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Abstract 

Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the abil-
ity in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via 
exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved 
in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have 
highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and func-
tional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor under-
standing. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting 
of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original 
cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to 
glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and 
exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their 
potential as diagnostic biomarkers are analyzed.
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Introduction
Glioma is one of the most prevalent primary tumors of 
the central nervous system (CNS) which is identified by 
the signs such as high aggression, relapse, and mortal-
ity. Approximately half of all gliomas are glioblastoma 
multiform (GBM) [1, 2]. Moreover, stem cell therapy 
has been proposed as the other novel therapeutic option 
for glioma. In adults, glioma is categorized as the most 

common and highly aggressive brain tumor. In preclinical 
works, several factors such as hormones, cytokines, pro-
teases, and chemokines are secreted by stromal cells to 
modulate the tumor microenvironment [3].

The lack of a non-invasive method is the major prob-
lem to assess the GBM treatment. This issue hinders the 
effective clinical management of the GBM. The gliomas 
prognosis could be very poor owing to numerous rea-
sons. First, few drugs exist with good therapeutic effects 
in clinical practice. Most of the drugs are rendered inef-
fective by the permeation restriction exerted by blood–
brain barrier (BBB) and the higher drug resistance of 
glioma. On the other hand, different limitations such as 
poor stability, toxic side effects, and immune activation 
exacerbate the situation. Deal with this tumor becomes 
even more difficult considering its high epigenetic and 
genetic heterogeneity [4, 5]. Glioma is a heterogeneous 
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complex tumor, which comprises tumor cells and numer-
ous non-tumor cell types, including astrocytes, endothe-
lial cells microglia, and immune cells that establish the 
complex glioma microenvironment.

Exosomes are a new class of nano-sized extracellular 
vehicles (EVs) released by the vast majority of cell types 
both in vivo and ex vivo. They are discovered by advances 
in high-resolution imaging within the cell secretome. 
Exosomes are secreted from cells and released into sur-
rounding body fluids upon fusion of multivesicular 
bodies and the plasma membrane. However, they were 
initially proposed as cellular waste resulting from cell 
damage, or by-products of cell homeostasis, they are 
endowed with the capability of cell reprogramming and 
data trafficking. Moreover, they are shown to contribute 
to the transduction of pathophysiological conditions [6, 
7].

The present study is focused on the general structure of 
exosomes and their involvement in the initiation or pro-
gression of glioma cancer. Since key features of exosomes 
are strongly dependent on the origin cells and develop-
ment status, it is essential to review key modulating 
molecules, clinical relevance to glioma, and associated 
signaling pathways. Moreover, evidence on exosome con-
tents is shared, as a potent diagnostic biomarker, which 
exerts a possible role in chemo-resistance after exosome-
based therapies. Finally, we reviewed the current knowl-
edge on glioma cancer immunotherapy particularly 
dendritic cells (DCs), mRNA vaccines, and bi-specific 
antibodies.

Exosomes and extracellular vesicles
As EV properties improve, markers such as protein 
and lipid continue to be very useful to demonstrate the 
generic structure of EVs. Based on EVs derived from 
mammalian vs non-mammalian vs non-eukaryotic 
cells, or claims, which are generic to all types of EVs, or 
instead specific to subtypes of EVs, the markers applied 
for the characterization EVs may differ. The EV-TRACK 
knowledgebase is approved by ISEV to represent and 
enhance accuracy and reproducibility in EV related stud-
ies, according to the MISEV guidelines. With regards to 
exceptions to each rule, MISEV2018 is meant to guide 
and developed the field, not stifle it [8]. Additionally, 
glioma cells (GMs) enhance glucose consumption and 
lactate production via increasing the levels of monocar-
boxylate transporter 1 (MCT1) and the cluster of dif-
ferentiation 147 (CD147) and their localization at the 
plasma membrane to remove intracellular lactate out of 
cells to maintain continuous glycolysis. This results in 
the accumulation of lactate in the tumor microenviron-
ment (TME) [9]. Exosomes derived from GMs with a size 
ranging approximately from 30 to 200 nm can spread into 

systemic bio-fluids, such as cerebrospinal fluid (CSF) and 
blood by crossing the blood-CSF barrier (BCSFB) and 
the blood–brain barrier (BBB). However, GMs-derived 
exosomes have been identified as great platforms for the 
discovery of effective biomarkers for glioma progression. 
In addition to magnetic resonance imaging (MRI) and 
computed tomography (CT) scans, intracranial biopsies 
have been proposed for the diagnosis and prognosis of 
glioma [10]. Due to excellent improvement in sensitiv-
ity, the TiO2-CTFE-AuNIs real-time label‐free plasmonic 
biosensor demonstrated a good potential in detecting 
of prognostic biomarkers in GMs-derived exosomes 
for application in glioma liquid biopsy [11]. Exosomes 
derived from glioma which releases a great number 
of them in the tumor microenvironment (TME), are a 
type of extracellular vehicles (EVs) with a size range of 
30–200 nm, and aggregates in a wide range of extracel-
lular milieu and bio-fluids including blood, urine, and 
cerebrospinal fluid, with a crucial role in cell–cell com-
munication [12]. In particular, GMs-derived exosomes 
can cross the BBB and are found in peripheral circulation 
[13] which makes them as an important useful biomarker 
discovery platform for monitoring glioma progression. 
BIGH3 is one of the promising ones as the prognostic 
biomarkers of glioma and especially has been identified 
in GMSs derived exosomes [14].

Mesenchymal stem cells (MSCs) are one of the ele-
ments of the tumor microenvironment (TME) which 
plays a key role in primary tumor growth and metastasis. 
For example, exosomes secreted by MSC-differentiated 
adipocytes have been proposed that can promote EMT 
in breast cancer cells via activation of the Hippo signaling 
pathway [15]. Similarly, studies in lung cancer confirm 
that exosomes secreted by hypoxic bone-marrow-derived 
mesenchymal stem cells (BMSCs) in the tumor micro-
environment promote cancer cell invasion and EMT 
through transfer of miR-193a-3p, miR-210–3p, and miR-
5100 from hypoxic BMSCs to cancer cells [16]. Similarly, 
exosomes secreted by hypoxic bone-marrow-derived 
mesenchymal stem cells (BMSCs) in the tumor micro-
environment can promote lung cancer cell invasion and 
EMT by miR-193a-3p, miR-210–3p, and miR-5100 trans-
ferring from hypoxic BMSCs to lung cancer cells [16].

A large number of strategies have been developed for 
isolating EVs including density gradient centrifugation, 
immunomagnetic bead-based extraction, chromatog-
raphy, ultrafiltration, and microfluidic device [17]. For 
increasing the efficacy of anticancer agent delivery to 
glioma and also to maintain the effective drug-level in 
glioma tissues, it’s crucial to enhance the loading effi-
ciency of an anticancer drug into exosomes. For this 
reason, improving the loading efficiency of therapeutic 
agents into exosomes needs to develop various methods, 
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including electroporation, incubation, and chemical rea-
gents, have been investigated [18]. By developing the 
micro- and nanofabrication technologies, microfluid-
ics application to drug loading and delivery to cells has 
been investigated [19]. However, the loading of a drug 
in exosomes via the microfluidics-based approach dem-
onstrated that microfluidics could represent a better 
performance in loading a drug in cells better than the 
other methods. This technique due to its capability of 
controlled and precise setup could be easily ordered to 
achieve enhanced drug loading [20]. Microfluidics repre-
sented several advantages, including simple and efficient 
setup, parameters that can be controlled such as flow rate 
and pressure, to maintain optimal conditions for drug 
loading. Loading of drug-assisted by microfluidics into 
liposomes in the treatment of various cancers has been 
investigated for several decades elsewhere [21].

Classification of glioma cancer
Based on the world health organization (WHO) criteria, 
glioma is histopathologically classified into 4 grades; The 
main glioma types include pilocytic astrocytoma (grade 
I), anaplastic astrocytomas (grade II), oligodendroglio-
mas (grade III), and glioblastomas or isocitrate dehy-
drogenase (IDH) (grade IV) as the most progressive and 
lethal subtype of glioma with inferior prognoses [22, 23]. 
Several mutations have been identified within IDH that 
typically involves young patients who have prior second 
or third glioma tumors [24]. Most studies have indicated 
that the mutations occur at arginine 132 of IDH1 and the 
homologous arginine 172 of IDH2 [25].

IDH‑mutant astrocytic gliomas
Probably, IDH mutations are the initial genetic aberra-
tions occurring in a developing glioma. Nevertheless, 
data from the mice model showed that IDH mutation 
is not adequate for tumorigenesis [26, 27]. Additional 
mutations are usually found in IDH-mutant astrocyto-
mas within ATRX and TP53. ATRX mutation results in 
detectable loss of nuclear expression. This mutation plays 
a vital role in chromatin remodeling and regulation of tel-
omere length [28]. There are different genetic alterations 
related to progression from diffusing to anaplastic astro-
cytoma, and ultimately IDH-mutant glioblastoma. Such 
changes involve chromosomal 9p21 deletions (includ-
ing CDKN2B (encoding cyclin-based kinase inhibitor B 
called  p15INK4B), CDKN2A (encoding cyclin-based kinase 
inhibitors 2A called  p16INK4A, as well as ARF called 
p14ARF), 19q deletion, and various other chromosomal 
imbalances [27, 29].

IDH‑mutant and 1p/19q‑co‑deleted 
oligodendroglial tumors
Genetically, IDH mutation co-exists with whole-arm 
co-deletion of 19q and 1p chromosome, which refers to 
oligodendrogliomas. An imbalanced t(1;19) (q10;p10) 
translocation [30] leads to the latter co-deletion and bet-
ter prognosis for oligodendrogliomas.

In more than 95% of such tumors, activating mutations 
are observed in the TERT-promoter area, which results in 
aberrant expression of telomerase reverse transcriptase. 
Moreover, the CIC mutation is detectable in more than 
2/3 of patients, which inactivates the Drosophila capsi-
cum protein homolog (a transcriptional repressor) [31]. 
Approximately 1/3 of oligodendroglial tumors contain 
FUBP1 mutations (encoding far upstream element-bind-
ing protein 1, included in the regulation of MYC expres-
sion) [32]. NOTCH1 is the gene responsible for encoding 
the epigenetic regulators like SETD2 and phosphatidylin-
ositol 3-kinase (PI3K) pathway genes such as PIK3CA 
[33]. Genetic alterations which are connected to a pheno-
type of the prevalent aggressive disease include the 9p21 
deletions, activation of MYC signaling, and transcription 
factor 12 (TCF12) related mutations [34].

IDH‑wild‑type glioblastoma
In all age ranges people can be affected by IDH-wild-type 
glioblastomas, however, they occur predominantly in 
patients who have more than 50 years old. These tumors 
appear typically as ‘primary glioblastoma’. The charac-
teristics of lower-grade IDH-wild type glioblastomas in 
adult patients are similar to IDH-wildtype glioblastoma 
including the homozygous deletion or mutation of phos-
phatase and tensin homolog (PTEN), TERT-promoter 
mutations, monosomy of chromosome 10, homozygous 
deletion of CDKN2A, and CDKN2B [35, 36]. Mutations 
in the regions encoding for PI3K-regulatory subunit 1 
(PIK3R1), TP53, PIK3CA, and neurofibromatosis type 
1 (NF1) have been proposed as less-common changes. 
Amplification of Platelet-Derived Growth Factor Recep-
tor Alpha (PDGFRA), EGFR, and MET genes is also 
observed in IDH-wild-type glioblastomas. The CDK4 
and CDK6 cyclin-based kinase genes mediate the transi-
tion of the G1 phase of the cell cycle into the S phase; the 
MDM2 and MDM4 gene, encode proteins that inhibit the 
p53 activity [35, 37]. In almost forty percent of IDH-wild-
type glioblastomas, EGFR amplification is observed, and 
1/2 of these tumors also harbor a genetic rearrangement 
which leads to the removal of EGFR exons 2–7 [35, 37]. 
A druggable mutant protein is encoded by BRAF-V600E, 
which is found in about 50% of epithelioid glioblastomas 
[37].
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IDH‑mutant glioblastoma
This type of gliomas shares a similar molecular profile as 
IDH-mutant astrocytomas such as frequent ATRX and 
TP53 mutations, along with a G-CIMP53. Compared to 
G-CIMP-positive and IDH-mutant astrocytic gliomas, 
lower DNA methylation levels are found in a subset of 
patients, which is correlated to adverse outcomes [38].

Glioblastomas and progressive gliomas
H3K27M mutant diffuse midline glioma is typically 
located in the thalamus, spinal cord, or brain stem 
[39]. The genetic hallmark of such tumors is the K27M 
mutation in HIST1H3B/C or the histone-H3-encod-
ing genes H3F3A [40]. These mutations globally reduce 
the cellular trimethylation of histone H3 at lysine 27 
(H3K27me3)  through PRC2 impaired recruitment and 
inhibiting the histone-lysine N-methyltransferase EZH2 
[41, 42]. Activin A receptor type 1 (ACVR1) gene muta-
tions are carried via 20% of DIPGs; however, FGFR1 
alterations are mainly associated with thalamic tumors 
[43, 44].

Glioma molecular biomarkers
According to the WHO classification of glioma (as 
of 2016), C11orf95–RELA fusion, IDH1/2 mutation, 
H3-K27M mutation, and 1p/19q deletion are catego-
rized as diagnostic biomarkers defining distinct gli-
oma entities. Further diagnostic information could be 
provided by other biomarkers such as nuclear ATRX 

expression loss, BRAF fusion or mutation, TERT-pro-
moter mutation, and H3-G34 mutation [36]. Examples 
of gene mutations documented in glioma are listed in 
Table 1. Several predictive biomarkers are described for 
glioma patients, which could be helpful in anti-glioma 
treatment planning and prognosis. In this regard, the 
methylation of MGMT-promoter predicts the benefits 
from chemotherapy with alkylating-agent in IDH wild 
kind glioma patients, chiefly in older patients [45, 46]. 
This methylation typically happens homogeneously 
within various sites in the patients with glioma. None-
theless, secondary temozolomide resistance could be 
developed by tumors with the methylation of MGMT-
promoter due to the mutations which drive tumor 
recurrence and clonal evolution [47]. For instance, a 
hypermutator genotype can be raised by mutations in 
DNA-mismatch-repair genes. Regardless of the clini-
cal significance of the methylation of MGMT-promoter, 
there are still challenges in diagnostic testing of this 
genetic change. Heterogeneous methylation of MGMT-
related CpG sites within various tumors, give rise to 
uncertain thresholds for positive results in tumors with 
methylation. This uncertainty promotes the borderline 
or poorly discoverable MGMT, and exploitation of non-
standardized diverse examining approaches [48]. The 
1p/19q co-deletion independently predicts the benefits 
of adding PCV chemotherapy to upfront irradiation 
treatment in patients with anaplastic glioma. A decent 
survival rate is reported in the subjects with 1p/19q 

Table 1 Examples of gene mutations implicated in glioma

Molecular Markers Type of mutation and alteration Type of tumor Sample WHO grade Prevalence 
in patients 
(AACR)

Refs.

1p/19q Deleting long arm of Ch. 19 and 
short arm Ch. 1

Oligodendrogliomas 360 patients II, III 12.5% [194]

Atrx Deletion Low grade and secondary 
GBM and

Glioma patients I, II 2.42% [195]

BRAF Fusion gene KIAA1549:BRAF Pilocytic Astrocytomas – III 8.47% [196]

CDK4 Amplification Proneural – IV 3.19% [197]

IDH Missense mutation at arginine 132 
or 172

Secondary glioblastoma and 
oligodendrogliomas

149 GBMs II, III, IV 25.88% [194]

MET Amplification Mesenchymal Glioma patients III, IV 3.12% [198]

MGMT Promoter methylation Glioblastoma and Low–Grade 
Gliomas

52 patients I, II 3.21% [197]

NF1 Deletion Mesenchymal and Pilocytic 
Astrocytoma

– I 14.96% [197]

PDGFR Amplification Proneural GBM patients – 7.66% [199]

PTEN Deletion Glioblastoma – IV 21.97% [197]

PI3K Activation mutation Glioblastoma – IV 14.7% [197]

TERT Promoter methylation Primary GBM and Oligodendro-
glioma

3,477 patients II, III 32% [200]

H3F3A H3-K27 trimethylation Pediatric (children) Glioma patients IV 3.69% [195]
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co-deletion and those with IDH-mutant gliomas. There 
is little information on the basic molecular mechanisms 
of this favorable treatment response [49]. Hu et  al. 
used the Meta-ANOVA method to evaluate the effect 
of 1p/19q co-deletion on OS and PFS by synthesizing 
the results in multivariable analyses in previous studies. 
Their results indicate that 1p/19q co-deletion had a sig-
nificant protective effect on the prognosis of II and III 
oligodendrogliomas. Patients having 1p/19q co-dele-
tion and without IDH-1 mutation have a 91% reduction 
in the hazard of death compared to patients without 
co-deletion and with IDH-1 mutation. After adjusting 
for age, the extent of resection, and adjuvant therapy, 
patients with 1p/19q co-deletion and a total resection 
have an 81% reduction in hazard of mortality compared 
to patients without both co-deletion and total resec-
tion. In addition, patients with 1p/19q co-deletion and 
younger age (less than or equal to 40) have a 71% reduc-
tion in the hazard of death compared to patients with 
no 1p/19q co-deletion and older than 40 years [50].

Role of exosomes in the detection and treatment 
of glioma cancer
Exosomes play a key role in the establishment and evo-
lution of intercellular signaling pathways [51–54]. The 
primary proteins on the endosomal vesicles includ-
ing the CD9, CD81, and CD82, could also be found on 
the surface of the exosomes. These extracellular vesicles 
could carry nucleic acids, proteins, lipids, and metabo-
lites. Intraluminal vesicles (ILVs) are eventually released 
as exosomes (~ 40 to 160 nm in diameter) via exocytosis 
following MVB fusion to the plasma membrane [55]. This 
process results in the net synthesis of a mixed population 
of exosomes for each cell throughout time. Exosome-
derived miRNAs are the most abundant and essen-
tial biomolecules that play a key role in tumor control 
[56–58]. The presence of a large number of circulating 
exosomes, as well as exosomal cargo in the cancer micro-
environment indicate that these subcellular secretory 
nanoparticles may play a role in the creation of intricate 
cross-talk systems in tumor initiation, development, and 
dissemination (See Fig. 1 for more details).

Fig. 1 The exosome and exosomal microRNA role in glioma therapy
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Due to the wide range of heterogeneity and com-
plexity of morphology, molecular treatment and clas-
sification of GBM is an intricate process [59]. Recently, 
research regarding the role of exosomes in the formation 
of gliomas has garnered a lot of attention [60]. Tumor 
angiogenesis and migration [61] are promoted by the 
production of glioma exosomes, proliferation of Glioma 
cells, [62], regulation of tumor intrusiveness, and induc-
tion of signaling pathways. Incidence, progression, and 
treatment unresponsiveness of glioma are all affected by 
GDEs. Tumor cells, fibroblasts, and immune cells, which 
compose the tumor microenvironment (TME), are all 
involved in the resistance of glioma to different thera-
pies [63]. Inside the TME [64], cellular communication 
between the tumor and its surrounding is primarily done 
by mixtures of microbubbles made of cellular membrane 
or originating cells. Exosomes play significant functions 
in the immunosuppression, induction, intrusion, metas-
tasis, and treatment unresponsiveness of cancers [52, 
65]. Exosomes derived from U251 human glioma cells 
include diverse proangiogenic elements which enhance 
endothelial cells (ECs) growth, immigration, and lumen 
construction [65]. Furthermore, GDEs control the angio-
genic ability of EC by increased or decreased expression 
of miRNA. Xu et  al. have declared that the angiogenic 
potential of ECs is induced by exosomes produced by 
glioma stem cells (GSC). These exosomes boost the lev-
els of miR-21, proangiogenic growth factor, and vascu-
lar endothelial growth factor (VEGF) [66]. Moreover, 
Yue et al. have reported that the sensitive cells lose their 
radiation sensitivity due to the secreted exosomal miR-
301a from GBM cells in hypoxic conditions. This prop-
erty is rooted in the ability of miR-301a to regulate the 
Wnt/β-catenin pathway and targeting of anti-oncogene 
TCEAL7. Therefore, the Exo-miR-301a/TCEAL7 signal-
ing pathway could become a novel target to overcome the 
radiotherapy resistance in GBM patients [67]. Based on 
the study conducted by Zeng et  al., exosomal miRNAs 
may contribute to TMZ resistance in GBM cells [68]. The 
expression of miR-151a was measured in two GBM cell 
lines, which are resistant to TMZ. Increased resistance 
to TMZ is correlated to the lower expression of miR-
151a. The extent of chemo-resistance within the GBM 
tumors is correlated with the number of exosomes that 
contain the miRNA-151a in CSF. Thus, one non-invasive 
strategy to assess the extent of chemo-resistance would 
be the sampling of exosomal miR-15 as ‘liquid biopsy’. 
Exosomes could be introduced as a new approach to treat 
the refractory GBM tumor [68]. MiR-155HG/miR-155 is 
a vital factor in the progression of GBM, and suppress-
ing this factor by NSC141562 might be used for GBM 
treatment [69]. Shi et  al. have found that one approach 
to impede the growth of non-small cell lung cancer could 

be the targeting of LHX2 by miR-1238, which acts as a 
tumor inhibitor [70]. Yin et  al. have revealed that over 
expressed miR-1238 has a key role in the resistance 
acquired against TMZ in GBM patients [71, 72]. Aside 
from the prognostic significance of miR-1238 as a bio-
marker of tumor chemotherapy evaluations, it could 
be a new target to treat GBM [71, 72]. Recent research 
has demonstrated that the miR-5096 could make glioma 
cells become more invasive. MiR-5096 could trigger the 
generation of filamentous pseudopodia via modulation 
of the K + channel Kir4.1. It also could increase the exo-
some secretion, which could result in GBM metastases 
[73]. GBM progression risk might be enhanced by miR-
148a according to The Cancer Genome Atlas (TCGA) 
[74]. The rate of GBM development might be elevated by 
mir-148a through increased signaling of CADM1/STAT3 
[75, 76]. Cai et al. have discovered that the body fluids of 
GBM patients had a higher number of exosomes carrying 
the miR-148a [77]. Progression and metastasis of T98G 
cancer cell line were inhibited by suppressing miR-148a. 
Moreover, the results of a luciferase test showed that miR-
148a could target CADM1. In samples obtained from 
GBM patients, a close correlation was observed between 
the upregulation of CADM1 and the exosomal miR-148a. 
MiR-148a antagonist elevates the STAT3 protein levels, 
which promote the activation of STAT3 signaling. Ulti-
mately, they discovered that exosomes carrying the miR-
148a could, activate STAT3 signaling through CADM1 
and could promote tumor progression and metastasis. 
They suggested that GBM prognosis and treatment could 
be performed using and targeting the miR-148a [77]. Guo 
et  al. have found that glioma cell in hypoxic condition 
releases exosomes, which contain miR-29a. It has been 
shown that miRNA containing exosomes (generated by 
gliomas) could make an immunosuppressive microenvi-
ronment in the tumor. Moreover, they also explained the 
regulatory mechanism behind the functional induction of 
MDSCs by exosomal miR-29a/miR-92a-based modulated 
[78]. MiR-21 is an interesting candidate to be targeted for 
GBM treatment and a well-known tumorigenesis inducer. 
Increased apoptosis rate and radio-/chemo sensitivity of 
tumor and decreased tumor proliferation are observed 
following the miR-21 suppression [79–83]. The possible 
effects of downregulated miR-21 on C6 glioma tumor cell 
lines are investigated by Monfared et al., [84].

GBM can also be inhibited by miR-133b [85]. The 
expression of exosomal miR-301a in serum of glioma 
patients has been evaluated compared to healthy cases. 
It has been observed that exosomal miR-301 is overex-
pressed in the patients. the amount of exosomal miR-
301a in serum could be a proposed indicator of variations 
in glioma patients [86]. Manterola et al. have shown that 
the presence of exosomal miR-301a in sera could be a 
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useful biomarker in GMB diagnosis and prognosis. They 
have evaluated the expression of exosomes extracted 
from the serum of 60 people, which were divided into 
healthy control and GMB patients by miRNA chip tech-
nology. They have shown that miR-564-3p, miR-320, and 
RUN6–1 had the highest variation, and RUN6–1 alone 
or both miRNAs and RUN6–1 could be utilized for the 
detection of GBM [87]. Their research also confirmed 
that miRNAs containing exosomes that are derived from 
cancer cells and sera could be used as a biomarker for 
prognoses and evaluation of CNS cancer [88]. Role of 
different exosomal microRNA in Glioma summarized in 
Table 2.

Exosome for regulation of Immune response 
in cancer and glioma
Most cancer cells express CD47 on the surface; CD47 
is known to bind to signal regulatory protein α (SIRPα). 
Binding CD47 with SIRPα on innate immune cells, such 
as macrophages and dendritic cells, initiate the “don’t eat 
me” signal that blocks phagocytosis and causes tumors 
to escape from phagocytosis [89]. Exosomes have also 
been engineered for increasing phagocytosis of cancer 
cells by macrophages. “don’t eat me” signal was achieved 
using CD47-expressing exosomes originating from 
human serum to further decrease nanocarrier clearance 
by the MPS. The immunocyte-derived exosomes express 
CD47 receptor on their surface that interacts with SIRPα 
which triggers the “Don’t-Eat-Me” signal & blocks their 
consumption by phagocytes. Koh et  al. [90] found that 
exosomes from SIRPα variant-transfected HEK293T cells 
enhanced the phagocytosis of CT26.CL25 and HT29 
tumor cells by macrophages and enhanced T-cell infiltra-
tion via antagonizing the interaction between CD47 and 
SIRPα, thereby inhibiting the growth of cancer in synge-
neic mice models.

Correlations between PTEN‑containing exosomes 
and GBM
PTEN has a critical role in the signaling pathway of PI3K 
[91]. An interesting issue about PTEN is its subcellular 
localization and its migration [92]. In various circum-
stances, such as cell differentiation and cell cycle arrest, 
PTEN localizes in the nucleus in addition to the cyto-
plasm [93, 94]. Stress and apoptosis-induced factors pro-
mote the PTEN build-up in the nucleus [95, 96]. Unlike 
their role in the plasma membrane and phosphatase 
dependent functions, enhanced chromosomes stability 
is associated with nucleus dependent functions of PTEN 
[97]. Tumor invasiveness is correlated to the absence 
of PTEN in nucleus, which implies the inhibitory pro-
cesses of PTEN accumulation in the nucleus [97–100]. 
The PI3K/AKT/mTOR is one of the central molecular 

pathways in the development of GBM. This pathway is 
generally suppressed by PTEN. Putz et al. have indicated 
that as a result of excessive tumor growth [101], the con-
tents of exosomes are not limited to miRs [102]. PTEN 
trafficking is suggested to be supported by exosomes. 
Generally, PTEN accumulates in nucleus or cell cyto-
plasm. A correlation between lack of nucleus PTEN and 
aggressiveness of tumor has been suggested. Migration of 
PTEN via exosomes is necessary to maintain the tumors-
free status. Internalization of exosomes, which contain 
higher amounts of PTEN, is promoted by Ndfip1 protein. 
Since Ndfip1 is suppressed in GBM, PTEN is inhibited 
from accumulation in the nucleus. This condition leads 
to boosted tumor cell survival and growth [103]. Other 
fundamental elements which facilitate the proliferation 
of GBM include human epidermal growth factor receptor 
2 (HER2), EGFRvIII, and PDGFR. Transfer of exosomes 
enriched with HER2, EGFRvIII, and PDGFR to unaf-
fected cells stimulates tumorigenesis [103]. The functions 
of PTEN-containing exosomes in GBM cell development 
are summarized in Table 3.

Recent detection methods for exosomal 
biomarkers
Intracranial biopsies, magnetic resonance imaging (MRI), 
and computed tomography (CT) scans are the conven-
tional methods for glioma diagnosis and prognosis [104, 
105]. However, these methods fail to detect the precise 
molecular signatures of glioma progression and meta-
bolic adaptation. Given these circumstances, the design 
and development of novel diagnostic tools to monitor 
the progression of glioma and its metabolic reprogram-
ming are imminently required. These tools could be used 
to detect the biomarkers (tumor-associated proteins and 
microRNA) of glioma- derived exosomes [62]. Mutant 
isocitrate dehydrogenase 1, mutant epidermal growth 
factor receptor variant III (EGFRvIII), tumor-specific 
mRNA and microRNAs, and microRNA-21 are among 
the biomarkers carried by glioma- derived exosomes 
[106, 107].

Highly sensitive detection of glioma exosomes and 
their biomarkers are suggested to improve the accuracy 
of diagnosis and prognosis [61, 88, 108]. In this regard, 
surface proteins of glioma-derived exosomes can be 
deemed reliable diagnostic biomarkers for a thorough 
understanding of glioma progression and metabolic 
adaptation. Detection tools such as surface-enhanced 
Raman scattering (SERS), localized surface plasmon 
resonance (LSPR), atomic force microscopy (AFM) and 
other advanced technologies can measure these mem-
brane markers [109–111]. These advanced methods are 
cost-effective, label-free, real-time, and highly sensitive.
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Table 3 The functions of PTEN-containing exosomes in GBM cell

Exosomal protein Sample Expression
status

Note(result) Target Refs.

HMGB1 – Up HMGB1 has various functions depend-
ing on where it is found: as an extracel-
lular protein, it downregulates SASH1, 
whereas as an exosomal protein, it 
upregulates SASH1

SASH1 [223]

IL-8, PDGFs, 
caveolin 1, and lysyl 
oxidase

Glioma patient Up During tumor progression, the exoso-
mal pathway could be a possible target 
for induction of hypoxia-dependent 
intercellular signaling

[61]

L1CAM Human T98G GBM cell line Up Cell movement, growth, and invasive-
ness are all increased

FGFR, FAK [224]

STC1, STC2 Human malignant glioma U373MG 
cells

Up Cell immigration is induced in a 
hypoxia-dependent way

[225]

EGFRvIII Human astrocytoma (U373vIII) Up - CD44, BSG, CD151, CD81
and CD82

[14]

VEGF-A Human glioma cell lines (U87, U251) Up In vitro by disrupting expression of 
claudin-5 and occluding permeability 
of BBB could be increased; exosomes, 
which are generated by GBM in 
hypoxic conditions, could stay active 
and make BBB to be more permeable 
according to in vivo study

claudin-5 and occluding [226]

CRYAB U373 glioma cells Up cryAB are generated and released 
via exosomes by U373 glioma cells 
both the amount of cryAB in cell and 
released levels by exosomes in cells are 
remarkably elevated when induced by 
IL-1β and TNF-α

[227]

PTRF Clinical glioma samples (tissue and 
serum)

Up In vitro proliferation of cell and gen-
eration of exosomes are stimulated 
when PTRF are over expressed. In 
cancer tissue and exosomes separated 
from glioma patients, positive linked 
between grade of tumor and expres-
sion of PTRF have been shown

Cavin1 [228]

IL13Rα2, IL13QD Glioma stem cells Up It has been proved that there is special 
binding between exosomes generated 
by tumor and IL13QD

[229]

CAV1 Glioblastoma U87 cells Up It seems that exosome uptake reliant 
on the presence of an intact ERK1/2-
HSP27 complex. CAV1 had a negative 
impact on ERK1/2 phosphorylationdur-
ing exosome internalization

p-ERK1/2 [230]

CLIC1 GBM cell lines Up CLIC1 which are generated by GBM-
derived CSCs or cell lines is released 
through exosomes is a protein in blood

GFP, FLAG-tagged [231]

TrkB GBM cell lines Up In regulation of GBM development and 
invasiveness has a vital role

YKL-40 [232]

N-glycoproteins Human plasma Up in exosomes which isolated from sera 
of both healthy and patients with gli-
oma 180 different N-glycoproteinswere 
enriched and recognized which cor-
respond to 329 N-glycosylation sites

Glycopeptide [233]

LOX, ADAMTS1,
TSP1, VEGF

Human glioma cell line, U87MG Up Expression of various genes in recipient 
glioma cells are stimulated

KCNJ3 [234]
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LSPR is a biocompatible biosensing technique, which 
allows for highly sensitive detection of biomarkers. The 
altered dielectric property of surroundings in the func-
tionalized sensing chip of LSPR, endows this technique 
with a high spatial resolution (26). These properties 
of LSPR lead to sensitive detection of single molecu-
lar interactions, such as antigen–antibody interactions. 
LSPR has recently been used for the detection of surface 
proteins (biomarkers) displayed on the exosomes derived 
from various tumors such as the glioma [9, 11, 112]. AFM 
is a versatile scanning probe microscope that has also 
been used for the detection biomarkers expressed on gli-
oma-derived exosomes [9, 113, 114]. Detecting the adhe-
sive forces between the functionalized probe tips and the 
sample, this technique provides nanoscale spatial resolu-
tion to measure single molecular interactions [115]. AFM 
is considered an amenable tool to analyze the biological 
samples, due to its ability for low damage imaging of soft 
samples in air and liquid such as exosomes [116]. SERS 
method has also been suggested for label-free exosome 
detection and exosome detection with SERS-tags from 
different sources including glioma [117–120]. SERS is 
among the nanomaterial-based optical biosensors, which 
is a powerful optical technique for biosensing and clinical 
diagnostic. Various other intriguing techniques have also 
been developed for rapid and sensitive exosome detec-
tion and discrimination. This growing field would bring 
about ultrasensitive detection tools for the exosome 
based diagnostics of cancers.

Machine learning in the prediction of exosome 
based biomarker
The wealth of proteomic and genetic information, which 
is carried by circulating exosomes, presents an enormous 
opportunity for cancer diagnostics. However, the exist-
ing heterogeneity between patients and within a tumor 
itself could confound the analysis of exosomal biomark-
ers. Targeting a single biomarker could be influenced 
by many complex processes and may not directly map 
to a specific disease state that is universally true for all 
patients. To address this challenge, a panel of molecu-
lar biomarkers could be measured to get a better profile 
of cancer state. Machine learning algorithms and train-
ing sets of data could be used to make sense of the mul-
tiple molecular biomarkers within a profile. These tools 
would extract a set of optimized linear discriminators 
from an existing panel of biomarkers. Artificial intel-
ligence (AI) based machine learning (ML) algorithms 
such as support vector machine (SVM) and decision 
tree model could also be used to identify exosome based 
potential biomarkers of various malignancies and predict 
the diagnostic and prognostic outcomes of pathological 
conditions [121–123]. In light of accumulated evidence, 

a combination of exosome analysis and deep learning 
promises a great-potential as a method for early stage 
cancer diagnosis [124].

Peptide functionalization of exosomes for glioma 
therapy
Peptides have recently been conjugated to various nano 
delivery systems (NDS) such as exosome for targeted 
delivery of therapeutics into cancer cites and in  vivo 
imaging and tracking. Peptide-based functionalization 
of exosomes has been extensively studied for cancer 
targeting as potential next generation biological tools. 
These exosomes show augmented ability to target spe-
cific receptors or mutant proteins, which are displayed 
on the surface of cancer cells [17]. Surface modifica-
tion of exosomes could play a pivotal role in the adapta-
tion of targeting ability against brain, breast, lung, liver, 
colon tumors, and heart diseases. It could also be used 
to understand theirs in  vivo fate including their phar-
macokinetics, uptake mechanisms, and bio-distribution. 
The surface of exosomes could be modified via various 
approaches. Physical approaches in exosome modifica-
tion such as sonication, extrusion, and freeze–thaw can 
change the surface properties of exosomes via mem-
brane rearrangements. On the other hand, biological 
approaches such as genetic and metabolic engineering of 
the source cells could express protein or cargo molecules 
of interest in secreted exosomes [125]. Lactadherin (LA), 
tetraspanins (CD63, CD81, CD9), glycosyl-phosphatidyl-
inositol (GPI), and lysosome associated membrane pro-
tein-2b (Lamp-2b) are among the most specific exosomal 
membrane proteins, which are involved in the function-
alization of exosome surface [125]. Furthermore, func-
tionalization of peptides onto the exosome surfaces may 
bring about substantial advantages for selective target 
binding and therapeutic effects for brain tumor treatment 
[126]. In this regard, biofunctional peptide-modified 
exosomes, as novel drug delivery systems, have been pre-
viously developed and successfully demonstrated [127]. 
Various studies have also practiced the peptide function-
alization of exosomes for glioma therapy [126, 128, 129]. 
Moreover, this approach could pave the way for the con-
jugation of exosomes with receptor-targeted peptides for 
cancer therapy and diagnosis. These properties unveil the 
huge potency of peptide functionalization of exosomes in 
future cancer treatment and diagnosis [17].

Exosome mediated metabolic reprogramming 
and immunomodulatory effects
The importance of glioma-derived EVs have already 
been highlighted as message carriers and mediators of 
immune escape. These EVs have the capacity to repro-
gram tumor-infiltrating immune cells [130]. Zeng et  al. 
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reported that glioblastoma-derived EVs could induce 
proliferation, self-renewal, and colony formation. There-
fore, they could facilitate the transformation of astro-
cytes via reprogramming of oncogenic metabolism and 
enhanced neoplastic growth of astrocytoma in a mouse 
allograft model. Induction of a shift in gene expression 
plays a crucial role in the reprogramming of astrocyte 
metabolism. This expression shift may be partly exerted 
via the EV-mediated transfer of full-length mRNAs 
encoding oxidative phosphorylation, ribosomal pro-
teins, and glycolytic factors [131]. Moreover, glioma 
cell mediated immunosuppressive functions could be 
broadened and amplified via various bioactive cargoes 
of glioma-derived EVs. In  vitro enrichment of glioblas-
toma-derived exosomes with inhibitory proteins could 
dramatically suppress immune cell activities. Azambuja 
et al. have demonstrated that internalization of glioblas-
toma-derived exosomes via macrophages makes them 
highly susceptible to reprogramming. M1 polarization 
to M2 was shown to be achieved by FasL-induced acti-
vation of the NF-κB pathway in macrophages. Moreover, 
blocking of NF-κB signaling has been shown to reverse 
the M2 phenotype to M1. Promoted glioblastoma pro-
gression has also been shown via glioblastoma-derived 
exosomes. The frequency of CD8 + T cells and M1 mac-
rophages has been decreased following the injection of 
glioblastoma-derived exosomes, while the M2 cells have 
been increased in the spleen. Protection of immune cells, 
especially CD8 + T cells and M1 macrophages, from the 
effects of glioblastoma-derived exosomes has emerged 
as a potential therapeutic target for future glioblastoma 
immunotherapy [132]. It has been shown that co-incu-
bation with glioblastoma-derived exosomes could trigger 
the acquisition of fibroblast shape by macrophages and 
expression of M2 markers, including Arginase-1, IL-10, 
CD206, and LAP. In contrast, M1 markers such as CD80, 
CD86, and INF-γ remain unchanged in comparison to 
controls with no glioblastoma-derived exosomes. In light 
of these observations, a more essential role could be pre-
dicted for glioblastoma-derived exosomes in metabolic 
reprogramming and the exertion of immunomodulatory 
effects.

Other treatment strategies for Glioma
Current approach and strategies for treatment of glioma
Three essential treatment of high-grade gliomas are max-
imal surgical resection, external beam radiation therapy, 
and chemotherapy. Many brain tumors with a multidis-
ciplinary team, including neurosurgeons, radiologists, 
pathology, radiology oncology and neuronecology are 
surgically removed. Pre-operative imaging is a mainstay 
for safe and effective surgical resection. Eloquent cortex 
is now mapped with several different imaging techniques 

including functional MRI (fMRI) [133], magnetoenceph-
alography (MEG) [134], navigated transcranial magnetic 
stimulation (nTMS) [135], and diffusion tensor imaging 
fiber tracking (DTI-FT) [136].

Although, low-grade gliomas were treated with exter-
nal beam radiation. In addition, the standard care for 
treatment of high-grade gliomas includes temozolamide 
an oral cytotoxic DNA-alkylating chemotherapy. There 
are many limitations to the current chemotherapeutics 
used for glioma. Systemically delivered drugs usually do 
not reach high concentrations within the CNS and at 
the tumor site. In addition, they lead to significant sys-
temic side effects such as myelosuppression. Novel drug 
delivery systems such as nanoparticles could improve 
the distribution of the agents directly to the brain tumor 
[137]. There are several approaches to direct CNS deliv-
ery including injection into the CSF or cyst cavity with 
an implanted reservoir, implantable controlled-release 
polymer systems into the surgical cavity, and catheter-
based convection-enhanced delivery (CED). Nonetheless, 
direct CNS delivery is influenced by many factors includ-
ing infusion rate, diffusion rate, and gradient, which is the 
influenced by the properties of the therapeutic, tumor, 
and interstitial space [138]. Moreover, developed research 
is in intra-tumoral gene therapy. Antiangiogenic strate-
gies targeting VEGF are currently undergoing extensive 
research and use for treatment of glioma [137]. Further 
strategies for glioma therapy are immunotherapy strate-
gies. Tumor-associated antigens are selectively expressed 
on tumor cells, but can also be found on normal cells that 
produce relatively weak immune response secondary to 
central tolerance [137, 139]. Nowadays, the treatment 
of gliomas will incorporate translational research efforts 
focusing on precision medicine, personalized care, and 
clinical trials. It seems that exosome therapy, as pointed 
out, offers a vast array of new technologies with many 
permutations for the treatment of glioma tumors.

Monoclonal antibodies in Glioma immunotherapy
A single B-cell clone mediates the production of mono-
clonal antibodies (mAbs). The mAbs could specifically 
bind to a single specific epitope, which makes them ame-
nable therapeutic and diagnostic moieties. Köhler and 
Milstein were the first to devise a method to produce 
mAbs, called hybridoma method [140, 141]. Using mAbs 
could improve the clinical outcomes and patient survival 
rates. Increased survival has mainly, been observed in 
both inflammatory and neoplastic diseases. The immune 
system recognizes the antigens displayed on cancer cells 
which would lead to eradication of pathogens, elimina-
tion of tumor cells, and helps to maintain homeostasis 
[142, 143]. However, some cancers such as GBM evade 
immune surveillance via overexpression of immune 
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checkpoint ligands. To overcome this phenomenon, a 
number of monoclonal antibodies have been introduced 
to target and suppress these immune checkpoints [144, 
145]. It has been reported that angiogenesis has pivotal 
role in supplying oxygen and nutrients to developing 
gliomas tumors. VEGF and endothelial, stromal, and 
tumor cells are the leading proangiogenic factors stimu-
lating to stimulate vessel growth and tumor expansion. 
Bevacizumab and Aflibercept applied against VEGF [146, 
147]. Developing novel strategies that enhance the abil-
ity of therapeutic antibodies crossing the BBB seems to 
be necessary. It has been suggested that the designing 
the conjugated nanoparticles with antineoplastic anti-
bodies have high specificity and increase the focal lev-
els of drugs. Since this approach requires the delivery 
of such nanoparticles into the tumor, conventional sys-
temic administration of them would be associated with 
decreased adverse events [148]. Contemporary, conjugate 
drugs have become a new strategy in anticancer therapy. 
For example, decreased size of therapeutic antibodies 
to conjugate with nanoparticles is introduced as a novel 
approach to alleviate their delivery into CNS tumors, 
which are poorly accessible.

The application of Bi‑specific antibodies in Glioma 
immunotherapy
Bispecific antibodies (bsAb) have been reported to over-
come the  insufficiencies  of the conventional treatments 
with mAbs. The main advantage of bispecific antibodies 
is the simultaneous binding possibility to two different 
antigens. Bispecific antibodies could target two differ-
ent receptors on the same cell inducing some changes in 
cell signaling [149]. There are two main types of bispe-
cific antibodies including IgG-like and non-IgG-like 
types[150]. Up to 60 bi-specific antibodies are under 
preclinical testing and more than 30 bispecific antibod-
ies are undergoing clinical trials simultaneously. Approxi-
mately two-thirds of bispecific antibodies are devoted 
to cancer therapy [151]. However, bispecific antibodies 
have also been introduced for other diseases and abnor-
malities such as autoimmunity, infections, hemophilia, 
and Alzheimer’s disease. The latest strategies to design 
bsAbs include phage display detection, antibody binding 
engineering, quaternary technology, knot-in-hole tech-
nology, ordinary light chain, CrossMAb technology, and 
also protein engineering. Every hybridoma cell expresses 
its own mouse monoclonal antibody specificity, thus the 
produced bsAb has two arms that are different and has 
their own specificities. Compared to normal antibodies, 
the bsAb produced by Quadroma has a longer half-life, 
higher solubility, and better stability. The disadvantage of 
the current method is linked to its low efficiency, due to 
the production of non-functional antibodies [151, 152]. 

In Knobs-into-holes (KiH) technique, the CH3 domain 
of an antibody is designed to enhance Fc hetero-dimer-
ization. The design of bispecific antibodies exploiting 
the KiH method needs special care about the distance 
between the alpha carbons, the desired conformation, 
and the type of the amino acid. The antibodies obtained 
by this method are highly stability, form correct heter-
odimers, and can be purified by protein A column [153, 
154]. Bispecific antibodies, can be developed by Cross-
MAb technology. They can be bi-, tri-, tetravalent and 
novel Fab-based antibody [155, 156]. We principally 
focus on the most recent advances in remedial bispecific 
antibodies for glioma disease. In the first phase clinical 
preliminaries, promising outcomes have been shown to 
utilize bispecific antibodies focusing on CD3 and a gli-
oma antigen [157, 158]. Of note, CD8 + T-cell invasion is 
correlated with delayed endurance of recently analyzed 
GBM patients [159]. Furthermore, practically 50% of the 
T cells penetrating GBM were CD56 + T cells [160], and 
anti-CD3 × anti-GD2 bispecific antibody had the option 
to divert T-cell cytolytic action to a neuroblastoma tar-
get [161]. The lack of improvement in the results of GBM 
cannot be inferred to the stem cells of glioma (GSC), 
which are small subpopulations of the cells involved in 
the invasion of the tumor, recurrence, and tolerance to 
chemo or radiotherapy. The population of GSC is chal-
lenging to both empirically define and treat. GSCS is 
described by self-forming and differentiation capacity 
to modify GBM heterogeneity [162]. Multiple strategies 
for GST based therapy are currently under investigation 
at preclinical and different clinical stages [163]. Recent 
studies have presented evidences to support the general 
origin of the GBM stem cell, and provide an overview of 
the standard limitations for GBM treatment. BsAb and 
related innovations have shown potential in reinforc-
ing the counter GSC impacts of latent immunothera-
pies. A bispecific counter acting agent against CD133 
and EGFRvIII was exhibited to be profoundly cytotoxic 
against GSCs (however not NSCs). It also was more suc-
cessful in drawing out OS in mice when contrasted with 
CD133 or EGFRvIII mAbs alone [164]. The expanded 
efficacy of bispecific antibodies may show more promi-
nent anti-GSC impacts and diminish poisonousness 
compared to the monotherapies [165, 166].

mRNA and DC vaccines for glioma cancer
Numerous studies are carried out to design vaccines for 
prevention of Glioma or its post-treatment recurrence. 
Vaccination with protein moieties mainly triggers the 
humoral immune response, while the fight against can-
cer needs both cellular and the humoral branches of the 
immune system. The pathogen-associated microbial pat-
tern molecules, described as “danger molecules” such as 
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lipopolysaccharides (LPS). These molecules are charac-
terized by the release of interleukin 12 (IL-12) [167–169]. 
DCs are antigen-presenting cells that mediate immune 
reactions [170, 171].

In contact with pathogen-associated microbial pat-
tern molecules, DCs switch into a potent immune-
stimulatory mode of action called “maturation”. This 
property distinguishes the “Audience” technology, from 
other DC-based cancer immunotherapy technologies 
[172]. Audience is cellular cancer immunotherapy, 
which uses dendritic cells against GBM. The recent 
phase II “GBM-Vax” trial has announced the Auden-
cel to be clinically ineffective as assessed by progres-
sion-free and survival of all patients [172, 173]. Erhart 
et  al. have also conducted a phase II Audencel trail. 
They have reported that although the Audencel seems 
to → stimulate the immune system, the outcomes of 
therapy are influenced by the state of the immune 
system [174] (Fig.  2). Novel strategies are imminently 
required for glioma treatments. In this regard, some 
studies have been devoted to the production of vaccines 

that target the Cytomegalovirus (CMV) protein pp65 
in GBM. It has been reported that more than 90% of 
GBMs express the CMV proteins [175]. Since these pro-
teins have specifically been detected in glioma cells and 
are absent in the surrounding normal brain, they could 
be deemed as tumor-specific immunotherapy targets 
[176]. CMV-specific DC vaccines could be employed 
against newly diagnosed GBMs. The pp65 CMV antigen 
has previously been targeted with autologous DC vacci-
nation following standard of care resection and chemo-
radiation [177]. Autologous DC vaccine production 
and administration have followed the same treatment 
schedule with TMZ adjuvant in all three trials [177]. 
Batich et al. have been used pp65-lysosomal-associated 
membrane protein (LAMP)-based mRNA DC vaccine 
and studied a median overall survival of 35  months, 
and progression-free survival of 31  months was dem-
onstrated for this vaccine [178]. DNA or RNA based 
vaccines [179] (especially non-coding RNA) [180] 
[179] are new vaccine platforms that are under intense 
investigation. Various studies have indicated the ability 

Fig. 2 Novel therapeutic strategies for patients with glioma. A Vaccines for glioma treatment or prevention of recurrence. Different types of 
vaccines include peptide, dendritic cells, DNA, RNA, and viral vaccine vectors, which are in various phases of clinical trials. B Tumor-associated 
macrophages (TAMS) therapy resulted in neoangiogenesis and the invasive growth of GBMs. C Car T cell therapy. D Monoclonal antibody therapy. E 
Cytokine therapy modulating the tumor microenvironment



Page 15 of 21Karami Fath et al. Cancer Cell International          (2022) 22:262  

of nucleic acid vaccines for the induction of immune 
response against different diseases. Several studies have 
shown that dysregulation of mir-137 is related to the 
aggressive progression of glioma [181, 182]. MiR-137 
regulates the proliferation of the glioma cells via the 
Akt/mammalian target of rapamycin (mTOR) signaling 
pathway [183]. It has also has been reported that miR-
137 inhibits cell growth by blocking the Wnt/b-catenin 
pathway and negative regulation of FOXK1 expression 
in glioma cells [184]. Wnt signaling as one of the key 
signaling pathway regulates human tumor growth and 
development, especially cell proliferation. The Wnt/b-
catenin signaling pathway have been confirmed in sev-
eral studies that mediates glioma growth [185].

Conclusion
Glioma therapy based on the role of exosomes in the 
initiation and progression of cancer has recently been 
well stabilized. The rapid development of drug resist-
ance in tumor cells has become the most significant 
challenge in cancer treatment. Hence, understand-
ing the common molecular mechanisms, which are 
involved in drug resistance and the complex interaction 
among different components of the tumor microenvi-
ronment, could lead to success in therapeutic strat-
egies. The primary studies were mainly focused on 
progressive cancerous cells. EVs, especially exosomes, 
are now classified as a part of a novel inter-cellular 
communication system. The exosome-based diagnostic 
is suggested as a non-invasive method to obtain a tissue 
sample without the need for surgery. Several exosomal 
molecular signatures have been used as a biomarker by 
detecting the oxygenation status and development of 
tumors. Exosomes could be detected in almost all body 
fluids and they could provide information about the 
parental cells that originally produced them. In light of 
these insights, exosomes have become a novel area of 
interest for researchers worldwide.

In this regard, we highlighted in this review the possi-
ble role of exosomes and exosomal microRNA in glioma 
cancer. We emphasized more on the key modulating 
molecules, clinical relevance to glioma, and associated 
signaling pathways. Finally, it was established that shar-
ing exosome contents with a possible role in chemo-
resistance could help to overcome the drug resistance. 
Although the isolation and purification of exosomes are 
yet to become standardized, large-scale use of exosomes 
in clinical trials is vitally necessary. Finally, by using can-
cer-derived exosomes in treating glioma, the comple-
ment analyses are needed to ensure they are free from 
angiogenic proteins that stimulate the initiation of angio-
genesis and metastasis in glioma.

Future directions
Several remarkable studies have revealed that exosome 
research is now expanding, an in-depth understanding 
of subcellular components and mechanisms involved in 
exosome formation and specific cell-targeting will bring 
light in their physiological activities. Currently, exosomes 
could be used as valuable diagnostic and prognostic 
biomarkers for their cell-lineage and state-specific con-
tents, and possibilities as therapeutic vehicles for drug 
and gene delivery. Exosomes and their biologically active 
cargos may offer prognostic information in a range of 
diseases, such as chronic inflammation [186], cardio-
vascular and renal diseases [187, 188], neurodegenera-
tive diseases [189], lipid metabolic diseases [190], and 
tumors. Exosomes potentially attract more attention as 
a programmable precision-guided drug delivery system. 
To this end, in addition to exosomes of native origins, 
researchers are trying to engineer exosomes for specific 
contents [191–193].
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