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circ_0061265 competitively binds 
to microRNA‑885‑3p to promote 
the development of gastric cancer 
by upregulating AURKA expression
Qian Fei1, Yuhe Lin1, Mi Zhang1, Jinshuai Guo2 and Yuan Liang3*    

Abstract 

Background:  Circular RNAs (circRNAs) represent a class of newly identified transcripts that act as competing endog-
enous RNAs (ceRNAs) to modulate gene expression by competing for the shared microRNAs (miRNAs) in humans. In 
this study, we set out to investigate the role of the circRNA-miRNA-mRNA ceRNA network in gastric cancer (GC).

Methods:  A differential analysis on GC-related circRNAs, miRNAs and mRNAs was performed utilizing the R language 
“limma” package, followed by GO and KEGG enrichment analyses. The Cytoscape visualization software was used to 
construct the circRNA-miRNA-mRNA ceRNA network. RT-qPCR, Western blot assay, immunohistochemistry, RNA pull 
down, RIP and dual luciferase gene reporter assay were conducted to verify the expression of the related circRNA, 
miRNA and mRNA and their interaction in GC tissues and cells.

Results:  The bioinformatics analysis screened 13 circRNAs, 241 miRNAs and 7483 mRNAs related to GC. Ten DEmR-
NAs (AURKA, BUB1, CCNF, FEN1, FGF2, ITPKB, CDKN1A, TRIP13, KNTC1 and KIT) were identified from the constructed 
PPI network and module analysis, among which AURKA was the most critical. A circ_0061265-miRNA-885-3p-AURKA 
ceRNA network was constructed. In vitro cell experiment demonstrated significantly upregulated circ_0061265 and 
AURKA, but downregulated miR-885-3p in GC. Moreover, circ_0061265 promoted the occurrence of GC by competi-
tively binding to miRNA-885-3p to regulate AURKA expression.

Conclusion:  Our work validated that circ_0061265 may increase AURKA expression by competitively binding to 
miRNA-885-3p, thereby promoting GC development.
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Background
Gastric cancer (GC) is amongst the most prevalent 
malignancies, with more than 1 million newly diagnosed 
cases globally and annually [1]. Despite the marked 

change in diagnosis and prevention, GC still ranked sixth 
in incidence and second in mortality on a global scale in 
2018 [2]. GC is a complex, heterogeneous disease, with 
established risk factors from diet and lifestyle, such as 
Helicobacter pylori infection, diet, smoking, and obesity 
[3] to genetic mutation and instability [4], such as E-cad-
herin gene, PALB2, BRCA1, and RAD51C mutations [5, 
6]. Laparoscopy-assisted distal gastrectomy and conven-
tional open distal gastrectomy have been suggested as 
standard treatment options for GC at an early stage [7]. 
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GC at the early stage is generally asymptomatic, whilst 
many patients are observed to be at the advanced stage 
at the time of diagnosis, on which the tumor is inoperable 
[8]. Thus, finding possible biomarkers for treating GC is 
of great importance.

Circular RNAs (circRNAs), referred to as a class of 
highly stable and conserved group of transcripts, can 
shape a closed continuous loop and are produced from 
non-sequential back-splicing of precursor mRNAs (pre-
mRNAs) in highly diverged eukaryotes [9]. Plentiful 
circRNAs have been suggested to modulate diverse bio-
logical processes, including cancer differentiation, devel-
opment and progression, as microRNA (miRNA) sponges 
and positive regulators of parental gene transcription 
[10]. It has been previously reported that circRNAs play 
an important role in GC [11]. In the present study, our 
bioinformatics analysis discovered circ_0061265 as a 
crucial differentially expressed (DE) circRNA in GC. A 
competing endogenous RNA (ceRNA) network indicates 
that transcripts, including circRNAs, their binding sites 
on miRNAs and compete for the control in a post-tran-
scriptional fashion, which is becoming a new paradigm 
of lncRNA regulation [12]. Of note, circRNA-miRNA-
mRNA ceRNA networks have been highlighted to exert 
important functions on GC development [13, 14]. Strik-
ingly, microRNA-885-3p (miRNA-885-3p) was revealed 
to suppress the GC cell proliferation and metastasis by 
downregulating cyclin-dependent kinase 4 expression at 
the post-transcriptional level [15]. Interestingly, it was 
found that miRNA-885-3p could result in downregula-
tion of Aurora kinase A (AURKA), thereby inhibiting 
docetaxel chemoresistance in lung adenocarcinoma [16]. 
AURKA is regarded as a proto-oncogenic mitotic kinase 
often upregulated in human epithelial tumors such as 
breast and ovarian cancers [17]. Intriguingly, overex-
pressed AURKA was found in patients with GC, which 
was accountable for metastasis of this malignancy [18]. 
Besides, suppression of AURKA could block the STAT3 
pathway to diminish GC cell survival [19]. Considering 
the above reports, we conducted the current study aim-
ing at exploring whether the circ_0061265-miRNA-885-
3-AURKA ceRNA network affects the development of 
GC.

Materials and methods
Ethical approval
The study was carried out under the approval of Ethics 
Committee of Cancer Hospital of China Medical Univer-
sity, Liaoning Cancer Hospital & Institute.

Acquisition of expression profiles
The GC-related circRNA microarray was obtained 
from the GEO database. Screening was performed from 

the construction of the library to August 2019, and the 
GSE78092 microarray was yielded, which contains 3 GC 
tissues and 3 adjacent normal tissues. RNA-seq data of 
GC were downloaded from The Cancer Genome Atlas 
(TCGA) database. miRNAseq and mRNAseq data were 
downloaded using a data transfer tool provided by GDC 
Apps. The miRNA sequencing data included 452 GC 
tissues and 45 adjacent normal tissues, and the mRNA 
sequencing data included 381 GC tissues and 32 adjacent 
normal tissues.

Differential analysis
Limma package was used to screen differentially 
expressed (DE) circRNAs (DEcircRNAs), with |log2 (fold 
change)|> 2.5 and adjusted p value < 0.01 serving as the 
screening criteria. In addition, edgeR software package 
was utilized to screen DEmiRNAs and DEmRNAs, with 
the threshold set at |log2 (fold change) > 1 and adjusted p 
value < 0.05.

Construction of ceRNA network
miRNA binding sites were predicted through the cir-
cRNA Interactome database (https://​circi​ntera​ctome.​
nia.​nih.​gov/). Based on the data from the TCGA data-
base, the significantly upregulated target miRNAs of 
circRNAs were intersected with the significantly down-
regulated DEmiRNAs, and the significantly downregu-
lated target miRNAs of circRNAs were intersected with 
the significantly upregulated DEmiRNAs. The overlap-
ping ones obtained through the intersection were used 
as candidate mRNAs. Furthermore, the significantly 
upregulated candidate mRNAs were compared with the 
significantly downregulated DEmRNAs in TCGA, and 
the significantly downregulated candidate mRNAs with 
the significantly upregulated DEmRNAs in TCGA. The 
circRNA-miRNA pairs and miRNA-mRNA pairs were 
combined to construct a circRNA-miRNA-mRNA regu-
latory network. Finally, the network was developed and 
visualized via the Cycloscape v3.6.1 software.

Protein–protein interaction (PPI) network construction 
and topological analysis
The interaction between DEmRNAs was evaluated using 
the String database (https://​string-​db.​org/) and a PPI net-
work was constructed. A combined score > 0.4 was used 
as the threshold criterion for the PPI network and a node 
degree of > 6 for screening hub genes. The MCC network 
topology algorithm in the cytoHubba application pro-
gram was utilized to predict the top 10 hub genes from 
the PPI network, and the Cytoscape software was used to 
visualize the interactive network.

https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://string-db.org/
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Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) functional enrichment analyses
With the aim of evaluating the function of DEmRNAs 
in the ceRNA network on the occurrence and develop-
ment of GC, the clusterProfiler package of R software 
was used for GO and KEGG functional analyses on the 
10 identified DEmRNAs. p < 0.05 was set as the threshold 
standard.

Clinical sample collection
GC and adjacent normal gastric tissues (≥ 5 cm from the 
tumor edge) were acquired from 28 patients with GC 
who underwent surgical treatment in Cancer Hospital 
of China Medical University, Liaoning Cancer Hospital 
& Institute from December 2015 to December 2016. All 
patients were followed-up for 3 years. GC patients with 
complete clinical data and no other complications who 
didn’t receive radiotherapy, chemotherapy, or immu-
notherapy before surgery were included. Patients were 
excluded from this research if they had other tumors. All 
tissues were stored in a refrigerator at -80℃ for later use.

Hematoxylin and Eosin (H&E) staining
The tissue specimens were washed with physiologi-
cal saline, fixed in 4% paraformaldehyde for 30–50 min, 
washed with water, dehydrated, cleared, waxed, embed-
ded, and sectioned. The tissue section was placed on a 
glass slide, dried in a thermostat at 45 °C, deparaffinized, 
treated with alcohol (high-concentration to low-concen-
tration) and then washed with distilled water for 5 min. 
The section was stained with hematoxylin (PT001, pur-
chased from Shanghai Bogoo Biotechnology Co., Ltd., 
Shanghai, China) for 5 min, rinsed in running water for 
3 s, differentiated with 1% hydrochloric acid ethanol for 
3 s, stained with 5% eosin solution for 3 min, dehydrated, 
cleared, and mounted, followed by observation under a 
microscope.

Cell treatment
The human GC cell line (NCI-N87) purchased from 
Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. 
(ZQ0060, Shanghai, China) was incubated in a 5% CO2 
incubator (saturated humidity. 37  °C) with 10% fetal 
bovine serum (12483020, Gibco-Invitrogen, Waltham, 
MA, USA)-containing Rosewell Park Memorial Insti-
tute-1640 (RPMI-1640, 11875127, Gibco-Invitrogen, 
Carlsbad, CA, USA) supplemented with 100 U/ml peni-
cillin and 100  mg/ml streptomycin (15140 ~ 122, GIB-
COBRL, Life Technologies, Gaithersburg, MD, USA/
InviGROND).

GC cells in the logarithmic growth phase under-
went transfection with negative control (NC) mimic, 

miR-885-3p mimic, short hairpin RNA (si)-NC + inhibi-
tor NC (co-transfected with NC of circ_0061265 
silencing and NC of miR-885-3p inhibitor), si-
circ_0061265 + inhibitor NC (co-transfected with spe-
cific circ_0061265 silencing vector and NC of miR-885-3p 
inhibitor), si-NC + miR-885-3p inhibitor (co-transfected 
with NC of circ_0061265 silencing and miR-885-3p 
inhibitor plasmid), si-circ_0061265 + miR-885-3p inhibi-
tor (co-transfected with specific circ_0061265 silencing 
vector and miR-885-3p inhibitor plasmid), si-NC, si-
circ_0061265, si-AURKA, oe-NC, or oe-circ_0061265. 
The above vectors/plasmids were constructed on the 
basis of pSilencer 4.1-CMV neo (G418 resistance) vec-
tor (VT1395, Unibio) or Pegfp-N1 (G418 resistance) 
(VT1110, Unibio) and by Shanghai Sangon Co., Ltd. 
(Shanghai, China). Briefly, 1 × 106 cells were treated with 
50  μM miR-885-3p mimic/inhibitor, si-circ_0061265 or 
NC in 1 μl of Lipofectamine™ 2000 reagents (11668019, 
Invitrogen, Carlsbad, CA, USA) according to the 
instructions.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR)
Total RNA was extracted from tissues or cells using Tri-
zol (10296010, Invitrogen) as per the manufacturer’s 
protocol. The concentration, purity and integrity of the 
obtained RNA were determined through Nano-Drop 
ND-1000 spectrophotometry and 1% agarose gel elec-
trophoresis. The primers were synthesized by Sangon 
(Shanghai, China) (Additional file  1: Table  S1). Using 
TaqMan MicroRNA reverse transcription kits (4366596, 
Applied Biosystems, Carlsbad, CA, USA) and specific RT 
primers of miRNA First Strand cDNA Synthesis (Tail-
ing Reaction) (GS0150, Biolab, China), miRNA specific 
complementary DNA (cDNA) was synthesized. The 
expression of miR-885-3p was determined with TaqMan 
miRNA Assay kits. The expression of miR-885-3p was 
standardized by U6. Based on the instructions of the 
reverse transcription kits (TransGen Biotech, Beijing, 
China), the cDNA template was synthesized via reverse 
transcription reaction in a PCR amplification instru-
ment. Real time RT-qPCR was performed using a fluores-
cent qPCR (ABI company, Oyster Bay, NY, USA). With 
GAPDH serving as the internal reference, and the relative 
expression of target gene was calculated by relative quan-
titative method (2−∆∆Ct).

Dual luciferase gene reporter assay
The bioinformatics website predicted that circ_0061265 
could bind with miR-885-3p. Artificially synthesized 
circ_0061265 or AURKA 3’UTR gene fragments were 
introduced into pMIR-reporter (Promega, Madison, 
WI, USA). Subsequently, the complementary sequence 
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mutation site of the seed sequence was designed on the 
basis of wild type (WT) AURKA or circ_0061265 and 
then constructed into the pMIR-reporter plasmid. The 
correctly sequenced WT and mutant type (MUT) lucif-
erase reporter plasmids were co-transfected with NC 
mimic and miR-885-3p mimic into NCI-N87 cells (Bnbi-
otech, Shanghai, China) for 48  h. Thereafter, the lucif-
erase activity was detected by means of Dual-Luciferase 
Reporter Assay System (Promega).

Western blot analysis
Total protein was subjected to extraction from GC tis-
sues with the help of RIPA lysate (P0013B, Beyotime), 
with protein concentration subsequently determined 
using BCA kits (20201ES76, Yeasen BioTechnologies 
co., Ltd., Shanghai, China). After being separated by 
means of PAGE, the protein (50  µg) was transferred to 
a polyvinylidene fluoride membrane (IPVH85R, Mil-
lipore, Darmstadt, Germany). Thereafter, the membrane 
was blocked with 5% BSA at the ambient temperature 
for duration of 1 h and probed with primary antibodies 
against AURKA (Abcam, Cambridge, UK, ab1287, rab-
bit anti-human, 1: 4000), and GAPDH (Abcam, ab8245, 
mouse anti-human, 1: 5000), followed by overnight incu-
bation at 4℃. Following development with enhanced 
chemiluminescence reagents, the protein was quanti-
fied with ImageJ 1.48u software, the analytical results of 
which was indicated by gray value ratio of target protein 
to internal reference protein was calculated.

RNA‑pull down
NCI-N87 was transfected with 50  nM biotin-labeled 
WT-bio-circ_0061265 and MUT-bio-circ_0061265. After 
48 h, the cells were collected, washed with PBS and incu-
bated for 10 min in a specific lysis buffer (Ambion, Aus-
tin, Texas, USA). The lysate was incubated with M-280 
streptavidin magnetic beads (S3762, Sigma, USA) pre-
coated with RNase-free BSA and yeast tRNA (TRNA-
BAK-RO, Sigma, USA). The beads were incubated at 4 °C 
for 3 h, washed twice with pre-chilled lysis buffer, three 
times with low-salt buffer, and once with high-salt buffer. 
The bound RNA was purified by Trizol, and then the 
miR-885-3p enrichment was detected by RT-qPCR.

RIP assay
The binding of circ_0061265 and miR-885-3p to AGO2 
protein was assayed according to the Magna RIP RNA-
Binding Pretein Immunoprecipitation kit (Millipore, 
USA). After pre-cooled PBS washing, the cells were lyzed 
using an equal volume of RIPA lysis buffer (P0013B, 
Beyotime) in an ice bath for 5  min, and centrifuged at 
14,000  rpm for 10  min at 4  °C followed by collection 
of the supernatant. Part of the cell extract was taken as 

input, and part was incubated with antibody for co-
precipitation. Specifically, 50 µL magnetic beads were 
washed and resuspend in 100 µL RIP Wash Buffer, and 
5  µg antibody was added for binding according to the 
grouping. Then, the magnetic bead-antibody complex 
was washed, resuspended in 900 µL RIP Wash Buffer, and 
incubated with 100 µL cell extract at 4 °C overnight. The 
sample was placed on the magnetic stand to collect the 
magnetic bead-protein complex. The sample and Input 
were digested with proteinase K and RNA was extracted 
for subsequent PCR detection. The antibody used in RIP 
was: AGO2 (ab32381, 1:50, Abcam, UK) and IgG (1:100, 
ab109489, Abcam, UK, NC).

Cell counting kit‑8 (CCK‑8) assay
CCK-8 kit (C0037, Beyotime, Shanghai) was adopted for 
cell proliferation detection. Briefly, cells were seeded into 
the 96-well-plate (1500 cells/well) with 3 parallel well 
prepared for each group. Optical density (OD) value at 
450 nm was detected every 24 h.

For cell viability assessment, cells were seeded into 
the 96-well-plate (1500 cells/well). After 24 h, cells were 
cultured with culture medium containing cisplatin of 
varying concentrations for 48 h, followed by cell viability 
detection.

Flow cytometry
Cells were seeded in 6-well plates at 2 × 105 cells/well. 
After 24 h of treatment, cells were washed once with 4 °C 
pre-cooled PBS, digested with trypsin, and collected in 
15  mL centrifuge tubes for centrifugation at 800  g with 
the supernatant discarded. According to the instructions 
of the cell apoptosis detection kit (556547, BD Biosci-
ence, USA), cells were resuspended in 500 μL binding 
buffer, and incubated with 5 μL AnnexinV-FITC and 5 μL 
PI in the dark for 15 min. Cell apoptosis was detected by 
flow cytometry (BD FACSCalibur).

Transwell assay
GC cells were digested, washed twice with PBS, and 
resuspended in serum-free medium DMEM (Gibco, 
USA). A total of 5 × 104 cells were seeded into the 
upper chamber of a 24-well chamber with 8.0 μm pores. 
DMEM medium containing 20% FBS was added to the 
lower layer of the chamber and incubated in a 37 °C, 5% 
CO2 incubator. After 48 h, the cells were fixed with meth-
anol for 30 min and then stained in 0.05% crystal violet 
(G1062, Solarbio, China) for 5 min. Migrated cells were 
counted and photographed.

Statistical analysis
Statistical analysis for all the data in the current study 
was implemented using SPSS 21.0 software (IBM Corp, 
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Armonk, NY, USA). Measurement data were derived 
from three independently repeated experiments and 
displayed as a form of mean ± standard deviation. Com-
parisons between GC and adjacent normal tissues were 
implemented by paired t-test, while other two-group 
comparisons were conducted by unpaired t-test. One-
way analysis of variance (ANOVA) combined with Tuk-
ey’s post hoc test was utilized for comparing data among 
multiple groups. Data among multiple groups at varied 
time points were compared by means of repeated meas-
ures ANOVA, followed by Bonferroni tests. Pearson cor-
relation analysis was used for observing the correlation 
of indicators. p < 0.05 referred to statistically significant 
difference.

Results
DEcircRNAs, DEmiRNAs, and DEmRNAs in GC samples were 
obtained through bioinformatics analysis
The circRNA microarray data of GC and normal tissues 
were retrieved from the GEO database, and GSE78092 
dataset was obtained. Next, differential analysis was per-
formed using Limma package, which identified 13 DEcir-
cRNAs (5 upregulated circRNAs and 8 downregulated 
ones) (Fig.  1). The information of the 13 DEcircRNAs 
is detailed in Additional file 1: Table S2 and their struc-
tures are shown in Additional file 2: Fig. S1. Furthermore, 
the sequencing data of miRNAs and mRNAs (counts) in 
GC and adjacent normal tissues were obtained from the 
TCGA database. Subsequent differential analysis using 
edgeR package screened 241 DEmiRNAs (180 upregu-
lated miRNAs and 61 downregulated ones) and 7483 

DEmRNAs (4474 upregulated miRNAs and 3009 down-
regulated ones) (Fig. 2A, B).

Construction of circRNA‑miRNA‑mRNA ceRNA networks 
of GC based on targeting relationship prediction
In order to better understand the role of circRNAs and 
miRNAs in the ceRNA network of GC, a circRNA-
miRNA-mRNA (ceRNA) network was established. Thir-
teen circRNAs and 146 circRNA-miRNA pairs were 
retrieved from the Circinteractome database. After inter-
section with DEmiRNAs, 16 circRNA-miRNA pairs of 
were obtained, including 9 circRNAs and 13 DEmiRNAs. 
In addition, a total of 2920 intersecting mRNAs were pre-
dicted in the miRTarBase and TargetScan databases. The 
2920 mRNAs were overlapped with 7483 DEmRNAs, 
which screened 339 common DEmRNAs to construct the 
ceRNA network. Based on these circRNA-miRNA pairs 
and miRNA-mRNA pairs, a ceRNA network containing 9 
ceRNA nodes, 13 miRNA nodes and 339 mRNA nodes in 
GC was constructed (Fig. 3).

Reconstruction of circRNA‑miRNA‑mRNA in sub‑network
A DEmRNA-based PPT network was established, 
involving 40 nodes and 111 edges (PPI enrichment p 
value < 1.0e−16) (Fig.  4A). Subsequently, MCC net-
work topology algorithm in the cytoHubba applica-
tion program was adopted to predict the top ten hub 
genes from the PPI network. As a result, AURKA, 
BUB1, CCNF, FEN1, FGF2, ITPKB, CDKN1A, TRIP13, 
KNTC1, and KIT were obtained (Fig.  4B). Among 
them, AURKA ranked the first hub gene in the PPI 
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Fig. 1  The heatmap for the 13 DEcircRNAs in GC and adjacent normal gastric tissues obtained from the GSE78092 dataset
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network, suggesting that AURKA played a highly 
important regulatory role in GC. As revealed by Fig. 5, 
AURKA, BUB1, CCNF, FEN1, TRIP13, and KNTC1 
were markedly upregulated, whereas FGF2, ITPKB, 
CDKN1A, and KIT were remarkably reduced in GC 
tissues. Finally, a circRNA-miRNA-mRNA subnetwork 
(Fig. 6) was constructed based on the predicted top 10 
hub genes.

DEmRNAs mainly played a role in the signal transduction 
of GC and participated in the regulation of cell cycle
In order to evaluate the functions of DEmRNAs in the 
ceRNA network on the occurrence and development of 
GC, we performed GO and KEGG functional enrichment 
analyses on the identified 10 DEmRNAs using the clus-
terProfiler package, with p < 0.05 as the threshold stand-
ard. GO enrichment analysis showed that the mRNAs 
related to biological processes were mainly enriched in 
biological processes including cell cycle checkpoints and 
mitotic mitosis. In terms of cell components, the mRNAs 
were mainly enriched in chromosomes, centromeres, 
germ cell nucleus and other cellular components. As for 
molecular function, the mRNAs were enriched in molec-
ular functions such as protein serine/threonine kinase 
activity and phosphatidylinositol diphosphate kinase 
activity (Fig. 7A). KEGG analysis showed that the DEm-
RNA-related pathways mainly included various cancer 
pathways such as GC, PI3K-Akt signaling pathway, pro-
gesterone-mediated maturation of oocytes, cell cycle, etc. 
(Fig. 7B).

circ_0061265 upregulated AURKA expression 
by competitively binding to miR‑885‑3p in GC
The promoting function of AURKA on tumor growth 
and cell survival has been signified [20]. Data from 
RT-qPCR displayed significantly higher expression 
of circ_0061265 and AURKA and lower miR-885-3p 
expression in GC tissues in relation to in the adja-
cent normal tissues (Fig.  8A). Pearson correlation 
analysis demonstrated a negative correlation between 
circ_0061265 and miR-885-3p, but a positive correla-
tion between circ_0061265 and AURKA (Fig.  8B, C). 
Observation from HE staining revealed that nodal 
cells in GC tissue were arranged disorderly and infil-
trated (Fig. 8D). Besides, the markedly elevated expres-
sion of AURKA in GC tissues was observed (Fig.  8E). 
Through bioinformatics database, the binding site 
between circ_0061265 and miR-885-3p was predicted 
(Fig.  8F) which was also confirmed through luciferase 
assay that the luciferase activity of GC cells express-
ing circ_0061265 WT after co-transfection with miR-
885-3p mimic was significantly lower than that of the 
control, while no significant difference was seen after 
co-transfection of GC cells expressing circ_0061265 
MUT with miR-885-3p mimic (Fig. 8G).

Binding sites between miR-885-3p and AURKA were 
also predicted through TargetScan database (Fig.  8H), 
which was validated by luciferase assay that after co-
transfection with miR-885-3p-mimic, the luciferase 
activity in GC cells expressing AURKA 3’-UTR WT 
showed a significant decline compared to that in the 
control; however, co-transfection of AURKA 3′-UTR 
MUT and miR-885-3p-mimic didn’t change the lucif-
erase activity of GC cells (Fig. 8I).
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RNA-pull down experiment showed that compared 
with the Bio-probe NC group, there was no signifi-
cant difference in the miR-885-3p enrichment in the 
Bio-MUT-circ_0061265 group, and the enrichment of 
miR-885-3p in the Bio-WT-circ_0061265 group was 
significantly increased, which indicated that Bio-Wt-
circ_0061265 could promote the enrichment of miR-
885-3p (Fig. 8J). RIP experiment showed that compared 
with IgG, the binding of AGO2 to circ_0061265 was 
significantly increased, suggesting that circ_0061265 
could bind to AGO2 protein, that is, miR-885-3p and 
circ_0061265 could directly bind (Fig. 8K).

Furthermore, we detected whether circ_0061265 
regulates AURKA by regulating miR-885-3p. As 
reflected by Fig.  8L, M downregulated circ_0061265 
reduced the AURKA mRNA and protein expression. 
Downregulation of miR-885-3p contributed to notably 
increased mRNA and protein expression of AURKA. 
miR-885-3p inhibitor partially rescued the effects of 
si-circ_0061265 on AURKA. Coherently, circ_0061265 
was capable of increasing AURKA expression by com-
petitively binding to miR-885-3p.
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Silencing AURKA suppressed GC cell malignant features 
and chemoresistance
In order to further study the effect of AURKA on GC 
cells, we silenced AURKA in NCI-N87 cells (Fig. 9A). As 
reflected by Fig.  9B–D, silencing AURKA could inhibit 
the proliferation and migration of NCI-N87 cells, and 
promote cell apoptosis. In addition, silencing AURKA 
also inhibited cell viability after cisplatin treatment 
(Fig.  9E). Conclusively, silencing AURKA inhibited the 

proliferation, migration, and chemotherapy resistance of 
GC cells and promoted their apoptosis.

circ_0061265 promoted malignant transformation 
and chemoresistance of GC by regulating AURKA 
through miR‑885‑3p
To verify that circ_0061265 affects GC cell function by 
regulating AURKA via miR-885-3p, we simultaneously 
intervened circ_0061265 and AURKA in NCI-N87 cells. 
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It was demonstrated that relative to oe-NC + si-AURKA 
treatment, oe-circ_0061265 + si-AURKA treatment 
led to enhanced AURKA (Fig.  10A). Additionally, oe-
circ_0061265 + si-AURKA treatment caused increased 

proliferation and migration but reduced apoptosis rela-
tive to oe-NC + si-AURKA treatment (Fig.  10B–D). 
Further, the viability of cells in the oe-circ_0061265 + si-
AURKA group was significantly increased after cisplatin 
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treatment (Fig.  10E). Therefore, circ_0061265 could 
reverse the inhibitory effect of silencing AURKA on the 
proliferation, migration and chemotherapy resistance of 
GC cells.

Discussion
As microarray and RNA sequencing technologies 
develop, an increasing number of circRNAs have been 
discovered and suggested to be of vital functionality 
in a wide range of human diseases [21], including GC 
[22]. It remains surprisingly limited about their ceRNA 
regulatory network in GC. Herein, we performed inte-
grative analysis of GEO and TCGA data to unveil cir-
cRNA-mediated ceRNA regulatory network in GC and 

performed in  vitro experiments to validate the ceRNA 
network.

Based on GEO and TCGA databases, we initially 
screened 13 DEcircRNAs, 241 DEmiRNAs and 7483 
DEmRNAs related to GC. Furthermore, we discov-
ered that 9 circRNAs (circ_0061265, hsa_circ_0008035, 
hsa_circ_0061274, hsa_circ_0023642, hsa_circ_0000026, 
hsa_circ_0077248, hsa_circ_0068610, hsa_circ_0040039 
and hsa_circ_0005927) participated in the ceRNA net-
work of GC, among which circ_0061265 was of highly 
importance. Some studies have reported abnormal 
expression patterns of circRNAs is in relation to the 
pathogenesis and prognosis of GC, suggesting that cir-
cRNA can be used as a tumor-related biomarker. For 
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instance, hsa_circ_0008035 was found amplified in GC, 
and siRNA knockdown of it was sufficient to retard GC 
cell proliferation and invasion [23]. Huang et  al. [24] 
revealed downregulated hsa_circ_0000026 in 3 GC tis-
sue samples in relation to normal gastric tissue samples. 
Additionally, Zhang et  al. [25] unfolded that circDLST, 
which was upregulated in GC tissues alongside the cell 
lines, played a contributory role to GC tumorigenesis and 
metastasis and was related to patient survival. Besides, 
Rong et al. reported that circPSMC3 could combine with 
miR-296-5p, then positively regulating the expression of 
PTEN, and suppressing the proliferative and metastatic 
potentials of GC [26]. However, no previous functional 
evidence of circ_0061265 in human cancers has been 
documented.

In addition, ten hub genes were respectively obtained by 
topological analysis using MCC, including AURKA, BUB1, 
CCNF, FEN1, FGF2, ITPKB, CDKN1A, TRIP13, KNTC1 
and KIT. Of note, AUKRA was ranked the first among these 
genes in the PPI network and showed significant high expres-
sion according to the results from RT-qPCR and immuno-
histochemistry. To our acknowledge, the involvement of 
AUKRA in the development of GC has been unfolded. For 
example, downregulation of AURKA by gossypin could lead 
to suppression of GC growth [27]. Besides, significant over-
expression of AURKA was revealed in human GC samples, 
the inhibition of which using an investigational small-mole-
cule specific inhibitor, alisertib, could markedly decrease the 
in vitro cell survival and in vivo xenograft tumor growth by 
diminishing the HDM2 protein level and inducing P53 tran-
scriptional activity [20]. Moreover, Hou et al. found that inhi-
bition of AURKA could result in more intensive apoptosis in 
GC by repressing p27 inhibition on Bax cleavage [28]. These 
reports are supportive of our finding regarding the onco-
genic role of AURKA in GC progression.

In the subsequent analysis, we elucidated the impact of 
circ_0061265-miRNA-885-3p-AURKA ceRNA network 
in GC, which demonstrated that circ_0061265 promoted 
the occurrence and development of GC by competitively 
binding to miRNA-885-3p to regulate the expression 
of AUKRA. A circRNA can bind with a miRNA, com-
monly known as “miRNA sponge”, which can reduce the 
cytoplasmic level of miRNA and release their respective 
downstream target mRNA, thus exhibiting tumor-sup-
pressive [29] or tumor-promoting [30] effects on human 
cancer. In the present study, RT-qPCR and dual luciferase 
gene reporter assay displayed that miRNA-885-3p could 
targetedly regulate AURKA in GC. Consistently, miRNA-
885-3p was found to decrease the expression of AURKA, 
which suppressed docetaxel chemoresistance in lung ade-
nocarcinoma [16]. It is noteworthy that miRNA-885-3p 
could decrease the expression of cyclin-dependent kinase 
4 at the post-transcriptional level, thereby inhibiting GC 

cell proliferation [15]. miRNA-885-3p could also disrupt 
angiogenesis through regulation of BMPR1A and repres-
sion of BMP/Smad/Id1 signaling, thereby suppressing the 
growth of colon cancer cell xenografts [31]. Intriguingly, 
another study unveiled that miRNA-885-5p could modu-
late YPEL1 to accelerate the proliferation and invasion in 
GC [32]. Importantly, there are many miRNAs involved 
in the regulation of AURKA expression [33–36]. In our 
study, it is demonstrated that the circ_0061265-miRNA-
885-3p-AURKA ceRNA network could affect the pro-
gression of GC.

Due to the limitations of experimental time and 
research funding, we have not been able to conduct in-
depth in vitro cell experiments to explore the effect of the 
circ_0061265/miR-885-3p/AURKA co-expression regu-
latory network on the proliferation, migration and inva-
sion of gastric cancer cells in vitro, which may limit the 
scientific value of our study. However, we will try to per-
fect the deficiencies of this research in future research.

Conclusion
In conclusion, circ_0061265 can promote the occur-
rence and development of GC, which is achieved by com-
petitively binding to miR-885-3p to modulate AUKRA 
expression (Fig.  11). Our work provides an enhanced 

Circ_0061265

miR-885-3p

AURKA mRNA

AURKA

Tumorigenesis
and progressionGastric cancerGastric cancer

Fig. 11  The molecular mechanism plot for the role of circ 
0061265-miR-885-3p-AUKRA ceRNA network in the occurrence and 
development of GC. miR-885-3p is significantly downregulated while 
circ_0061265 and AUKRA were upregulated in GC. circ_0061265 can 
promote the occurrence and development of GC by competitively 
binding to miR-885-3p to regulate the expression of AUKRA. The 
circ_0061265-miR-885-3p-AUKRA ceRNA network may be a key 
pathway involved in the occurrence and development of GC
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understanding of the circRNA-mediated ceRNA network 
in GC. Nevertheless, further validation of the network in 
GC initiation or progression is needed.
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