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Abstract 

Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are 
the two most common factors in a breast cancer patient’s poor prognosis. Cancer stem cells (CSCs) are tumor cells 
that are able to self‑renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long 
non‑coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the abil‑
ity to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the 
development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways 
positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and 
guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer 
development and progression.

Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self‑
renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for 
overcoming lncRNA’s therapeutic resistance.
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Introduction
Breast cancer (BC) is the most frequently diagnosed can-
cer in women worldwide, and it is ranked as second in 
terms of cancer related death in women [1]. Advances 
in early diagnosis and therapy techniques have reduced 
BC death and to some extent, improved patient prog-
nosis and survival rate [2]. However, the emergence of 
drug resistance in BC patients has decreased the success 
rate of systemic therapies [3]. Cancer stem cells (CSCs), 
also known as cancer-producing cells, are characterized 
by the unique feature of self-renewal and differentiation 

into tumor-propagating cells [4, 5]. Approximately CSCs 
make up about 0.01–2% of all tumor cells in the body, 
which play a critical role in cancer initiation, progression, 
apoptotic endurance, and therapeutic resistance [6, 7]. 
CSCs first described in 2003 by Visvader and Linderman, 
describing CSCs role in acute myeloid leukemia (AML) 
[8].

Breast cancer stem cells (BrCSCs) can be formed from 
differentiated mammary cells due to disease-related 
mutations. The specific origin of BrCSCs has been a con-
tentious issue for decades, and it’s unclear where they 
come from. Exposure to environmental stimuli such 
as radiation causes genetic defects in non-malignant 
somatic cells and causes dedifferentiation of non-malig-
nant somatic cells. Microenvironmental stimuli also can 
trigger a malignant transformation of differentiated cells 
into BrCSCs. Removing CSCs from the body is seen as 
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a novel approach for the complete elimination of cancer-
ous tumors and their prevention from recurrence [9].

It is estimated that 90% of the human genome is trans-
lated into RNAs [10–12], and  less than two % of these 
transcripts are used to produce proteins [13]. Noncod-
ing RNAs (ncRNAs) are a class of genes that have lim-
ited  or no ability to code for proteins and  are linked to 
cellular functions and disease development. Based on 
their length, non-coding RNAs (ncRNAs) are classified 
into two main classes based on their sizes: long ncRNAs 
(lncRNAs) more than 200nt in length and small ncRNAs 
less than 200nt in length [14].

According to certain studies, CSCs’ activity is inti-
mately linked to the abnormal expression of lncRNAs 
in malignant tumors. For example, OCT4 [15], SOX2 
[16], KLF4 [17], and other stem cell-related pathways are 
regulated by many lncRNAs, which in turn affect CSC 
activities [18]. Furthermore, the control of miR-34a by 
lncRNAs, which were involved in tumor growth, was 
already reported in several studies to modulate CSC-like 
features in a range of malignancies [19, 20]. Recently, 
cancer-related research on lncRNA and CSCs is gaining 
growing attention. This study provides a comprehensive 
analysis of the current research status on lncRNAs and 
BrCSCs, their mechanisms of action, and the contri-
bution of lncRNAs to tumorigenesis in BC by regulat-
ing CSCs, which could be used as potential diagnostic 
biomarkers and therapeutic strategies. This review can 
motivate further research to validate the highlighted 
lncRNAs-CSCs role as potential diagnostic biomarkers 
and therapeutic strategies in BC patients.

LncRNAs in cancer biology
The first regulatory non-coding RNAs (ncRNAs) were 
discovered in bacteria in the 1980s, and then in most 
eukaryotic organisms. A few long noncoding RNAs 
(lncRNAs) such as H19 and Xist (X-inactive specific 
transcript) were identified prior to the genomic era, but 
they remained exceptions until the early 2000s [21]. They 
were later discovered to have five distinct origins: (A) a 
protein-coding gene undergoes structural damage and 
is transformed into a lncRNA; (B) chromosomal rear-
rangement brings two non-transcribed regions together, 
resulting in a lncRNA with multiple exons; (C) retro-
transpositional duplication of a noncoding gene produces 
either a functional retrogene or a nonfunctional retrop-
seudogene, both without encoding proteins; (D) two tan-
dem duplication events result in adjacent repeats within 
a noncoding RNA; and (E) transposon insertion results in 
a functional lncRNA [22].

The presence of 18,805 LncRNAs has been estab-
lished by GENCODE (release 40 (GRCh38.p13)), with 

about 39% of them found between genes and referred 
to as long intergenic ncRNAs (lincRNAs) [23]. Intronic 
lncRNAs, overlapping, and antisense are among the 
others [24]. They control a wide range of gene func-
tions  at the  transcriptional [25], post-transcrip-
tional [26], and epigenetic  levels [27] by interacting 
with  mRNAs, miRNAs, genomic DNA, and  proteins. 
Thus, lncRNAs play a role in gene expression regula-
tion, histone modification, chromatin remodeling, tran-
scription and post-transcription splicing regulation, 
and translation.

Their relation to tumorigenesis is dependent on 
abnormal expression in a variety of cancers, especially 
BC. Guide, signal, scaffold, and decoy are the main 
functions of lncRNAs [28] (Fig. 1). A number of lncR-
NAs can help regulate gene expression by directing 
the recruitment of transcriptional activators and sup-
pressors to specific genomic locations [29, 30]. Guide 
lncRNAs are essential for the organization and locali-
zation of components at certain genomic loci in order 
to regulate the genome [31]. For example, HOTTIP, 
XIST, MEG3, COLDAIR, KCNQ1OT1, ANRIL, and 
TUG1 are all lncRNAs that can act as guides for epi-
genetic modifier recruitment to their specific loci [32]. 
Additionally, signal lncRNAs are expressed in response 
to external stimuli at a specified time and location 
within the cell. An example of this paradigm is that 
certain lncRNAs have regulatory functions, whereas 
others are essentially by-products of transcribing. 
Signaling lncRNAs have been shown to interact with 
chromatin-modifying enzymes such as histone meth-
yltransferases to quiet their target genes by preventing 
their transcription or by forming heterochromatin [28]. 
Many lncRNAs may also function as scaffolding pro-
teins, attracting chromatin remodeling complexes such 
as the PRC1 (polycomb repressive complex 1) and the 
PRC2 to inhibit specific target  gene [33, 34]. In addi-
tion, several lncRNAs such as lncRNA ROR, DAPALR, 
and PANDA can serve as enhancer RNAs, have a role 
in stabilizing the looping and recruitment of regulatory 
transcriptional RNAs, cofactors, and RNA Pol II [35, 
36]. LncRNA decoys inhibit transcription by prevent-
ing a specific effector from interacting with its intrinsic 
target [28]. By trapping regulatory components includ-
ing miRNAs, altering chromatin subunits, and TF and 
restricting their availability, these lncRNAs indirectly 
regulate transcription process [37].

Since lncRNAs regulate gene expression, they have 
been connected to cellular mechanisms and diseases 
like  stem cell maintenance and cancer metastasis [38, 
39]. Perhaps this is because they can attach to DNA, 
RNA, or proteins.
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Long non‑coding RNAs and BrCSC renewal
The ability to self-renew through mitotic cell division 
and the ability to differentiate into specialized cell types 
are two of the most fundamental characteristics of stem 
cells. They can produce more undifferentiated stem 
cells due to the latter potential. The latter feature, on 
the other hand, allows the development of differenti-
ated cell types within an organ.

According to the CSC hypothesis, malignancies 
are caused by the transformation of stem or pro-
genitor cells capable of multilineage differentiation 
[40].  Although CSCs make up a small proportion out 

of the total tumor mass, their survival is dependent on 
this small cell population [41].

These cells, which have been given the designation of 
CSCs, exhibit characteristics of both stem cells and can-
cer cells. Self-renewal, differentiation, and the ability 
to form tumors are some of the characteristics of these 
cells. Firstly, Lapidot et al. revealed that human AML is 
organized as a hierarchical structure that is derived from 
primitive hematopoietic cells [42]. A decade later, this 
paradigm was used to study BC in NOD-SCID mice  by 
Al-Hajj et al., who uncovered a tumorigenic subpopula-
tion in the mice [43]. Published studies in the following 

Fig. 1 Transcriptional control via LncRNA
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years have demonstrated that CSCs are present in a wide 
range of cancers [44]. Later, Rosen and Jordan, showed 
that the Wnt, Notch, and Hedgehog (Hh) signaling path-
ways, which drive stem cell self-renewal can also control 
the functions of CSCs [45].

As cancer progresses, several factors are hypothesized 
to influence the characteristics of CSCs such as lncRNAs. 
Interestingly, lncRNAs have the potential to influence 
the CSCs to self-renew by modulating key cancer-related 
pathways through overexpression, deficiency, or muta-
tion. These pathways include the epithelial-mesenchy-
mal transition (EMT) [46], the Notch pathway [47], the 
Rho-GTPase system [48], and the NF-B cascade [49]. For 
example, EMT and BrCSC self-renewal has been shown 
to be induced by overexpression of linc00617, which 
decreases E-cadherin levels while elevating N-cadherin 
and Vimentin levels [50]. Furthermore, due to the enrich-
ment of the CSC fraction, BC cell populations that over-
express lincRNA are more likely to form mammospheres 
and become tumorigenic. It binds to the promoter of the 
Sox2 gene and activates its transcription by recruiting 
hnRNP-K to the promoter which promotes self-renewal 
ability of CSCs [51]. Figure 1 describes the roles of lncR-
NAs in BC cells that can either promote or inhibit gene 
expression.

Prognostic role of LncRNAs in BrCSCs
In stem cell biology, lncRNAs are emerging as key con-
tributors. LncRNAs have been identified to modulate 
pluripotency and  differentiation of embryonic stem 
cells (ESCs) and induced pluripotent stem cells (iPSCs), 
according to several studies. In addition, lncRNAs are 
becoming more significant adult stem cell regulators. 
OCT4, SOX2, KLF4, and PcG, all of which are criti-
cal in ESCs, have been found to be active in CSCs [52]. 
Depending on investigations on the existence and devel-
opment of BC, BrCSCs appear to be resistant to chemo-
therapy, radiation, and hypoxia [53–55]. Additionally, the 
tumorigenicity and invasiveness of BrCSCs play a signifi-
cant role in the initiation, proliferation, metastasis, and 
recurrence of BC [56].

In cancers dysregulation of lncRNAs [38, 57] contem-
plate the role of lncRNA in controlling stem cell signal-
ing in cancer cells [58]. Further exploration of versatile 
functions of lncRNAs in CSC may unravel hidden and 
novel therapeutic strategies for overcoming chemo-
therapy resistance a major obstacle in BC treatment. 
LncRNAs, including MALAT-1, HOTAIR, and H19, are 
commonly found in patients with BC because they affect 
key signaling pathways involved in tumor promotion and 
suppression [38]. As a result of the research of deregu-
lation mechanisms, it has become clear that lncRNAs 
might be used as biomarkers in the diagnosis, prognosis, 

and therapeutic strategies. Interestingly, lncRNAs play 
a pivotal role in BrCSCs by engaging in several critical 
pathways [59] and significantly impact BC progression. 
LncRNAs can promote or impede BC cell invasion and 
metastasis by activating or repressing the EMT during 
the initiation and progression of BC [60].

A variety of LncRNAs have been reported to be over-
expressed in BrCSCs, including HOTAIR [61], MALATI 
[62–64], H19, DANCR [65–67], NR2F1-AS1 (NAS1) 
[68], NEAT1 [69, 70], NRAD1 [71], LINC-ROR [72, 73], 
linc00617 [50], CCAT1 [74], RP1-5O6.5 (RP1) [75], and 
lncRNA-Hh [76], and they all play a role in various can-
cer hallmarks, by the modulation of several proteins and 
miRNAs (Table 1).

LncRNAs regulate BrCSCs through epigenetic 
modifications
There are several ways in which the DNA sequence is 
not altered but epigenetic regulation affects gene expres-
sion; they include histone modifications, methylation of 
DNA, and genomic imprinting [81, 82]. LncRNAs are 
essential modulators of the epigenetic state of the human 
genome (Fig.  1). Chromatin remodeling and modifi-
cation complexes are attracted to particular places by 
certain lncRNAs [83]. Examples of lncRNAs that can 
influence carcinogenesis include EPB41L4A-AS2 [84], 
BLAT1 [85], BCLIN25 [86], ANRASSF1 [87], H19 [88], 
and piR-823 [89] which can control DNA methylation. 
Han and his group found that BLAT1 expression is con-
trolled by lowering the degree of promoter DNA meth-
ylation of CpG islands [90]. They showed that cancer 
patients with tumors that are BLAT1-hypomethylated 
have a decreased chance of surviving long-term. The 
high BLAT1 expression with hypomethylation at CpG 
sites in BC may be associated with the aggressiveness of 
the disease. BCLIN25 reduces miR-125b expression and 
elevates BC risk by increasing CpG methylation at the 
miR-125b promoter region, increasing ERBB2 expres-
sion [86]. Calanca et  al. found that the tumor suppres-
sor RASSF1A’s epigenetic suppression has been linked to 
the lncRNA ANRASSF1. They proved that ANRASSF1 
also is a therapeutic target with the potential to restore 
the restrictive chromatin changes generated by PRC2 at 
the promoter of RASSF1A, potentially leading to upreg-
ulation of RASSF1A in BC [91]. In addition, a lncRNA 
known as H19 suppresses the maternal allele at the H19/
IGF2 gene via the methylation process in BC, resulting in 
a more aggressive phenotype [88]. A recent study demon-
strated that lncRNA piR-823 overexpression in luminal 
BC cells activated Wnt signaling and induced cancer cell 
stemness by increasing DNMTs (DNMT1, DNMT3A, 
DNMT3B) expression and promoting adenomatous poly-
posis coli (APC) methylation [89].
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In addition, lncRNA decreases gene transcription by 
recruiting proteins that modify histones or remodel 
chromatin. Histone regulators interact with the lncRNA 
HOTAIR, which results in transcriptional gene suppres-
sion in chromatin dynamics [92]. For example, HOTAIR 
contributes to the silencing of miR-205 by altering the 
balance of histone modifications on the miR-205 pro-
moter between H3K4me3 and H3K27me3, which con-
trols the production of cyclin J (CCNJ) [93]. Furthermore, 
HOTAIR inhibits miR-7 expression, leading to increased 
SETDB1 expression in BC  stem cells, inducing EMT 
[94]. Moreover, HOTAIR promotes EMT by acetylating 
histone H3K27 to methylate the E-cadherin promoter, 
inhibiting E-cadherin production [95].

One of the most well-studied lncRNAs is Xist, active in 
the early phases of X chromosomal inactivation in female 
embryos. First instances of lncRNA directly engaged 
in the production of repressive chromatin are found in 
Xist [96]. Furthermore, Xist through particular RNA 
sequences, organizes the anchoring of chromatin modi-
fiers to one of the two X chromosomes, enabling tran-
scriptional silencing [97].

Several noncoding RNA molecules function as ligands 
and form complexes with transcription factors to regu-
late gene transcription [98, 99]. cis and trans regulation 
are two mechanisms used by lncRNAs to control gene 
transcription. Classifying lncRNAs into four categories 
by Wang and Chang namely; (decoy molecules, guiding 
molecules, scaffolding molecules, and signal molecules) 
contributed significantly to the progress of the lncRNA 
research area in the past few years [100]. The involve-
ment of lncRNAs as a decoy, guiding, scaffolding, and 
signal molecules at the transcriptional level promotes or 
suppresses gene expression in BC metastasis (Fig. 1). For 
example, lncRNAs Lethe,  NORAD, and PANDA  work 
as "decoys," mimicking and competing with miRNAs or 
proteins in the nucleus [28, 98, 101] (Fig.  1a). Further-
more, the “guiding lncRNAs,” such as HOTAIR [102] 
and lincRNA-p21 [103], may directly act on transcrip-
tional factors or chromatin modifiers and protein com-
plexes and attract them to find particular target gene(s) 
to alter the transcription process  (Fig.  1b) [104]. More-
over, LncRNAs MALAT1 [105], HOTAIR [106], and 
LINP1 [107] can form ribonucleoprotein complexes and 
regulate gene expression as scaffold molecules (Fig.  1c). 
In addition, to limit the activities of regulatory miRNAs, 
they also function as decoy microRNA-binding sites, like 
ceRNAs [108]. Additionally, various studies have revealed 
that lncRNAs can be used as molecular signals since they 
are transcribed at very particular times and locations, 
allowing cells to integrate developmental clues, read the 
cellular environment, or respond to a variety of stimuli as 
chemical signals [100, 109] (Fig. 1d). According to Wang 

and his colleagues, the lncTCF7 promotes TCF7 expres-
sion by recruiting SWI/SNF to TCF7’s promoter. These 
steps may cause Wnt signaling to be activated, which 
might lead to cancer stem cells self-renewing and tumor 
cell  proliferation [110]. Besides, the specific targets of 
guide lncRNAs are promoted by RNA–RNA, RNA–pro-
tein, and RNA–DNA interactions (Table 2).

Regulation of transcription in BrCSCs by LncRNAs
LncRNAs influence the translation of mRNAs and regu-
late their integrity at the posttranscriptional stage by cre-
ating double-stranded RNA with mRNAs or via binding 
to proteins. Tang and his group found that proliferation, 
colony formation, and development of orthotopic xeno-
graft tumors were all reduced by the depletion of PVT1. 
Through KLF5/beta-catenin signaling, they also showed 
that lncRNA PVT1 controls TNBC [111]. Antisense 
lncRNAs are the most common lncRNAs engaged in 
mRNA post-transcriptional regulation. There are various 
ways in which lncRNAs might alter the splicing process 
of pre-mRNA, either alone or with other splicing fac-
tors. For example, the lncRNA RP1-506.5 interacts with 
eIF4E and inhibits eIF4E from binding to eIF4G, inhib-
iting p27kip1 translation and adversely regulating Snail 
levels in BC  cells [75]. Likewise, Beta-catenin signal-
ing is increased due to lncRNA PVT1 binding to KLF5 
and increasing its stability via BAP1, which increases BC 
tumorigenesis [111]. The biological processes of malig-
nancies are influenced by lncRNA dysfunction, which has 
been linked to tumor prognosis. The lncRNA encoded 
by metallothionein 1  J (MT1JP) has been linked to car-
cinogenesis, and its expression is downregulated in dif-
ferent types of cancer [112–114]. Meanwhile, in vivo and 
in  vitro studies recently showed that MT1JP inhibition 
increases miRNA-214 gene expressions in BC cells by 
modulating miRNA-214/RUNX3 Axis [115]. Moreover, 
it was also shown that lncRNA treRNA interacts with 
ribonucleoproteins (RNPs) (PUF60, SF3B3, FXR1, FXR2, 
PUF60, and hnRNP K) to produce a treRNA-RNP com-
plex that inhibits E-cadherin translation by targeting 
eIF4G1 [116] (Fig. 2).

LncRNAs regulate BrCSCs through ceRNAs mechanism
It has been found that RNAs can interact with each other 
in a novel way (ceRNA networks), and that these interac-
tions are critical to the formation of cancers. They have 
the potential to act as therapeutic targets in addition to 
being diagnostic and prognostic markers. According to 
literature studies, numerous lncRNAs act as ceRNAs in 
BrCSCs, targeting miRNAs and altering the EMT pro-
cess. For instance, linc-ROR affects the expression of the 
stemness factors Nanog, Oct4, and SOX2 and regulates 
the maintenance of human embryonic stem cells (hESCs) 
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via sponging miR-145 [72]. Further, upregulation of linc-
ROR in BC resulted in a higher stem cell phenotype and 
greater mammosphere development, indicating that the 
Linc-ROR-miR-145 pathway is critical in cancer stemness 
[117, 118]. In addition, one of the most well-known and 
investigated ceRNA mechanisms is the lncRNA H19/
Let-7 miRNA [119]. BrCSCs and breast tumors had a sig-
nificant level of lncRNA H19 expression. Increasing the 
amount of H19 in tumor cells permits them to survive 
treatments [120], also H19 is involved in controlling BrC-
SCs’ division by sponging microRNA let-7 which provide 
potential strategies for stem cell invasion and mam-
mosphere formation [121]. Likewise, lncRNA HOTAIR 
(homeobox antisense transcript antisense RNA) is asso-
ciated with the growth and spread of BC cells [122]. 
BrCSC derived from MCF7 or MB231 have high levels 
of HOTAIR up-regulation, which affects BrCSC growth, 

migration, and self-renewal. HOTAIR is also known to 
influence miR-34a, which in turn promotes Sox2 expres-
sion, according to a recent study [61]. HOTAIR can 
reduce the expression of miR-7 by regulating HoxD10 
in MCF-7 and MDA-MB-231 BrCSCs [94]. Additionally, 
LUCAT1 promotes BrCSC stemness by sponging miR-
5582-3p and promoting TCF7L2 and the Wnt/β-catenin 
pathway. On the other hand, BrCSCs self-renewal was 
hindered by LUCAT1 downregulation, which enhanced 
miR-5582-3p expression [123]. Moreover, lncCCAT1 is 
highly expressed in BrCSCs and is linked to poor patient 
consequences. LncCCAT1 overexpression promotes 
BrCSC proliferation, stemness, migration, and invasion 
capabilities. Depends on the above results, lncRNAs can 
be used as a marker of the patient’s prognosis and the 
risk of their tumor recurrence which may apply in clini-
cal translation. Meanwhile, miR-204/211, miR-148a/152, 

Table 2 LncRNAs regulate BrCSCs through ceRNAs mechanism

LncRNA Sponging miRNAs Targeted genes and their 
expressions

Signaling pathways Findings References

Linc‑ROR miR‑145 ↑ ARF6 Linc‑ROR‑miR‑145 Increased growth of the mam‑
mosphere stem cell population

[118]

LncRNA H19 Let‑7 ↑ ESR1 LncRNA H19/Let‑7 miRNA Cancer development, as well as 
cell metabolism

[119]

HOTAIR miR‑34a ↑ SOX2 SOX2 signaling BrCSC proliferating and self‑
renewal capacity

[131]

LUCAT1 miR‑5582‑3p ↑ TCF7L2, SOX2,
↑ β‑catenin

LUCAT1‑miRNA‑5582‑3p‑TCF7L2 Regulates BC stemness [123]

lncCCAT1 miR‑204, miR‑211, 
miR‑148a, miR‑152

TCF4, 
↑ β‑  catenin, 
↓ ANXA2

Wnt/β‑catenin pathway Promotes BrCSC proliferating, 
stemness, and migrating

[124]

SPRY4‑IT1 miR‑6882‑3p ↑ TCF7L2 SPRY4‑IT1/ miR‑6882‑3p Promotes proliferation of BrCSCs [125]

LincK miR‑200 ↑ ZEB1 LincK/ ZEB1/miR‑200 Contributes to breast tumori‑
genesis and EMT

[126]

LSINCT5 miR‑30a ↑ TCF4, c‑Myc Wnt/β‑catenin pathway Increases proliferation, motility, 
and EMT

[127]

HOTTIP miR‑148a‑3p ↑ WNT1 Wnt/β‑catenin signaling Correlated well with the pro‑
gression of BC

[130]

LINC00511 miR‑185‑3p ↑ NANOG, E2F1 miR‑185‑3p/E2F1/Nanog 
signaling

Tumorigenesis and stemness [128]

LINC01133 miR‑199a ↑ KLF4, FOXP2 miR‑199a‑FOXP2
signaling

Stemness and growth [129]

LncRNA ES1 miR‑106b ↑ E‑cadherin, SOX2, OCT4 miR‑
200, miR‑306

Oct4/Sox2/MiR‑302
signaling

Stimulates cell migration and 
EMT

[132]

SOX21‑AS1 miR‑429 ↑ SOX2 SOX21‑AS1/miR‑429/SOX2
signaling

Tumor invasion, proliferation, 
and the expression of stem 
factors

[133]

FEZF1‑AS1 miR‑39a ↑ NANOG, OCT4, SOX2 FEZF1‑AS1/miR‑30a/Nanog
signaling

Increases CD44 + /CD24‑, 
mammosphere‑forming capac‑
ity, stem factors, and stimulates 
tumor growth and metastasis

[134]

PDCD4‑AS1 miR‑10b‑5p ↑ IQGAP2 PDCD4‑AS1/ miR‑10b‑5p/ 
IQGAP2

Increases the expression of 
IQGAP2 via miR‑10b‑5p, which 
aids BC cell proliferation, inva‑
sion, and migration

(135)
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and ANXA2 can all interact with LncCCAT1, which in 
turn can activate TCF4 or promote the translocation of 
β-catenin to the nucleus and activate Wnt signaling [124]. 
Additionally, in a recent study, Song and his team found 
that lncRNA SPRY4-IT1 enhances BC cell proliferation 
and stemness, as well as BrCSC renewal and stemness 
maintenance, via promoting the expression of TCF7L2 
through targeting miR-6882-3p [125].

Besides, LincK also controls ZEB1 through the spong-
ing of miR-200, which contributes to breast tumori-
genesis [126]. In a recent study, lncRNA LSINCT5 has 
increased cell motility by sponging miR-30a from the 
Wnt/β-catenin pathway. TCF4 and c-Myc expression 

was likewise downregulated in cells in which LSINCT5 
was knocked out, resulting in decreased proliferation, 
motility, and EMT [127]. Furthermore, by promoting 
the miR-185-3p/E2F1/Nanog axis, lncRNA LINC00511 
leads to BC tumorigenesis and stemness [128]. Similarly, 
In TNBC models, LINC01133 acts as a direct mediator 
of the MSC-triggered miR-199a-FOXP2 axis, enhancing 
phenotypic and growth characteristics of CSC-like cells 
[129]. Lastly, evidence supports that the lncRNA, HOT-
TIP (HOXA transcript at the distal tip), is upregulated in 
a variety of malignancies, including BC. HOTTIP is also 
involved in several biological activities, such as  main-
taining stem cell viability. As a molecular sponge for 

Fig. 2 LncRNAs and Post‑transcriptional regulation in BrCSCs. a LncRNAs inhibit the initiation factor that involved in RNA translation such as 
elF4G which decreases the level of cyclin‑dependent kinase inhibitor and promote cell proliferation. b Due to lncRNA PVT1 binding to KLF5 and 
promoting its stability through BAP1, beta‑catenin signaling is accelerated, resulting in an increase in the development of beta‑catenin tumors in 
BC patients. c LncRNA MT1JP suppression enhances miRNA‑214 gene transcription through altering the miRNA‑214/RUNX3 Axis, which results 
in Bim expression defect and suppresses the apoptosis process. d lncRNA treRNA forms complexes with ribonucleoproteins (RNPs) that inhibit 
E‑cadherin translation by targeting eIF4G1 and increase the expression of EMT genes, resulting in increased cell migration and invasion
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miR-148a-3p, HOTTIP controls the CSC-like features of 
BrCSCs, enhancing WNT1 transcription and providing a 
novel therapeutic target for BC patients [130] (Fig. 3).

Table  2 provides additional examples of lncRNA that 
regulate BrCSCs through ceRNAs mechanism.

Overall, in terms of lncRNA aberrant expression and 
the causative factors, lncRNAs may be useful prognostic 
biomarkers in BrCSCs. Additionally, lncRNAs have the 
potential to be targeted to reverse the process of carcino-
genesis, making them valuable therapeutic targets for 
treatment of cancer.

Since most of lncRNAs/miRNAs axes (ceRNA axes) 
have been only assessed in one paper, there is no way to 
compare the results of studies. However, it is possible 
that a single lncRNA acts as a molecular sponge for more 
than one miRNA. In fact, it is possible to identify several 
lncRNAs/miRNAs axes in which some of the contribut-
ing ncRNAs have common roles.

LncRNAs participate in different pathways 
for modulating BrCSCs
Because lncRNAs are highly abundant in BrCSCs, they 
can play a variety of regulatory functions. In recent years, 
the importance of lncRNAs has been recognized in BrC-
SCs, with their functional significance and clinical conse-
quences being highlighted recently. Here, the regulatory 
functions of lncRNAs on BrCSCs are discussed in terms 
of their many modes of action.

LncRNAs regulate BrCSCs through HIF signaling pathway
As it turns out, hypoxia influences a specific subset of 
long noncoding RNAs. Hypoxia-responsive lncRNAs 
(HRLs) such as NORAD, LncHIFCAR, AC020978, KB-
1980E6.3, RAB11B-AS1 may have a role in cancer cell 
survival and disease progression [101, 136, 137]. HRLs 
may be classified into two categories: those dependent on 
hypoxia-inducible factors (HIF) and those not dependent 

Fig. 3 Different signaling pathways in which lncRNAs regulate BrCSCs through ceRNAs mechanism (miRNAs gene inhibition) which increases the 
mamosphere development, EMT and cancer stemness
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on HIF. Specifically, the hypoxia response element (HRE), 
located in the promoter regions of HRLs, may directly 
bind to HIF in hypoxic tumor microenvironments and 
control their expression by modulating their transcrip-
tion. Conversely, the HRLs that are excessively expressed 
may trigger a tumor-specific molecular profile and con-
tribute to the development of tumor characteristics 
[138]. The molecular properties of HRLs in BC, however, 
remain unsolved.

Recently, in an in vitro and in vivo studies undertaken 
in a hypoxic condition, Zhu and colleagues found that the 
KB-1980E6.3 enhanced BrCSC self-renewal and tumori-
genesis [139].

They observed that HIF-1α might interact directly with 
the HRE in the KB-1980E6.3 promoter to control its tran-
scription activities in hypoxia conditions. Furthermore, 
Because of its capacity to bind to IGF2BP1, lncRNA 
KB-1980E6.3 was critical for BrCSC stemness because it 
increases the stability of c-Myc mRNA and enhances it 
BC cells’ responsiveness to hypoxia [139].

LncRNAs regulate BrCSCs through Hh, Wnt, Hippo 
signaling pathways
The estrogen receptor (ER) regulates the Hh, Wnt, and 
Hippo pathways. The dysregulation of these pathways is 
linked to the fundamental hallmarks of BrCSCs, such as 
self-renewal, cancer resistance, metastasis, and recur-
rence [140, 141]. In addition, components in the tumor 
microenvironment, including hypoxia, angiogenesis, 
and inflammatory responses, have a main role in modu-
lating BrCSCs [142, 143]. The Hh pathway components 
(PTCH1, Gli1, and Gli2)  are abundantly expressed in 
normal  mammary stem/progenitor cells and stimu-
lated in BrCSCs. For the self-renewal of human BrCSCs, 
the Hh pathway and Bmi-1 are found to play critical 
roles highlighting the relevance of the Hh pathway and 
Bmi-1 in the controlling CSCs, hence applying tech-
niques focused on blocking both pathways provide a 
helpful therapeutic strategy [144]. Chemotherapy has 
been demonstrated to be ineffective against BrCSCs, 
and the stemness of CSCs can be preserved through 
the Hh pathway. Using MCF-7 cells from BC patients 
as a model, Miao and his team discovered that the Hh 
signaling pathway is involved in drug responsiveness 
[145]. The Hh ligand secreted by CSCs can control 
the response of cancer-associated fibroblasts (CAFs). 
Indeed, the CAFs provide elements that encourage CSC 
growth and self-renewal [146]. Thus, inhibiting this 
signaling system might be a unique treatment method 
for BC therapy. Furthermore, SMO protein, transmem-
brane receptors (PTCH 1), (GLI 1–3), and extracellular 
Hh ligands are components of this complicated signaling 

cascade. Also, the Hh ligands activate signal transduc-
tion events in the cell, which interact with PTCH. To 
activate the transcription factor and allow it entry into 
the cell nucleus, the Hh ligand binds to PTCH, causing 
changes in its physical conformation and removing the 
inhibition of SMO. This results in increased cell func-
tion, growth, and differentiation [147, 148]. According to 
recent data, there is a clear relationship between lncR-
NAs and the cellular proliferation of BrCSCs through 
different signaling pathways (Table  2). For instance, 
LINC00617 increases the fraction of a phenotypic stem 
cell CD44( +)/CD24(-) subpopulation, enhancing BC 
metastasis. LINC00617 promotes EMT via rising the 
SOX2 expression in BC cells [50, 149]. Furthermore, 
lncRNA XIST expression in BC patients is linked to a 
higher risk of brain metastases. Reduced XIST expres-
sion promotes tumor cell stemness via stimulating EMT 
transition and activating c-Met through moesin MSN-
mediated protein stabilization. In mouse mammary 
glands, knocking down XIST promotes the formation 
of primary tumors and brain metastases [150]. In addi-
tion, there is a clear relationship between EMT and 
the cellular proliferation of tumor cells. lncRNA-Hh, a 
lncRNA related to the Hh pathway, has been shown to 
directly bind GAS1 (a hedgehog signaling enhancer) and 
promote the activities of SOX2 and OCT4 [59]. Further-
more, lncROPM is a marker for BC patients’ malignant 
grade, stage, and poor prognosis. Studies on the func-
tion gain and loss of lncROPM have shown that it is 
necessary to regulate BrCSC characteristics in vitro and 
in vivo studies. Through directly binding to the 3’-UTR 
of PLA2G16 (Group XVI phospholipase A2), lncROPM 
controls the expression of PLA2G16 by increasing the 
mRNA stability. Higher PLA2G16 enhances phospho-
lipid metabolism and the generation of free fatty acids 
[151], particularly arachidonic acid, in BrCSCs, promot-
ing PI3K/AKT, Wnt/-catenin, and Hippo/YAP pathways 
and ultimately contributing to the regulation of BrCSC 
stemness [152]. An animal investigation in BrCSCs 
found that H19 increased stemness via sponging Let-7c 
and activating its ESR1 and Wnt pathway targets [153]. 
Additionally, inhibition of symmetric division of BrCSCs 
by H19 or Let-7c miRNA increases non-CSCs. lncRNA-
Hh is linked with the Shh-GLI1 pathway and is tran-
scriptionally controlled by Twist, directly targets GAS1 
to enhance Hh signaling activation. Increased GLI1 
expression and increased SOX2 and OCT4 transcrip-
tion are all associated with the activation of Hh, which 
is thought to play a regulatory function in CSC devel-
opment [154]. Additionally, lncRNA-Hh stimulates the 
Hh pathway protein Hh to increase OCT4 and SOX2 
expression for BrCSC homeostasis [59]. Similarly, Han 
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et al. showed that lncRNA HOTTIP modulates the miR-
148a-3p/WNT1 axis, which allows BrCSCs retain their 
CSC-like features and promote BC development [130]. 
In contrast, overexpression of LINC00968 in BC cells 
reduces the development of resistance by decreasing the 
stimulation of the Wnt2-β-catenin pathway by suppress-
ing Wnt2 [155] (Fig. 4).

Altogether, these data imply that the lncRNAs 
(lncRNA-Hh, H19, LINC00617, lncROPM, XIST, 
PLA2G16) play a critical role in the regulation of CSCs 
and are associated with the invasive and migration 
characteristics of BC cells. They showed that these 
molecules might be useful in the prognostic and diag-
nostic method in metastatic BC patients.

LncRNAs involved in cancer stemness 
and therapeutic resistance
Resistance to therapy is a hallmark of aggressive tumors, 
which leads to reduced survival and a high mortality rate. 
Patients with advanced or metastatic BC are often treated 
with chemotherapy, but some of patients acquire resist-
ance to subsequent treatments [156]. Beside chemother-
apy, hormonal therapies like tamoxifen are usually given 
in BC patients with estrogen-positive tumors. Loss of ER 
altered expression of co-regulatory proteins (CRPs), as 
well as increases in the number of ER-negative CSCs in 
the  ER+ tumor, and lncRNAs mediates and contributes to 
tamoxifen resistance in BC [157–159].

Fig. 4 LncRNAs regulate BrCSCs by promoting EMT, β‑catenin, and survival genes, which enhances proliferation, EMT, metastasis, and cancer 
stemness
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Although cancer drugs effectively eliminate or kill the 
majority of cancerous cells, CSCs are able to evade their 
effects via a variety of biological strategies [160]. CSCs 
with slow division or quiescence, for example, are less 
affected by chemotherapy that targets rapidly dividing 
cells. Another critical resistance mechanism is aldehyde 
dehydrogenase (ALDH) overexpression in CSCs [161]. 
Enzymes in this family catalyze the oxidation of alde-
hydes to carboxylic acids, which is a step in the detoxi-
fication process for both internal and external aldehydes 
[162].

Induced iPSCs were shown to retain their pluripotency 
via lncRNA Peblr20, which suggests that lncRNAs may 
play a role in retaining cancer stemness [163]. EMT-asso-
ciated stemness is controlled by lncRNAs, which have 
emerged as new participants in BrCSC stemness [124]. As 
an example, numerous lncRNAs, including LINC01638 
[164], lncRNA RP1-506.5 [165], LINC-ZNF469-3 [166] 
and LINC-ROR [167, 168], have been shown to protect or 
promote EMT properties and CSC-properties of BC cells 
(Fig. 3). A recent study by Tang et al. found a direct link 
between lncRNA-regulated EMT and BC therapy resist-
ance. According to their findings, DCST1-AS1 interacts 
effectively with ANXA1 to increase EMT and improve 
resistance in BC cells to doxorubicin and paclitaxel [169, 
170].

In addition, it was determined that numerous pluripo-
tency regulators, such as LIN28, SOX2, OCT3/4, KLF4, 
and CSC biomarkers, such as ALDH1A3, can stimulate 
stemness in BrCSCs [171–173]. By interacting with CSC-
associated genes, lncRNAs play crucial role in BrCSC 
formation and can be used as a marker and applied for 
clinical translation. For instance, when CCAT2 lncRNA 
is expressed in breast cancer stem cells during targeted 
knockdown, it increases the levels of Nanog, OCT4, and 
KLF4, as well as the ALDH + CSC population which can 
serve as a marker for the presence cancer stem cells [174]. 
In particular, deregulation and circulating lncRNAs in 
physiological fluids of cancer patients may serve as use-
ful diagnostic and prognostic markers in the treatment 
of the disease and can guide clinical therapy. For exam-
ple, urine PCA3 (lncRNA PCA3) has been authorized by 
the FDA as a urine marker for prostate cancer due to its 
high  sensitivity and specificity over PSA (prostate-spe-
cific antigen) [175, 176].

In addition, lncRNAs are reliable indicators of the 
patient’s prognosis and the risk of their tumor recur-
rence. In clinical studies of breast cancer patients, hor-
mone negativity, tumor size, and nodal status are all 
linked to high H19 expression. Disease-free survival is 
considerably worse in patients who has  H19 expression 
than in other patients [66]. Furthermore, high expression 
of  HOTAIR  in BC patients  is strongly correlated with 

lymph node metastasis, recurrent and poor prognosis of 
breast cancer [77, 177].

Likewise, many lncRNAs regulate the expression of 
pluripotency factors and CSC markers by functioning 
as  ceRNAs  that compete with the limited number of 
miRNAs (Fig.  3). According to Peng et  al., the lncRNA 
H19 in BrCSCs acts as a sponge for Let-7, resulting in 
the increased expression of Let-7’s target LIN28, which 
supports the maintenance of BrCSCs [67]. They found 
that LIN28 reduces Let-7 expression and activation, ulti-
mately suppressing H19 transcription in BrCSCs. Treat-
ment resistance may be restored by disruption of the 
H19-Let-7/LIN28 pathway,  which is responsible in part 
for stemness of BrCSCs, and it presents a new strat-
egy for treating BC. Similarly, the lncRNA LINC01133 
induced by MSCs promotes BrCSC’s morphological and 
growth features via directly regulating KLF4 [129].

NRAD1 (LINC00284) is notable for being the first 
lncRNA to be triggered by a CSC marker. In addition, it 
was shown that retinoic acid, a byproduct of ALDH1A3, 
has a beneficial effect on the expression of NRAD1, 
which promotes cell survival and increases BrCSCs [71]. 
Interestingly, the Knockdown of ALDH1A3 reduced the 
activity of ALDH, and ALDH1A1 knockdown suppressed 
metastatic features and therapy resistance in human BC 
cells [178].

While long noncoding RNAs play a significant role in 
maintaining BrCSCs and the potential development of 
intrinsic therapeutic resistance, further research into the 
underlying processes and potential clinical applications is 
needed.

Challenges and strategies to overcome lncRNAs 
therapeutic resistance in BrCSCs
Challenges to overcoming lncRNA therapeutic resistance
Despite advances in cancer treatment, drug resistance 
continues to be a significant challenge for people with 
BC. A comprehensive evaluation of off-target effects, 
possible toxicity, and drug delivery/precision targeting 
is necessary for the lncRNA silencing approaches to be 
considered effective therapeutic strategies. Many lncRNA 
transcript variations also present a considerable chal-
lenge for developing techniques to target molecules. It is 
possible that not all transcript variations will be targeted 
by the lncRNA silencing technique, which may reduce 
the treatment’s effectiveness if that variant is functional. 
Moreover, CRISPR/Cas9 may have challenges or limited 
utility for the knockout of non-coding genes [179, 180]. 
Despite their equivalent molecular weight, there are no 
open reading frames (ORPs) in lncRNAs, unlike pro-
tein-coding genes. Furthermore, the roles of most lncR-
NAs remain unknown, making the creation of efficient 
medicines and delivery methods much more difficult. 
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A comparison study in clinical trials would be required 
to determine whether or not lncRNAs are better targets 
than protein-coding genes [181].

Strategies for reducing therapeutic resistance to lncRNAs
As previously stated, CSCs have responsibility for drug 
resistance and recurrence, all of which have an impact on 
anticancer therapeutic potential. The use of  lncRNAs or 
related pathways to target CSCs as a possible therapy for 
cancer is a novel approach [182]. In BC, down-regulation 
of the oncogenic lncRNA CCAT1 is linked to an increase 
in radiosensitivity through altering the miR-148b, which 
is responsible for cancer progression [183]. Interestingly, 
Dendrosomal curcumin (DNC), a natural chemical, can 
be used to treat cancer by reducing the expression of 
tumor suppressor genes Tusc7 and GAS5 lncRNA in BC 
cells MCF7, MDA-MB231, and SKBR3. Furthermore, 
Esmatabadi and his team found that down-regulating 
GAS5 in BC  cells can reduce many characteristics of 
DNC’s anti-cancer activities. This suggests that combin-
ing DNC with GAS5 over-expression could be a clinically 
effective tool for drug-resistance in BC cells [184].

Recent study reveals that MEG3 interacts directly with 
miRNA-421 to regulate a variety of CSC characteristics, 
including self-renewal and invading abilities [185]. How-
ever, as a result of the methylation that occurs in its pro-
moter region, the expression of the tumor suppressor 
lncRNA MEG3 is downregulated in cancer cells. A new 
nanotechnology-based preparation of natural curcumin 
known as dendrosomal curcumin increased the expres-
sion of MEG3 by down-regulating DNA methyltrans-
ferase (1A, 3A, and 3B) expression through promoting of 
miR-29a and miR-185 [186].

Chemoprevention is the focus of new strategies to 
enhance clinical outcomes and reduce the toxicity of 
anticancer medications. In the case of advanced ovar-
ian cancer and BC, for example, Oxaliplatin (Oxa) is a 
platinum medication of the third generation that is used 
either alone or in combination with other treatments 
[187, 188]. However, several mechanisms contribute to 
resistance to Oxa, including DNA damage repair, inhibi-
tion of apoptosis, deregulation of signaling pathways, and 
increased detoxifying efficiency. Combination therapy 
has been proposed as an emerging approach to solving 
this problem [189]. It was found that DNC alone or in 
combination with Oxa has synergistically downregulated 
several oncogenic lncRNAs such as GAS5, MALAT1, 
FAL1, ANRIL, ABO73614, CCAT2, LSINCT5 in different 
types of cancers such as BC, NSCLC, and ovarian can-
cer through suppressing cell proliferation, prompting cell 
death, and reducing therapeutic resistance [184, 188, 190, 
191]. They also found that DNC or curcumin combined 
with anti-cancer drugs had a more significant inhibitory 

effect than monotherapy. Curcumin reduces the lncRNA 
H19-induced EMT [192].

In addition, CRISPR interference (CRISPRi) or knock-
out (KO), a technology that may be applied to any 
genomic site, can be used to inhibit the activity of lncR-
NAs, which are crucial for the survival or self-renewal 
of cancer cells [193]. Complete excision  of the whole 
gene, excision  of the  promoter and transcriptional start 
point, removing exon/exon junctions, or excision of the 
transcriptional terminal site are all strategies for lncR-
NAs  knocking out [193]. For instance, CRISPR/Cas9 
technology was used by Peng and colleagues to modify 
LncROR expression in BC cell lines. Researchers found 
that lncROR increased estrogen production through this 
new approach and triggered the MAPK/ERK axis in BC. 
CRISPR/cas9 technique was used in this study to inves-
tigate lncRNA  loss of function and gives evidence for 
lncROR might be a possible target in  ER+ BC  patients 
[194]. Thus, it is a promising technique to reduce drug 
resistance, such as tamoxifen resistance of  ER+ BC, and 
can be used as a therapeutic strategy in BC patients. In 
addition, lncRNA BC200 functions as an oncogene and 
has an important role in cancer proliferation and drug 
resistance [195]. Singh and colleagues published a nota-
ble study elucidating that oncogenic LncBC200 is ele-
vated in BC [196]. The amount of LncBC200 in breast 
tumor tissues is greater in  ER+ tumors than in  ER− 
tumors. They used CRISPR/Cas9 technology to knock 
off LncBC200 expression to understand more about the 
function of ER-regulated LncBC200 expression. Accord-
ing to the findings LncBC200 was shown to have a sig-
nificant role in the development of cancer. Ultimately, 
oncogenic lncAK023948 which is essential for cancer cell 
survival has been used as a target for CRISPR/Cas9 to 
reduce tumor growth in different types of BC cells [197]. 
These findings offer a scientific basis for the concept that 
lncRNAs play an important part in the progression of 
cancer and could be used as therapeutic targets.

Conclusions
It is predicted that therapies targeting CSC will prevent 
cancer metastasis and recurrence, since these cells have 
unique features that enhance anti-cancer therapy resist-
ance. For this reason, identifying molecules that control 
their function is important in practice. The activity and 
growth of CSCs have been demonstrated to be influenced 
by lncRNAs. The effect of these regulatory transcripts 
on CSCs were mainly studied in BC. The activity and 
growth of CSCs were demonstrated to be influenced by 
lncRNAs. The effect of these regulatory transcripts on 
CSCs has mainly been studied in BC. LncRNAs may help 
BC patients not only as diagnostic indicators for identi-
fying patient stage and prognosis but also as targets for 
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precision treating cancer, thereby offering new pathways 
for eliminating CSCs. However, because of the complex-
ity of CSC biology and the interrelationships among its 
various subtypes and their various cellular activities and 
signaling processes in health and illness, it is challeng-
ing to develop effective therapies that specifically target 
these cells. LncRNA-based research will help us achieve 
a new knowledge of the physiology of cancer stem cells. 
Furthermore, new studies are necessary to uncover and 
establish the wide range of regulatory mechanisms and 
the complexity of pathways that lncRNAs may control. 
Despite its limitations, understanding CSC-lncRNA 
interactions may usher in a new era of cancer therapy 
associated with lower drug resistance and increased anti-
metastatic efficacy, thereby improving patient prognosis.
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