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Abstract 

Background:  A growing body of evidence has suggested the involvement of metabolism in the occurrence and 
development of tumors. But the link between metabolism and laryngeal squamous cell carcinoma (LSCC) has rarely 
been reported. This study seeks to understand and explain the role of metabolic biomarkers in predicting the progno‑
sis of LSCC.

Methods:  We identified the differentially expressed metabolism-related genes (MRGs) through RNA-seq data of 
The Cancer Genome Atlas (TCGA) and Gene set enrichment analysis (GSEA). After the screening of protein–protein 
interaction (PPI), hub MRGs were analyzed by least absolute shrinkage and selection operator (LASSO) and Cox 
regression analyses to construct a prognostic signature. Kaplan–Meier survival analysis and the receiver operating 
characteristic (ROC) was applied to verify the effectiveness of the prognostic signature in four cohorts (TCGA cohort, 
GSE27020 cohort, TCGA-sub1 cohort and TCGA-sub2 cohort). The expressions of the hub MRGs in LSCC cell lines and 
clinical samples were verified by quantitative reverse transcriptase PCR (qRT-PCR). The immunofluorescence staining 
of the tissue microarray (TMA) was carried out to further verify the reliability and validity of the prognostic signature. 
Cox regression analysis was then used to screen for independent prognostic factors of LSCC and a nomogram was 
constructed based on the results.

Results:  Among the 180 differentially expressed MRGs, 14 prognostic MRGs were identified. A prognostic signature 
based on two MRGs (GPT and SMS) was then constructed and verified via internal and external validation cohorts. 
Compared to the adjacent normal tissues, SMS expression was higher while GPT expression was lower in LSCC tissues, 
indicating poorer outcomes. The prognostic signature was proven as an independent risk factor for LSCC in both 
internal and external validation cohorts. A nomogram based on these results was developed for clinical application.

Conclusions:  Differentially expressed MRGs were found and proven to be related to the prognosis of LSCC. We 
constructed a novel prognostic signature based on MRGs in LSCC for the first time and verified it via different cohorts 
from both databases and clinical samples. A nomogram based on this prognostic signature was developed.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cancer Cell International

†Yujie Shen Qiang Huang and Yifan Zhang contributed equally to this work

*Correspondence:  hsuehchiyao@gmail.com; liang.zhou@fdeent.org; 
zhoulent@126.com

Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 
Shanghai 200031, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-022-02647-2&domain=pdf


Page 2 of 16Shen et al. Cancer Cell International          (2022) 22:226 

Background
Laryngeal squamous cell carcinoma (LSCC) is a most 
common cancer of the upper respiratory tract. Smoking 
and drinking are well-recognized risk factors for LSCC 
[1]. The Global Cancer Observatory reported more than 
170,000 new cases of laryngeal cancer and more than 
94,000 deaths due to laryngeal cancer in 2018 [2]. Despite 
the continuous improvement in the treatment and man-
agement, the prognosis for LSCC patients remains unsat-
isfactory and the mortality rate is still high [3]. Most 
LSCC cases are in the locoregionally advanced stage at 
the time of diagnosis [4]. The recurrence rate is high and 
the patients often develop resistance to chemotherapy 
or radiotherapy. The clinical outcome for patients with 
advanced laryngeal cancer remains poor [5]. Hence, iden-
tifying a clinically tractable biomarker that can effectively 
predict the prognosis of LSCC would greatly benefit both 
the clinicians and the patients.

Metabolism, a series of reactions within cells of living 
organisms to sustain life, involves many interconnected 
cellular pathways to ultimately provide energy for vari-
ous cell functions [6]. The current research on metabo-
lism aims to solve biological problems from the level 
of molecular characters and results [6]. Recent studies 
have shown that metabolic reprogramming regulates 
oncogenesis and tumor development. Gong et  al. have 
found that lipid metabolism reprogramming in cancer-
associated fibroblasts potentiates migration of colorec-
tal cancer cells [7]. In breast tumors, ADHFE1 and MYC 
signaling contributes to the accumulation of D-2HG, 
an oncogenic metabolite and potential driver of disease 
progression [8]. Tobacco smoking is shown to induce 
metabolic reprogramming in renal cell carcinoma [9]. 
These reprogramming activities can help to meet the 
bioenergy, biosynthesis, and redox needs of cancer cells, 
and thus are now considered as markers of cancer [10]. 
The expression of glutamic pyruvic transaminase (GPT, 
also known as alanine aminotransferase) can reflect the 
change of energy metabolism in the tissues of skeletal 
muscle, kidney, and liver [11]. In addition, GPT plays a 
critical role in the intermediary metabolism of glucose 
and amino acids, catalyzing the reversible transamina-
tion between alanine and 2-oxoglutarate to generate 
pyruvate and glutamate [12]. And its role in several can-
cers has also been proved [13–18]. There are two GPT 
subtypes in mammals, GPT1 and GPT2 [19]. GPT2 has 
been widely suggested as a critical factor for the tumo-
rigenesis of various cancers [14, 18]. However, there are 
few reports about GPT1 in cancer. Whether GPT1 can 

regulate energy metabolism and tumor cell prolifera-
tion, remains to unclear. Spermine synthase (SMS) cata-
lyzes the production of spermine from spermidine. The 
missense mutation of SMS may cause Snyder-Robinson 
Syndrome (SRS) [20, 21]. The overexpression of SMS 
can facilitate colorectal cancer cell growth [22], while 
the inhibition of SMS expression may be associated with 
TGF-β-induced growth inhibition in hepatoma cells [23]. 
Although metabolism in cancer has attracted more and 
more attention, little research has been done regarding 
the relationship between LSCC and metabolic markers.

In this study, we analyzed metabolomic profiling of 
LSCC patients and classified them into different groups. 
Through the mutual verification of different databases 
and tissue microarray (TMA), we developed and veri-
fied a novel prognostic signature based on metabolism-
related genes (MRGs), which might eventually provide 
better LSCC patient classification and guide treatment 
from the perspective of metabolism.

Methods
Data acquisition
We collected RNA-seq data and microarray data to 
prove the effectiveness of this study. During the process 
of integrating The Cancer Genome Atlas (TCGA) data-
base, we logged into the public database website (https://​
portal.​gdc.​cancer.​gov/) [24] and set the following crite-
ria: 1 “Repository”; 2 “Cases”; 3 “Primary Site: larynx”; 4 
“Program: TCGA”; 5 “Files”; 6 “Data Category: transcrip-
tome profiling”; 7 “Data Type: Gene Expression Quan-
tification”. Eventually, RNA-Seq data originated from 
123 LSCC samples, including 111 LSCC tumor samples 
and 12 matched normal samples, were downloaded and 
used for this study. The clinical information of 111 LSCC 
patients from TCGA is demonstrated in Additional file 7: 
Table S1. Also, we filtered the microarray data and down-
loaded GSE27020 dataset including 75 non-recurrent 
and 34 recurrent LSCC patients from Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/) [25] 
for the subsequent verification of the prognostic signa-
ture [26].

Identification of differentially expressed MRGs
We collected all the metabolic-related pathways and cor-
responding genes contained in the Gene set enrichment 
analysis (GSEA) database (Additional file  8: Table  S2) 
[27]. The expression of metabolic-related genes was 
extracted from TCGA and differential expression analy-
sis was conducted by “limma” [28] package in R software 
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(version: × 64 3.6.1). We set the fold change (FC) equal 
to the expression of genes in LSCC tissues divided by the 
expression in normal tissues. The screening conditions 
were |log (FC)|≥ 1 and an adjusted p-value < 0.01.

Pathway enrichment analysis and protein–protein 
interaction (PPI) analysis
In order to explore the biological functions of differen-
tially expressed MRGs, we performed Gene Ontology 
(GO) [29] and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) analysis [30]. Then, these genes were intro-
duced into String database (https://​string-​db.​org/) [31] 
to eliminate the genes with poor connectivity and the 
results were visualized through Cytoscape software (Ver-
sion 3.7.1) [32].

Construction and validation of a prognosis signature 
based on MRGs
We collected and downloaded RNA-seq data of 111 
LSCC patients and the corresponding clinical informa-
tion from TCGA database. After integrating the clinical 
information, we deleted 15 patients with unknown “stage” 
status and 6 patients with unknown “N” status. Finally, 90 
LSCC patients with complete clinical information were 
enrolled. Univariate Cox regression analysis was per-
formed to screen out prognostic MRGs. Least absolute 
shrinkage and selection operator (LASSO) analysis and 
multivariate Cox regression analysis were applied to con-
struct a prognostic signature. The risk score formula of 
the prognostic signature was as follows: Risk score = coef 
* Exp (geneA) + coef * Exp (geneB) + coefi * Expi (genei) 
[33, 34]. The 90 patients were divided into high- and low-
risk groups according to the median risk score (1.244). 
Kaplan–Meier survival analysis and receiver operating 
characteristic (ROC) curve were used to measure the 
reliability and validity of the signature as internal valida-
tion. The same analysis was applied in GSE27020 cohort 
as external validation to verify the effectiveness of the 
prognostic signature developed based on MRGs in pre-
dicting disease-free survival (DFS) of LSCC. Moreover, in 
order to further verify the universality of the prognostic 
signature, 90 patients in TCGA cohort were randomly 
divided into TCGA-sub1 and TCGA-sub2 cohorts in a 
1:1 ratio, and the same analysis method was applied.

Ethics statement and tissue specimens
After obtaining the approval from the Ethical Commit-
tees of Eye and ENT Hospital, Fudan University, a total 
of 62 paired samples from LSCC patients were collected 
between September 2020 and July 2021. LSCC and adja-
cent normal tissues, which were ≥ 3  cm distal to the 
incisal edge, were stored at − 80 °C and used for quantita-
tive reverse transcriptase PCR (qRT-PCR). The informed 

consents were released by the LSCC patients with their 
agreement.

Cell culture
The LSCC cell lines LSCC-31, FD-LSC-1, AMC-HN8 and 
Tu686 from LSCC patients were prepared and tested. 
LSCC-31 and FD-LSC-1 were cultured in BEGM (CC-
3170 Lonza), Tu686 in DMEM (Gibco), and AMC-HN8 
in RPMI-1640 (Gibco), with 10% fetal bovine serum 
(Gibco) at 37  ℃ in the presence of 5% CO2. LSCC-31 
and FD-LSC-1 cell lines were obtained from our lab [35], 
while Tu686 cell lines was obtained from Cell Bank of 
the Shanghai Institute of Cells, Chinese Academy of Sci-
ence (Shanghai, China). AMC-HN8 cell lines was a kind 
gift from Professor Kim SY of Samsung Medical Center, 
Korea. HuLa-PC, a cell line derived from posterior com-
missure of the larynx, was obtained from ATCC (Gaith-
ersburg, Maryland) and cultured in Dermal Cell Basal 
Medium (ATCC​® PCS-200-030TM).

qRT‑PCR
Total RNA was isolated from tissues and cell lines with 
TRIzol reagent (Invitrogen, Thermo Fisher Scientific), 
and then reverse transcribed using Evo M-MLV RT Kit 
with gDNA Clean for qPCR (AG11711). qRT-PCR was 
conducted using SYBR Green Premix Pro Taq HS qPCR 
Kit (AG11701) for mRNA with ABI 7500 Real-Time 
PCR System (Life Technologies, Shanghai, China), and 
the housekeeping gene GAPDH was used as an internal 
control. The primers were synthesized by Sangon Bio-
tech (Shanghai) Co., Ltd. The sequences of all primers are 
listed in Additional file 9: Table S3.

Immunofluorescence of tissue microarrays (TMAs)
The TMAs, including 72 paired patients with head 
and neck squamous cell carcinoma (HNSCC), were 
obtained from Eye and ENT Hospital, Fudan University 
(FDEENT). After filtering out patients with hypopharyn-
geal carcinoma and fragments, 51 patients with LSCC 
remained. Immunofluorescence staining was performed 
on 51 paired samples to detect GPT (ab236658, ABCAM, 
1:100 dilution), SMS (ab247063, ABCAM, 1:3000 dilu-
tion), and DAPI (G1012, Servicebio) expression. TMAs 
were scanned using the microscope slide scanner (Pan-
noramic MIDI: 3Dhistech) after staining with the appro-
priate antibodies. Antibodies against GPT (ab236658) 
and SMS (ab247063) were purchased from Abcam 
(Cambridge, MA, USA). All scanned cores or slides were 
individually detected and quantified using Image J soft-
ware [36]. GPT and SMS positive staining was calcu-
lated relative to DAPI staining. After integrating survival 
information, we conducted receiver operating charac-
teristic (ROC) curve and survival analysis of risk score 
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(GPT + SMS). ROC analysis was performed to identify 
the sensitivity and specificity of risk score and the opti-
mal cutoff value for predicting overall survival (OS). 
According to the cutoff value, patients were divided into 
two groups. The prognostic difference between the two 
groups was then analyzed using a Kaplan–Meier estima-
tor with a log rank test.

Independent prognosis analysis
In order to further evaluate the predictive ability of the 
prognostic signature, we used Cox regression analysis to 
analyze whether the prognosis signature could act as an 
independent prognostic factor for LSCC in both TCGA 
cohort and FDEENT cohort.

Building a nomogram based on the prognostic signature
Based on results of independent prognosis analysis, 
we built a nomogram by “rms” package to facilitate the 
application of the prognosis signature. Calibration curves 
and ROC curves were used to verify the validity of the 
signature.

Statistical analysis
All statistical analyses were carried out by using R soft-
ware (version: × 64 3.6.1) and GraphPad Prism 7 soft-
ware. A p-value < 0.05 was regarded as statistically 
significant. Differential expression analysis of MRGs 
were performed by Wilcox test. The survival analysis was 
completed using the log-rank test with a threshold of 
p-value < 0.05. Independent prognosis analysis was done 
by univariate and multivariate Cox regression analysis.

Results
Identification of differentially expressed MRGs
The flow chart of this study is presented in Fig.  1. We 
obtained the RNA-seq data of MRGs from TCGA and 
GSEA, and 180 differentially expressed MRGs were 
screened out by the filter conditions (Additional file 10: 
Table S4). The differentially expressed MRGs were visual-
ized in volcano plot (Fig. 2A) and the top 80 MRGs with 
significant adjusted p-value were shown in a heatmap 
(Fig. 2B).

Pathway enrichment analysis and PPI analysis
The results of GO analysis showed that the differentially 
expressed MRGs were mainly enriched in small molecule 
catabolic process, carboxylic acid biosynthetic process, 
organic acid biosynthetic process, cellular amino acid 
metabolic process, alpha-amino acid metabolic process, 
alcohol metabolic process, organic acid catabolic pro-
cess, carboxylic acid catabolic process, coenzyme bind-
ing, and fatty acid metabolic process (Fig.  2C). KEGG 
analysis demonstrated that the differentially expressed 

MRGs were significantly accumulated in Chemical car-
cinogenesis, Drug metabolism—cytochrome P450, Drug 
metabolism—other enzymes, Metabolism of xenobiot-
ics by cytochrome P450, Purine metabolism, Retinol 
metabolism, Biosynthesis of amino acids, Biosynthesis of 
cofactors, Glutathione metabolism, Glycolysis / Gluco-
neogenesis (Fig. 2D). At the same time, 173 MRGs with 
high connectivity were used to establish a PPI network 
(Additional file  5: Fig. S5). Three most important sub-
networks were screened out (Fig.  3A–D). The enrich-
ment results of sub-networks are presented in Additional 
file 11: Table S5. The results of pathway enrichment anal-
ysis showed that hub MRGs of subnetwork1 were mainly 
enriched in drug metabolism of cytochrome P450, sphin-
golipid metabolism, tyrosine metabolism glycolysis, fatty 
acid degradation and glutathione metabolism; hub MRGs 
of subnetwork2 were mainly enriched in arginine and 
proline metabolism, biosynthesis of amino acids, 2-oxo-
carboxylic acid metabolism, cysteine and methionine 
metabolism and glutathione metabolism; hub MRGs 
of subnetwork3 were mainly enriched in glycerolipid 
metabolism, arginine and proline metabolism, retinol 
metabolism, PPAR signaling pathway, fatty acid degra-
dation, glucagon signaling pathway, purine metabolism, 
pyrimidine metabolism, fatty acid metabolism and drug 
metabolism. These results indicated that the clustering 
of hub modules was mainly on metabolic functions and 
metabolic pathways. Moreover, the results verified that 
the MRGs that we identified were highly correlated with 
metabolic functions and metabolic pathways.

Construction and validation of a prognostic signature 
based on MRGs
In TCGA cohort, 14 prognostic genes were identified 
via univariate Cox regression analysis (Table  1). Subse-
quently, an MRGs-related prognostic signature was con-
structed by LASSO analysis (Fig. 4) and multivariate Cox 
regression analysis (Fig. 4C, Table 2). The risk score of the 
prognostic signature could be calculated as follows: (Exp 
GPT * − 1.922494852) + (Exp SMS * 0.772558166).

To evaluate the predictive effectiveness of the prognos-
tic signature, we divided the patients of the TCGA cohort 
(n = 90) into the high- and low-risk groups according to 
the median risk score. The overall survival (OS) of the 
high-risk group was poorer than that of the low-risk 
group (Fig. 5A). The area under curves (AUC) of TCGA 
cohort was 0.748 (Fig. 5B). The survival status, risk score 
and the hub MRGs expression of the two groups are dis-
played in Fig. 5C–E.

In the external validation (GSE27020 cohort, n = 109), 
the DFS of the high-risk group was poorer than that of 
the low-risk group (Additional file  1: Fig. S1). The DFS 
status, risk score and the hub MRGs expression of the 
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Fig. 1  The flow chart of this study
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two groups are displayed in Additional file 1: Fig. S1. The 
results suggested that the prognostic signature we devel-
oped was effective not only for stratification of laryngeal 
cancer survival, but also for recurrence patients with 
LSCC.

In the internal validation (TCGA-sub1 cohort, n = 45; 
TCGA-sub2 cohort, n = 45), the OS of the high-risk 
group was poorer than that of the low-risk group in both 
cohorts (Additional file  2: Fig. S2 and Additional file  3: 
Fig. S3). The AUCs of both cohorts are shown in Addi-
tional file 2: Fig. S2 and Additional file 3: Fig. S3.

Higher SMS expression and lower GPT expression in LSCC 
tissues indicating a poorer outcome
In order to verify the expressions of GPT and SMS, 62 
LSCC tissues with their paired adjacent normal tis-
sues and five cell lines were selected and tested by 

qRT-PCR. The LSCC tissues showed up-regulated SMS 
compared to the adjacent normal tissues, while GPT 
was opposite (Fig.  6A, B), which was in line with our 
findings from TCGA database (Fig.  6E, F). Consistent 
results were also observed in cell lines (Fig. 6C, D). In 
TMA (FDEENT cohort, n = 51), we noted that GPT 
protein (in pink) was located primarily in the epithe-
lium (Fig.  7A–F) and down-regulated in LSCC tissues 
compared to adjacent normal tissues (Fig.  7G). ROC 
curve showed that the AUC was 0.7963 (p = 0.0005) 
and a value of 0.355 was the best balance between the 
sensitivity and specificity for predicting OS (Fig.  7H). 
Survival analysis showed that low GPT expression 
was related to a lower OS rate among LSCC patients 
(p = 0.0287) (Fig. 7I). SMS protein was analyzed in the 
same way and the results are displayed in Additional 
file 4: Fig. S4.

Fig. 2  Differentially expressed MRGs and corresponding pathway enrichment. A Volcano plot of 180 MRGs, red indicating up-regulated MRGs and 
blue indicating down-regulated MRGs. B Heatmap of the top 80 MRGs with significant adjusted p-value. C GO terms with significant difference. D 
KEGG pathways with significant difference
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To validate our findings, we integrated GPT and SMS 
expression according to the prognostic signature (GPT 
* −  1.922494852 + SMS * 0.772558166). In FDEENT 
cohort (n = 51), we found that the AUC of risk score 
(GPT + SMS) was 0.798 (p = 0.0005) (Fig. 7J) and the OS 
of the high-risk group was poorer than that of the low-
risk group (p = 0.0387) (Fig. 7K). These results were also 
consistent with our findings.

Independent prognosis analysis
The FDEENT cohort and TCGA cohort were assessed 
by independent prognosis analysis. The results showed 
that the risk score and tumor length were independent 

prognostic factors in FDEENT cohort (Fig. 8A, B), while 
the risk score, gender and stage N were independent 
prognostic factors in TCGA cohort (Fig. 8C, D).

Building a nomogram based on the prognostic signature
Using the TCGA cohort, we built a nomogram (Fig. 8E) 
to make the prognostic signature more convenient for 
clinical application. Based on the score of subitems 
(including the risk score and other significant independ-
ent risk factors), the 1-, 3-, and 5-year OS of patients with 
LSCC could be predicted. Calibration curves indicated 
that the predicted value of the risk score was closer to 
the actual observation value with the increase in number 

Fig. 3  PPI analysis of different expressed MRGs. A Visualization of the PPI network, red indicating up-regulated MRGs and blue indicating 
down-regulated MRGs. B, D Three most important sub-networks
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of years (Additional file 5: Fig. S5). At the same time, we 
found that the AUC of the risk score was higher than that 
of the other significant independent risk factors in 1-, 3-, 
and 5-year OS (Fig. 8F–H).

Discussion
LSCC, which is of epithelial origin, is a most common 
tumor of the upper respiratory tract [37]. Poor living 
habits, such as smoking and alcohol consumption and 
imbalanced diet, are the main risk factors contributing to 
laryngeal cancer [38]. As an important feature of tumors, 
metabolic abnormality could adjust to the microenviron-
ment to meet the requirement of the constantly growing 
tumor cells [39]. Recently, more and more studies have 
focused on tumor metabolism to elucidate the patho-
genesis of LSCC. For example, Hu reported that PCK2 
down-regulation inhibited the invasion, migration, and 
proliferation of laryngeal cancer under hypoxia, and 
therefore could be used as a new strategy for laryngeal 
cancer therapy [40]. Using liquid chromatograph-mass 
spectrometry (LC–MS) technology and molecular biol-
ogy experiments, Zhao et al. found that fatty acid desat-
urase 1 (FADS1) promoted the progression of LSCC 
through activating AKT/mTOR signaling pathway [41].

In this study, we utilized several public databases and 
screened out prognostic metabolic markers of LSCC by 
bioinformatics analysis and molecular biology experi-
ment. First, differential expression analysis was con-
ducted and 180 differentially expressed MRGs were 
screened out. We noticed that the results of GO and 
KEGG pathway enrichment analyses were all related 
to metabolism, such as purine metabolism, glycome-
tabolism, lipid metabolism, and pyrimidine metabolism. 

Then, using the univariate Cox regression analysis, we 
found 14 MRGs significantly related to OS of LSCC 
patients (p < 0.01, Table 1). To avoid overfitting the prog-
nostic risk signature, we performed least absolute shrink-
age and selection operator (LASSO) analysis on TCGA 
cohort to further shrink the scope of gene screening [42], 
and the optimal values of the penalty parameter were 
determined by ten-fold cross-validation (Fig. 4B). Finally, 
by multivariate Cox regression analysis, two MRGs 
(GPT and SMS) conforming to the proportional hazards 
assumption were selected to build a prognostic signature.

Cellular metabolism plays a crucial role in tumor pro-
gression, and metabolic reprogramming is one of the 
hallmarks of tumor [43]. Cancer cells proliferate rap-
idly due to their special metabolic characteristics [44]. 
For example, gluconeogenesis, a crucial phenotype for 
glucose homeostasis of tumor cells, indicates that cells 
obtain energy from malnourished environment to sus-
tain their rapid proliferation by using non-carbohydrate 
carbon substrates to generate pyruvate [11]. Glutamic 
pyruvic transaminase (GPT), also known as alanine ami-
notransferase (ALT), participates in the intermediary 
metabolism of glucose and amino acids, catalyzing the 
reversible transamination between alanine and 2-oxoglu-
tarate to generate pyruvate and glutamate [12]. There are 
two GPT subtypes in mammals [19]. The role of GTP2 
in cancer has been reported in several studies [13–18]. 
PIK3CA mutations reprogram glutamine metabolism 
by upregulating GPT2 in colorectal cancer cells. Also, 
aminooxyacetate (AOA) suppresses tumor proliferation 
of colorectal cancer with PIK3CA mutations by inhibit-
ing enzymatic activity of GPT2 [14]. Moreover, GPT2 
promotes tumorigenesis of breast cancer cells by acti-
vating sonic hedgehog signaling [13]. GPT1 is generally 
considered to be a biomarker in liver diseases. Several 
studies have found a relationship between an elevated 
aminotransaminase (AST)/alanine aminotransaminase 
(ALT) ratio and a poorer prognosis in patients with 
hepatocellular [45], bladder [46], testicular [47], pros-
tate [48], pancreatic carcinomas [49] and head and neck 
cancer [50–53]. These results indicate that the decrease 
of GPT1 expression in serum is related to the poor prog-
nosis of oncology patients. Similarly, in this study, we 
found that lower GPT1 expression in LSCC tissues could 
indicate a poorer outcome. However, few studies have 
been performed on the regulatory role of GPT1 in can-
cer. Whether GPT1 has the similar function in regulating 
energy metabolism and tumor proliferation like GPT2 
needs in-depth investigation.

In addition to the metabolism of glucose and amino 
acids, polyamine metabolism is also critical in tumo-
rigenesis [54–56]. Spermine synthase (SMS), a highly 
specific aminopropyltransferase [57], is a biosynthetic 

Table 1  Univariate Cox regression analysis for the identification 
of prognosis-related MRGs

id HR HR.95L HR.95H p-value

SMS 2.735130093 1.415449884 5.285200633 0.002755758

PCYT1B 2.605329136 1.344789285 5.04743753 0.004540788

GPT 0.12408443 0.025648695 0.600301342 0.009474802

MGLL 2.051909647 1.17920387 3.570487943 0.010983847

PSPH 1.614292836 1.111175448 2.345211427 0.011964648

MBOAT2 1.79778777 1.124607055 2.873929031 0.014262082

FMO2 1.753322337 1.108047542 2.774374838 0.016477913

POLD1 0.274715851 0.09436419 0.799761 0.017797792

CES2 1.864178468 1.088970307 3.191236104 0.023164597

ALDH1A2 10.29092415 1.355280595 78.14110257 0.024203614

HPRT1 2.718622623 1.093636296 6.758105039 0.031348818

ACP5 0.56716861 0.33362033 0.964210521 0.036208727

FTH1 2.408171746 1.01888244 5.691815787 0.045221492

ACPP 2.242975417 1.005323978 5.004295956 0.048503256
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enzyme [58]. SMS overexpression can upregulate poly-
amine level, which maintains the growth and prolifera-
tion of tumor cells [54]. Moreover, SMS can block Bim 
transcription by reducing spermidine-mediated inhibi-
tion of FOXO3a acetylation, to maintain tumor growth 

[22]. In plasma of patients with triple-negative breast 
cancer, high mRNA expression of SMS is highly related 
to metastasis and poor prognosis [59], which is similar to 
our results. In our study, we found that SMS transcript 
level was up-regulated in LSCC tissues through RNA-seq 

Fig. 4  Building of the prognostic signature. A LASSO deviance profiles. B LASSO coefficient profiles. C Multivariate Cox regression analysis

Table 2  Multivariate Cox regression analysis for the identification of prognosis-related MRGs

id coef HR HR.95L HR.95H p-value

GPT  −  1.922494852 0.146241655 0.027088482 0.789509792 0.025437938

SMS 0.772558166 2.165298368 1.111887633 4.216718384 0.023095538
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data (Fig. 6F). Subsequently, we verified and observed the 
same SMS transcript level changes through qRT-PCR 
(Fig. 6B). In order to further explore the protein level of 
SMS, we conducted the immunofluorescence staining 
assay. Contrary to transcript level, SMS protein level was 
significantly down-regulated in LSCC tissues (Additional 
file 4: Fig. S4). Interestingly, SMS protein expression was 
not associated with the prognosis of LSCC patients, but 
the combined signature based on SMS and GPT was 
associated with the prognosis of LSCC patients. For the 
inconsistency between SMS transcriptional level and pro-
tein level, we considered the following possibilities: First, 
it is likely that there are other proteins or genes involved 
in the regulation of SMS expression, including interact-
ing proteins, miRNAs, lncRNAs and circRNAs. Second, 
this is possibly caused by different post-transcriptional 
modifications (i.e., polyadenylation of the 3′ end) and 
post-translational modification (i.e., acetylation, meth-
ylation, ubiquitination and phosphorylation). Finally, 

high-throughput RNA sequencing technique (RNA-seq), 
also named transcriptome sequencing technology, can 
only reflect the transcript level of genes. Therefore, it is 
reasonable and scientific to verify the RNA-seq results by 
qRT-PCR, rather than Western blot and immunofluores-
cence staining. We hope that these results may shed light 
on the relationship between spermine metabolism and 
LSCC.

Concordant with previous reports, SMS was up-reg-
ulated while GPT was down-regulated in LSCC tissues 
compared to adjacent normal tissues as verified by clini-
cal samples and multiple datasets in our study. Based on 
the expressions of SMS and GPT, LSCC patients were 
divided into the high- and low-risk groups. Five differ-
ent cohorts, including internal and external validation 
cohorts, were analyzed and tested to verify the accu-
racy and reliability of the prognostic signature. Based 
on the clinical information and the risk score, we per-
formed independent prognostic analysis in TCGA cohort 

Fig. 5  Internal validation of the prognostic signature in TCGA cohort. A KM survival analysis of high-risk and low-risk patients. B ROC curve of TCGA 
cohort. C Heatmap of GPT and SMS expression. D, E Survival status and risk score of patients
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(n = 90). The results showed that the risk score, gender, 
and stage N were independent prognostic factors in 
TCGA cohort. In order to demonstrate the robustness of 
the prognostic signature, independent prognostic analy-
sis was also performed in another independent cohort 
(FDEENT cohort). Again, the results revealed that the 
risk score was an independent prognostic factor of LSCC 
patients in FDEENT cohort. Although the results pro-
duced by different cohorts and clinical information were 
not exactly the same, the retrospective different cohorts 
suggested that the prognostic signature was reliable and 
independent and could classify the LSCC patients into 
two groups with different OS outcomes. Moreover, we 
performed Kaplan–Meier survival analysis based on the 
stratification of clinicopathological factors. As shown in 
Additional file 6: Fig. S6, the prognosis of high-risk group 
was significantly worse than that of low-risk group in 
almost all subgroups, suggesting the effectiveness and 
universality of the signature. Therefore, a nomogram 
based on the risk score was developed, which might con-
tribute to the decision making of LSCC treatment.

In the previous studies, Chen [60] and Li [61] developed 
metabolism-related signatures to predict the prognosis of 
head and neck squamous cell carcinoma, while Hu [62] 
identified a combined lipid metabolism-related signature 
for oral squamous cell carcinoma (OSCC). To our knowl-
edge, our study is the first to develop and validate an MRG 
signature for LSCC. This signature showed a higher AUC 
value than those by other studies based on TCGA cohort 
(Fig.  8I), indicating a higher sensitivity and specificity. 
In addition, compared with other prognostic signatures 
composed of multiple genes, this signature derived from 
two MRGs is easier to apply in clinical practice.

There are some deficiencies in our research. First, 
only five cohorts were incorporated to verify this prog-
nostic signature. In future study, more cohorts and 
LSCC patients should be included to reduce the devia-
tion of racial and geographic distribution. Second, 
our findings were based on retrospective studies, and 
prospective clinical trials should be conducted. More 
importantly, in  vivo and in  vitro experiments on GPT 
and SMS are needed.

Fig. 6  SMS and GPT expression in LSCC patients and cell lines. A GPT is down-regulated in LSCC tissues compared to adjacent normal tissues. B 
SMS is up-regulated in LSCC tissues compared to adjacent normal tissues. C GPT is down-regulated in LSCC cell lines compared to HuLa-PC, a cell 
line derived from posterior commissure of the larynx. D SMS is up-regulated in LSCC cell lines compared to HuLa-PC. E Relative expression of GPT in 
TCGA. F Relative expression of SMS in TCGA​
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Fig. 7  External validation of the prognosis signature in FDEENT cohort. A GPT immunofluorescence staining on TMA. B, C Merged 
immunofluorescence staining on F-1 T. D Overview of merged immunofluorescence staining on TMA. E, F Merged immunofluorescence staining 
on F-2 N. G Quantification of the immunofluorescence signals of GPT. H ROC curve of GPT prediction. I Survival analysis of GPT by the KM plotter in 
LSCC. J ROC curve of risk score (GPT + SMS) prediction. K Survival analysis of risk score (GPT + SMS) by the KM plotter in LSCC
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Conclusions
In summary, our study identified differentially 
expressed MRGs and constructed a novel prognos-
tic signature derived from MRGs in LSCC for the first 
time. Being able to distinguish LSCC patients with 

different risk scores, this novel signature could make 
precise prognosis of LSCC. A nomogram based on this 
prognostic signature was also developed, which may 
help in the clinical treatment of LSCC.

Fig. 8  Independent prognostic analysis and construction of a nomogram based on independent prognostic factors for predicting OS. A, B Results 
of univariate and multivariate Cox regression analysis of FDEENT cohort. C, D Results of univariate and multivariate Cox regression analysis of TCGA 
cohort. E Nomogram based on the independent prognostic factors of TCGA cohort. F–H ROC curve of independent prognostic factors in 1-, 3-, and 
5-year OS. I Comparison of prognostic signature with other models
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