specificity of 85%. In addition, the panel com-
bined with CA19-9 could further improve the diagnostic 
efficiency. The AUC of Panel I plus CA19-9 increased 

Table 1  DNA methylation of biomarkers for PC detection

DNA methylation of 
biomarkers

Diagnostic power

Sensitivity Specificity AUC​

ADAMTS1 79% 92%

BNC1 48% 89%

ADAMTS1 + BNC1 81% 85%

CDO1 – – 0.96

CD1D 75% 95% 0.92
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to 0.94 (P = 0.01), and Panel II could be up to 0.93 [21]. 
Except for the above panels, there were many miRNAs 
that were demonstrated to contribute to the diagnosis of 
early-stage PC, such as a panel containing 6‐miRNAs (let‐
7b‐5p, miR‐192‐5p, miR‐19a‐3p, miR‐19b‐3p, miR‐223‐3p 
and miR‐25-3p), serum miR-25 combined with CA19-
9, and miR-17-5p methylation, which was superior to 
CA19-9 or CEA [22–24]. Except for pancreatic tissue and 
blood, miRNA dysregulation was also detected in feces, 
urine, and saliva, which are easy to obtain by noninvasive 
methods [25]. In urine, the levels of miR-143, miR-223 
and miR-30 were higher at stage I, and the combination of 
miR-143 and miR-30 showed high sensitivity and speci-
ficity with 83.3% and 96.2%, respectively [26]. In stool, 
Yang et al. reported that the levels of miR-21 and miR-155 
were much higher in PC patients than in healthy controls 
[27]. Recently, salivary miRNAs were demonstrated to be 
stable due to the protection of exosomes or protein com-
plexes, thus showing their promising roles as diagnostic 
markers. For example, miR-1246 and miR-4644 in saliva 
had ROC curves with AUC = 0.814 (P = 0.008) and 0.763 
(P = 0.026), respectively, for distinguishing PC patients 
from healthy controls. Additionally, their combination 
increased the AUC to 0.833 (P = 0.005) [28]. The efficacy 
of microRNAs in the differential diagnosis of PC from 
healthy participants is displayed in Table 2.

LncRNAs  In addition to microRNAs, long noncoding 
RNAs may also serve as effective biomarkers for early-
stage PC detection. For example, compared with healthy 
controls, the SNHG15 level is higher in PC patients and 
contributes to cell proliferation via H3K27me3 mediated 
by EZH2 [29]. In addition, SNHG15 expression in serum 
exerts a moderate diagnostic value with a sensitivity of 
68.3% and a specificity of 89.6% [30]. Plasma lncRNA 
Linc-pint was significantly decreased in PC patients com-
pared with healthy volunteers, as well as in carcinoma 
of the ampulla of Vater and cholangiocarcinoma. There-
fore, Linc-pint might be used for identifying the cause of 
malignant obstructive jaundice and helping to trace the 
cancer origin [31].

CircRNAs  Circular RNAs (circRNAs) have continuous 
closed circular structures, making them stable enough 
to serve as molecules for cancer detection [32]. Circ-
LDLRAD3 was significantly increased in PC tissues and 
plasma, and markedly related to lymphatic invasion, 
venous invasion, and metastasis. Although circ-LDL-
RAD3 is not an ideal independent biomarker, its combi-
nation with CA19-9 showed an increase in AUC from 0.87 
to 0.67, and the sensitivity and specificity were 80.33% and 
93.55%, respectively [33]. The circRNAs IARS and PDE8A 
that are contained in the plasma exosome were upregu-

lated and associated with the progression and prognosis 
of PC, and are likely to be promising biomarkers in the 
detection of early-stage PC [34, 35]. In addition, com-
pared with the healthy controls, circ-001569 levels were 
higher in 26 tumor tissues and 97 plasma samples of PC 
patients (P < 0.01) [36]. Table 3 shows the efficacy of lncR-
NAs or circRNAs in the differential diagnosis of PC from 
healthy participants.

Proteomic biomarkers
Proteomics is based on the study of the full set of pro-
teins and aims to understand all expressed proteins in 
cells, including their number, level, and renewal. Protein 
biomarkers related to PC can be detected in the patient’s 
blood, pancreatic juice, and tumor tissue [37].

Aberrant levels of GPC1, CPA4, C4BPA, PFAA, 
MUC5AC, and OPNT + TIMP-1 were frequently 
detected in the serum of PC patients. Melo’s team found 
that the level of GPC1 in exosomes from the blood of PC 
patients was significantly higher than that in exosomes 
from patients with benign pancreatic diseases and 
healthy people. In addition, the GPC1 expression level 
is positively correlated with the tumor burden [38]. 
Similarly, Sun et  al. affirmed the potential of CPA4 as a 
great biomarker of PC. They compared the serum lev-
els between PC patients (n = 100) and healthy patients 
(n = 50). The results suggested that PC patients had sig-
nificantly greater serum levels of CPA4 than patients in 
the healthy group (1.695 ± 2.093 vs. 0.123 ± 0.251 ng/mL, 
P = 0.000) [39]. Notably, C4BPA is superior to CA19-9 
in sensitivity and specificity in the early diagnosis of PC 
[40]. PFAA also has a strong correlation with the stage 
of PC and could be used as a pathological diagnostic ref-
erence [41]. Sukhwinder et al. supported MUC5AC as a 
valuable biomarker for PC detection. MUC5AC exhib-
ited satisfactory sensitivity and specificity when used in 
the differential diagnosis among PC, benign pancreatic 
disease, and chronic pancreatitis. A similar function was 
also shown when MUC5AC was combined with CA19-9 
[42]. Serum osteopontin and tissue inhibitor of metallo-
proteinase 1 (OPNT + TIMP-1) combined with CA19-9 
in blood also displayed potential to improve the sensitiv-
ity of PC diagnosis [43]. In regard to the protein markers 
in urine samples, the levels of LYVE1, REGIA, and TFFI 
were significantly related to PC. The accuracy exceeds 
90% for the early diagnosis of PC; thus, it showed an ideal 
clinical impact, although it still requires a large cohort for 
validation [44]. In addition, neutrophil gelatinase-asso-
ciated lipocalin (NGAL) in urine provides a clue for the 
early diagnosis of PC [45].

In pancreatic juice, the upregulation of ante-
rior gradient-2 (ARG2) implied its role as a marker 
for PC diagnosis [46]. However, the acquisition of 
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pancreatic juice requires an invasive method, which 
is not widely accepted. Moreover, the bile component 
could be used to detect early-stage PC with high sen-
sitivity [47]. It was reported that LDL receptor-related 

with 11 ligand-binding repeats (sLR11) in the bile of 
PC patients has the potential to distinguish PC from 
healthy controls [48]. All of the above biomarkers from 
different clinics for PC diagnosis are summarized in 
Fig. 1.

Table 3  Efficacy of lncRNAs or circRNAs in the differential diagnosis of pancreatic cancer from healthy participants

Study Markers source Diagnostic power

AUC​ Sensitivity (%) Specificity (%)

lncRNAs

Guo et al SNHG15 Serum 0.727 68.3 89.6

Li et al Linc-pint Plasma 0.87 87.5 77.1

Linc-pint + CA19-9 Plasma 0.92 85.9 82.9

circRNAs

Yang et al circ-LDLRAD3 + CA19-9 plasma 0.87 80.33 93.55

Fig. 1  Biomarker candidates for the diagnosis of pancreatic cancer from easy-to-obtain samples in clinics, including saliva, pancreatic juice and bile, 
serum, feces, and urine. *Panel I = miR-145, miR-150, miR-223, miR-636 **Panel II = miR-26b, miR-34a, miR-122, miR-126, miR-145, miR-150, miR-223, 
miR-505, miR-636, miR-885-5p
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Artificial intelligence (AI)
The diagnosis of PC by traditional imaging methods and 
pathological slices requires experts to perform complex 
analyses on a large amount of data. Due to differences in 
physician training, experience, and professional quali-
ties, the results of diagnosis are partly influenced by the 
subjectivity of doctors. Therefore, it is crucial to develop 
an automatic and accurate imaging processing technol-
ogy that requires less manual intervention [49]. In recent 
years, AI techniques have revolutionized the medical 
field. With the help of AI technology, tedious image anal-
ysis, subjective differences of doctors, and inconsistent 
diagnosis can be avoided [50]. AI technology is capable of 
accelerating image processing while maintaining consist-
ency and high accuracy.

The conceptual category of AI primarily includes 
machine learning (ML) and deep learning (DL) [51]. ML 
is a multifield interdisciplinary subject involving subjects 
such as probability theory and statistics. ML specializes 
in the study of how computers simulate or implement 
human learning behaviors to acquire new knowledge or 
skills and reorganize the existing knowledge structure 
to continuously improve its performance. DL learns the 
internal laws and representation levels of sample data. 
These learning processes are very helpful for the inter-
pretation of many texts, images, and sounds. DL is also 
composed of a variety of deep neural networks, with tre-
mendous reports on its application in the recognition 
of lung cancer, prostate cancer, and rectal lymph node 
images with satisfactory results [52–54]. Another suc-
cessful model is the deep convolution neural network 
(DCNN), which has been shown to improve the diagnos-
tic precision of thyroid cancer by analyzing clinical ultra-
sound sonographic imaging results. Compared to a group 
of professional radiologists, the model showed compara-
ble sensitivity and increased specificity concerning the 
detection of patients with thyroid cancer [55]. At present, 
AI has been applied in the field of imaging intelligent 
diagnosis of pancreatic diseases with significant progress 
[56, 57].

AI utilization in PC diagnosis
AI utilization in imaging
For CT and MRI, AI has been used to facilitate diagnostic 
accuracy [58, 59]. The computer learning based on a con-
volutional neural network (CNN) from 370 PC patients 
and 320 non-PC patients showed a more superior diag-
nostic efficiency than radiologists, with an accuracy of 
0.986–0.989. The sensitivity of CNN was also higher than 
that of radiologists (0.983 vs. 0.929; p = 0.014). However, 
during the test, the CNN technique missed 3 tumors 
with a diameter < 15  mm, 2 of which were discovered 

by radiologists. The radiologist missed 12 tumors with 
a diameter ranging from 10 to 33  mm, while the CNN 
accurately diagnosed 11 of them. Liu et al. used the CNN 
method to interpret contrast-enhanced CT images of 338 
PC patients (238 as the training set with 4385 images and 
200 patients with 1699 images as the validation group) 
[60]. The R-CNN model was used to classify the recog-
nized images. The true-positive rate (TPR), false-pos-
itive rate (FPR), precision (P), and recall rate (R) were 
obtained according to whether the sample was accurately 
identified and the coverage rate of the identification. Sub-
sequently, the average value of average precision (AP) for 
each group was obtained. The mean AP of the R-CNN 
for 4385 image recognition for training was 0.7664. 
The receiver operating characteristic (ROC) curve for 
the validation group showed the area under the curve 
(AUC) according to the trapezoidal rule to be 0.9632. 
These results highlight the effectiveness of AI in the 
auxiliary diagnosis of PC. The team also noticed that AI 
only took 0.2 s to recognize one CT image and 3 s to fin-
ish the image recognition of one patient, which is much 
faster than the average recognition time of a well-trained 
imaging doctor (average 8  min) [61]. Furthermore, Gao 
et  al. also used the CNN model to identify MRI images 
with a 0.90 AUC of PC [62]. The combination of PET/
CT images with AI technology used the support vec-
tor machine-random forest (SVM-RF) + dual-threshold 
principal component analysis (DT-PCA) model to detect 
PC. The sensitivity/specificity/accuracy was as high as 
95.2%/97.5%/96.5%, suggesting that the diagnostic effi-
ciency of PET-CT was significantly improved with the 
assistance of AI [63].

The major difficulty for EUS-AI applications is that 
different lesions often have similar imaging findings. 
The subjectivity of the surgeon is also a factor, causing 
a certain proportion of misdiagnoses and missed diag-
noses. Based on the principle of pixels, AI can reduce 
subjectivity by integrating the changes in the lesion 
structure with digital image analysis. In a controlled 
experiment from Das et al., they established an artificial 
neural network (ANN) based on different pathological 
types of PC, chronic pancreatitis, and normal pancreas. 
The ANN model displayed a high sensitivity/specificity/
AUC of 93.0%/92.0%/93% for PC detection, as well as a 
perfect discrimination of normal pancreas and chronic 
pancreatitis (sensitivity, specificity, and accuracy are 
as high as 100%) [64]. Zhu et  al. conducted a compara-
tive analysis of 262 cases of PC and 126 cases of chronic 
pancreatitis, including the support vector machine 
model’s recognition of 16 EUS images for each patient. 
The sensitivity/specificity/accuracy of the model is up 
to 91.6%/95.0%/94.2% for PC detection [65]. The ANN 
model for the enhanced EUS images in another study 
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showed that vascular parameters can distinguish PC and 
chronic pancreatitis cases with a sensitivity of 94.64% and 
a specificity of 94.44% [66].

AI utilization in pathology
AI attempts to use computer models for pancreatic 
cytological diagnosis, especially on samples from endo-
scopic ultrasonography-guided fine needle aspiration 
(EUS-FNA). The images of cell cluster fragments under 
pathological slices were obtained under the analysis from 
a mobile neural network (MNN) model to distinguish 
benign and malignant cells with features [67]. These 
features are surprisingly similar to those recognized by 
cytopathologists. This suggests that MNN have compara-
ble accuracy with pathologists in their preliminary judg-
ments on cell images. The study also showed an MNN 
model of 80% for the sensitivity of the FNA results that 
the pathologist could not determine. Collectively, these 
findings indicate the MNN model is a promising tool for 
pancreatic FNA specimen screening and reducing the 
limitations of pathologists’ subjective judgment.

AI utilization in biomarkers
AI can also be applied for the analysis of biological mark-
ers [68]. In a study with AI to analyze serum tumor 
markers (CA19-9, CA125, CEA), the 913 serum samples 
from PC patients and non-PC patients were randomly 
divided into a training group (sample size of 658) and 
a test group (sample size of 255). They established an 
ANN model for PC diagnosis in the training group and 
validated the model in the test group. The results showed 
that the AUC of PC was as high as 0.91. Compared with 
the AUC (CA19-9: 0.845, CA125: 0.795, CEA: 0.800) of a 
single tumor marker obtained under the Logistic Regres-
sion model, the ANN model displayed a better diag-
nostic performance [69]. Researchers used a smoothly 
clipped absolute deviation-based penalized support vec-
tor machine to build a PC diagnosis model in another 
study, with 39 miRNA markers in blood serum samples 

from 63 PC patients and 63 control subjects as the train-
ing cohort, and it was validated in an additional group 
with 25 PC samples and 81 intrahepatic cholangiocarci-
noma samples. The AUC, sensitivity (96.0%), and speci-
ficity (90.0%) of the proposed diagnostic model were 1.5, 
1.3, and 2 times higher than those of the CA19-9 diag-
nosis model, respectively [70]. Although the individual 
miRNAs were not specific to PC, the combination of all 
39 miRNA markers enabled a high diagnostic specificity. 
The diagnostic power of the individual models is summa-
rized in Table 4.

Application of nanomaterials in the diagnosis 
of pancreatic cancer
Novel nanomaterial components are believed to act as a 
powerful tool for improving the sensitivity and specificity 
of early-stage cancer detection [71–74].

Nanomaterials as contrast agents
The addition of novel designed nanoparticles (NPs) to 
contrast agents could overcome the limitations of first-
generation organic contrast agents by increasing sen-
sitivity through better biodistribution [75]. In 2015, 
Rosenberger et  al. modified the nanoparticle of a pep-
tide with a high affinity to galectin-1, which is highly 
expressed in PC cells, thus making it an ideal MRI con-
trast agent [76]. Luo et  al. also reported a new type of 
nanocontrast agent—iron oxide NPs (IONPs), which 
were encapsulated in HA-Fe3O4-NPs (hyaluronic acid-
mediated multifunctional Fe3O4 nanoparticles) with fluo-
rescein isothiocyanate (FITC) together to capture the NP 
by using the principle of selective recognition of hyaluro-
nan by CD44 receptor [77]. In both cases, the accumula-
tion of NP in the tumor increased the detection accuracy 
by MRI. In terms of safety, IONPs are superior to the cur-
rent organic contrast agents used in toxic reduction [78].

Another nanomaterial contrast agent named AuNR–
SiO2–GD NPs was injected into PC-bearing albino mice 
followed by CT and MRI examinations, showing an 

Table 4  Applications of AI in the diagnosis of pancreatic cancer

Study Diagnostic methods AI emulator Diagnostic power

Accuracy (%) Sensitivity (%) Specificity (%) AUC​

Liu et al CT CNN 0.96

Gao et al MRI CNN 0.90

Das et al EUS ANN 93.0 92.0 0.93

Yang et al Biomarkers ANN 0.91

Li et al PET-CT SVF-RF + DT-PCA 95.2 97.5 96.5

Zhu et al EUS SVM 91.6 95.0 94.2

Momeni et al EUS-FNA MNN 80
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increased contrast effect, higher detection sensitivity, 
more accurate target biodistribution, and more accurate 
spatial and temporal resolution. In terms of safety, the 
contrast agent accumulated in the liver without damage 
[79–81].

Nanomaterials as sensitizers of biomarkers
Another team tried carbon nanotubes (CNTs) carry-
ing CA19-9 antibody and performed detection experi-
ments on CA19-9 at different concentrations. The results 
showed that the CNT-based detection threshold was 100 
times lower than that of the traditional ELISA method. 
Therefore, it is possible that CNTs may detect changes in 
CA19-9 levels at the early stage of PC [82]. Multiwalled 
carbon nanotubes (MWCNTs) developed by another lab 
were used as a sensitive biosensor carrier to detect low 
levels of CA19-9 [83]. The specific antibody attached to 
the surface of MWCNTs on the test paper was able to 
detect CA19-9 at a concentration of 0–1000 U/mL in the 
blood sample.

Quantum dots (QDs) are also a type of nanoparticle 
used to detect cancer. The fluorescence excitation wave-
lengths of QDs range from 400 to 2000  nm, and the 
size and composition of QDs can be adjusted for appli-
cation. This characteristic makes it possible for a single 
light source to detect and track multiple biomarkers at 
the same time [84]. Furthermore, QDs are reusable and 
have a longer line span due to their fading resistance [85]. 
ZnO QDs, as electrochemical and fluorescent labels, are 
used for the detection of the PC biomarker CA19-9 by 
an immunosandwich method with high sensitivity, selec-
tivity, and stability. Based on the bioconjugation of ZnO 
QDs and the CA19-9 antigen-antibody immunoreaction, 
sandwich immunosensors were assembled on a func-
tional Si substrate for CA19-9 detection. Immune rec-
ognition of CA19-9 was converted into amplified signals 
of square wave stripping voltammetry and intrinsic pho-
toluminescence. In this way, the peak intensity of square 
wave voltammetry rose with an increase in CA 19-9 con-
centrations, showing a broad linear response range from 
0.1 to 180 U/mL in logarithmic styles [86]. The detection 
limit of 0.1 U/mL CA 19-9 is far less than the threshold 
concentration in clinical diagnosis value of 35 U/mL, sug-
gesting the power in the diagnosis of PC at an early stage.

Nanomaterials as diagnostic probes for PC
The monodispersed organically modified space silica 
(ORMOSIL) nanoparticles, which were covalently con-
jugated with the fluorophore rhodamine, presented a 
variety of active groups on their surface and were used to 
detect early-stage PC. The carboxyl groups on the surface 
were conjugated to bioactive molecules, such as mono-
clonal antibodies, to target unique antigen molecules 

on PC cells. ORMOSIL nanoparticles entered PC cells 
in a receptor-mediated manner. Detection of the conju-
gated fluorophore rhodamine showed that the uptake of 
nanoparticles conjugated with anti-claudin 4, anti-meso-
thelin, and transferrin was much higher in PC cells than 
in control cells (more than 90% vs. 55.9%). In addition, 
ORMOSIL selectively targeted tumor cells and did not 
show any cytotoxicity in vitro [87]. Therefore, the prop-
erty of the fluorescent ORMOSIL nanoparticles showed 
potential applications for optical bioimaging as effective 
probes for diagnosis in  vivo. The functions of various 
nanomaterials are summarized in Table 5.

Future perspective
There is a debate about finding a sensitive biomarker to 
replace CA19-9 for predicting early-stage PC. Emerg-
ing novel biomarkers and AI techniques in imaging have 
enabled the precision diagnosis of early-stage PC in 
recent decades. As genetic changes are prevalent in the 
initiation and progression of PC, molecular biomarkers, 
including DNA methylation, noncoding RNAs, and pro-
teins from peripheral blood or pancreatic juice, exerted 
their roles as indicators in PC detection. However, there 
remains many limitations for clinical translation due 
to the inconsistence of sensitivity and specificity. DNA 
methylation seems to have a very stable detection rate, 
but methylation did not have a very strong relationship 
with early-stage PC. The dysregulation of noncoding 
RNAs was intensively investigated and detected in blood, 
feces, urine, or saliva, which were more acceptable by the 
patients, compared with other invasive detection meth-
ods, such as EUS and FNA. Moreover, circRNAs showed 
great stability in body fluids, making them ideal biomark-
ers for PC diagnosis. To further enhance the sensitivity 
and specificity of early detection, an effective cocktail 
combination model should be developed before clinical 
translational validation.

AI is mainly used for the recognition of images 
of CT, MRI, EUS, and pathology examinations. The 

Table 5  The function of nanomaterials for PC detection

Study Nanomaterials Fuction

Rosenberger et al Nanoparticle of a peptide 
with a high affinity to 
galectin-1

Contrast agents

Luo et al IONPs Contrast agents

Boyer et al AuNR–SiO2–GDNPs Contrast agents

Zhuo et al CNTs Sensitizers of biomarkers

Jin et al MWCNTs Sensitizers of biomarkers

Gu et al ZnO QDs Sensitizers of biomarkers

Kumar et al ORMOSIL Diagnositic probes
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identification accuracy of AI depends on not only the 
construction and optimization of the neural network 
model but also the size of the dataset used for training. 
AI already helps pathologists overcome tedious image 
analysis, eliminate subjective differences, and enhance 
diagnosis consistency. In many cases, AI performance 
is superior to pathologists in cytomorphology. In this 
aspect, AI can be used to judge pancreatic FNA speci-
mens or cells in pancreatic juice that pathologists can-
not determine and provide a reference value for the early 
diagnosis of the disease, improving early intervention for 
PC.

Nanomaterials have attracted much attention in the 
field of medical diagnosis as contrast agents for imag-
ing examination with a high affinity for PC cells due to 
their conjugated active molecules on the surface. In addi-
tion, nanomaterials have better biodistribution, con-
trast enhancement, and safety in the human body than 
traditional contrast agents. Nanomaterials can also be 
modified with antibodies, which can bind specifically to 
biomarkers on cells. The PC serum biomarker detection 
system combined with nanomaterials has a much wider 
range of detection and a lower detection threshold, which 
is probably significant in the diagnosis of early-stage PC. 
Nanoparticles conjugated with fluorescence could help in 

the optical bioimaging of PC, but the intensity remains 
a problem. Importantly, most nanomaterials are in the 
laboratory research stage and have not been tested in 
trials. There is still a long way before clinical application 
of nanomaterials because of their potential toxicity, side 
effects, and efficacy in humans.

At present, these new diagnostic methods also have 
great potential to be put into clinical practice. The new 
biomarkers detecting PC depend on the technology of 
fluid biopsy, which can perform a non-invasive exami-
nation in peripheral blood or exocrine fluids. The criti-
cal step in putting these new biomarkers into clinical 
practice is developing efficient and sensitive test kits. 
In the past, the gold standard for testing DNA meth-
ylation was bisulfite sequencing. However, this method 
also had the defects of low accuracy and poor repeat-
ability, while a kind of digital PCR (dPCR) technology 
currently under research could overcome the above 
limitations, and the kits based on this technology have 
good clinical prospects. Meanwhile, simple and sensitive 
single-molecule fluorescence technology has made great 
progress in detecting noncoding RNAs. However, it is 
limited to detecting the nucleic acids from extracellular 
fluid, but some relevant nanosensors can detect noncod-
ing RNAs in the living cells. It is possible to attain the 

Fig. 2  Potential clinical applications for the diagnosis of A pancreatic cancer, including B new biomarkers, C Artificial intelligence (AI), and 
D nanomaterias. As shown in Part B, samples were obtained from urine, blood, saliva, and feces such as B-1; new biomarkers included DNA 
methylation such as B-2, proteomic biomarkers such as B-3, and noncoding RNAs such as B-4. AI is shown in Part C. AI utilization can be used 
in imaging such as C-2, pathology such as C-3 and recognition of biomarkers such as C-4 for PC detection. Part of D describes the application 
of nanomaterials for the diagnosis of PC; they can play a role as contrast agents such as D-2, diagnostic probes such as D-3, and sensitizers of 
biomarkers such as D-4 
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clinical practice of testing noncoding RNAs by the above 
two modes. Moreover, the routine immunohistochemi-
cal technology could be used in the detection of novel 
proteomic biomarkers according to the combination 
of antigens and antibodies in peripheral blood, saliva, 
urine, feces and pancreatic juice. Increasing the volume 
of collected specimens, and developing concentration 
technology may be a solution to developing applicable 
clinical apparatus based on the multiple characteristics of 
new biomarkers. In addition, the digital pathology with 
AI technology has made great progress, which can real-
ize a series of functions such as image collecting, image 
preprocessing, image segmentation, feature acquisition, 
image classification and recognition. The pathological 
and cytological robots based on the above techniques 
have been well applied to the cytological examination and 
the rapid freezing pathological detection to improve the 
accuracy and speed of diagnosis. Significantly, the appli-
cation of AI technology does not mean that it can com-
pletely replace the roles of medical practitioners in the 
judgment of diseases, which is only used as a reference in 
clinical practice. At the same time, an AI corrective sys-
tem for diagnosis should also be established to check the 
conclusion of clinicians in time and improve the accuracy 
of diagnosis. Furthermore, when the nanomaterials are 
used as contrast agents in the imaging examination of 
PC, it is feasible to improve the safety by means of con-
trolling the size of nanomaterials before clinical practice. 
Using biocompatible molecules such as folic acid or glu-
cose to modify the nanomaterials may also improve the 
compatibility of human tissue or increase the binding 
affinity to cancer cells. The diagnostic probes which are 
rich in nanomaterials can play their optical characteris-
tics to locate the PC lesions or conduct immunofluores-
cence labeling for final clinical practice.

The question of how to diagnose PC earlier is always 
a motivation for researchers. Screens for early-stage PC 
need more sensitive and tumor-type specific biomarkers. 
The ideal method of biomarker detection should be less 
affected for patients and simple to conduct by clinicians. 
With the advancement of algorithms and neural network 
models, AI-assisted PC diagnosis will be used widely in 
clinical practice. The ultimate goal of AI techniques is to 
allow machines to have the ability to analyze and learn 
like humans and make diagnostic decisions for clinicians. 
The improvement of current methods and the develop-
ment of novel concepts for diagnosis are necessary for 
the near future (Fig. 2).

With the progress of research, we believe that imaging 
examinations, biomarker tests and other novel methods 
for early-stage PC diagnosis would benefit the PC patient 
survival rate.
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