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Three‑dimensional (3D) cell culture: 
a valuable step in advancing treatments 
for human hepatocellular carcinoma
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Abstract 

Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third most frequent cause of 
tumour-related mortality worldwide. Currently, several surgical and medical therapeutic strategies are available for 
HCCs; however, the interaction between neoplastic cells and non-neoplastic stromal cells within the tumour microen‑
vironment (TME) results in strong therapeutic resistance of HCCs to conventional treatment. Therefore, the develop‑
ment of novel treatments is urgently needed to improve the survival of patients with HCC. The first step in developing 
efficient chemotherapeutic drugs is the establishment of an appropriate system for studying complex tumour culture 
and microenvironment interactions. Three-dimensional (3D) culture model might be a crucial bridge between in vivo 
and in vitro due to its ability to mimic the naturally complicated in vivo TME compared to conventional two-dimen‑
sional (2D) cultures. In this review, we shed light on various established 3D culture models of HCC and their role in the 
investigation of tumour-TME interactions and HCC-related therapeutic resistance.
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Introduction
Hepatocellular carcinoma (HCC) is the third lead-
ing cause of cancer-related death worldwide [1–3] and 
commonly has a poor prognosis. In particular, patients 
with HCC usually develop severe chronic hepatic dam-
age, including inflammatory, fibrotic, and cirrhotic 
lesions. Thus, these patients frequently show poor sys-
temic chemotherapeutic tolerance [4]. Currently, effi-
cient strategies for treating HCCs are still lacking due to 
the continuous growth of tumour cells and the genetic 
complexity involving molecular factors that affect inter-
actions between tumour cells and their surrounding 
tumour microenvironment (TME) [5–7].

Investigating the complex features of neoplastic cells 
and the tumour-TME interaction has proven to be a 
consistent challenge. Therefore, the production of opti-
mal in vivo and in vitro systems involved in the complex 
neoplastic and non-neoplastic cell interactions requires 
more effort [8]. Most of the available data regarding 
in vitro systems are derived from two-dimensional (2D) 
culture systems, which are simple, inexpensive, cell-
based models. However, these methods cannot repli-
cate the specific architecture and biochemical signalling 
of cells in  vivo. Hence, switching from a 2D system to 
a three-dimensional (3D) system is necessary to bet-
ter understand HCC tumour biology [9, 10] Developing 
appropriate 3D models that better mimic the specific-
ity of the TME has received great scientific interest, and 
there were more than 1000 publications on this topic 

in 2016 alone [8]. The current review provides an over-
view of the different 3D culture models of HCC and their 
role in investigating tumour-TME interactions as well as 
HCC-related therapeutic resistance. Topics covered in 
this review include the therapeutic resistance of HCC to 
conventional treatment, TME factors affecting HCC pro-
gression, differences between 2 and 3D culture models, 
and the development of novel models of HCC 3D culture 
spheroids. Our aim is to provide a comprehensive review 
to expand the knowledge in the field of HCC treatment 
strategies.

HCC and resistance to conventional therapeutics
HCC is well established as the most common form of 
primary liver malignancy, the fifth most common type 
of overall malignant cancerglobally [11–13]. Currently, 
several modalities, including liver transplantation, surgi-
cal intervention, radiology, systemic chemotherapy, and 
trans-arterial chemoembolization, are available for the 
treatment of patients with late-stage HCC [14]. However, 
the cure rate of patients with HCC is very low [15–17], 
and the recurrence rate of HCC after surgical resection 
is usually high due to tumour metastasis and a reduced 
efficacy of conventional chemotherapy [13, 18, 19] The 
low survival rateof patients with late stage HCC could be 
due tp the lack of highly reliable biomarkers to identify 
the early stage cancer, besides the presence of primary 
underlying liver dysfunction, which limits the efficacy 
of available radio and chemotherapy like sorafenib [20, 
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21]. Sorafenib, the multi-kinase inhibitor that is the only 
Food and Drug Administration (FDA)-approved molec-
ular targeted drug for advanced-stage HCC [22, 23], 
provides about three months survival on average [24]. 
Additionally, HCC is known for its poor response and 
increased intrinsic resistance for both local regional and 
systemic cytotoxic chemotherapy [22]. Several factors 
could control the tumor resistance including abnormal 
TME, activation of epithelial-mesenchymal transition 
(EMT), heterogeneity of HCC, and induction of vari-
ous signalling pathways [25]. Among them, TME is the 
most widely investigated factor due to its role in tumor 
progression and chemotherapeutic resistance [26, 27]. 
Therefore, evaluation of the potential anticancer efficacy 
of novel drugs commonly targets the TME as a marker 
for therapeutic competence against HCC [28, 29]. The 
role of tumour staging according to the Child–Pugh clas-
sification in guiding treatment decisions is summarized 
in Fig. 1.

TME factors affect HCC progression 
and therapeutic resistance
The TME comprises various non-neoplastic cells that 
contribute to multiple aspects of disease progression, 
including growth, metastasis, migration, and the develop-
ment of chemotherapeutic resistance [8]. As represented 
in Fig. 2, the major components of the HCC microenvi-
ronment are malignant tumour cells and various non-
cancerous stromal cells. Cancer-associated fibroblasts 
(CAFs) and hepatic stellate cells (HSCs) are the main 
cells within the HCC stroma, in addition to endothelial, 
immune, and inflammatory cells [30]. All these cell types 
play specific roles in promoting tumour structure and 
function [31].

CAFs could be produced from several cell types, 
including resident and bone marrow-derived fibroblasts, 
and they play a pivotal role in the promotion of HCC 
growth and metastasis via the production of various 
growth factors and cytokines [32]. However, the major 
production site of activated CAFs is HSCs [33, 34]. HSCs 
could flood the TME with increased amounts of different 
types of growth factors, such as connective tissue growth 
factor (CTGF), transforming growth factor β1 (TGF-β1), 

Fig. 1  The role of tumour staging in guiding the treatment decisions according to the Child–Pugh classification
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and platelet-derived growth factor (PDGF). These factors 
are able to activate HCC cells and HSCs through both 
paracrine and autocrine pathways [35, 36]. Bidirectional 
activation of the TME consequently resulted in enhanced 
extracellular matrix (ECM) synthesis, tumour prolifera-
tion and invasion, as well as increased therapeutic resist-
ance [37, 38].

It is now strongly suggested that the continuous 
changes in the histopathologic sequences of different 
tumours might result from the interaction between can-
cer cells and the surrounding non-neoplastic cells during 
tumorigenesis, which indicates the importance of inves-
tigating the TME [39]. Therefore, targeting HCC-HSCs 
and the HCC-CAF interaction became crucial in the 
investigation of supressing HCC growth [36, 40]. To bet-
ter understand such interactions, the use of appropriate 
models for tumour cells and microenvironment culture 
is essential. Hence, the development of gradational 3D 
cancer models, which may largely mimic the interaction 
between TME and cancer cells, is crucial to investigate 
the mechanisms of tumour progression and promising 
novel chemotherapeutic drugs.

The superiority of 3d cell culture over traditional 
2D cell culture
The pathogenesis and potential therapeutic agents for 
HCC have been extensively studied in various animal 
models. However, the presence of several factors limited 
the efficacy of those models, including increased cost, 
long implementation, and difficulty in obtaining human 
fibroblasts [41]. In addition, certain experimental condi-
tions may result in the development of many questions 
about the animals’ pain and discomfort. As such, the 
immune systems of animal models may be compromised 
during the experiment with subsequent alterations of 
tumour cell-TME interaction (unlike in humans), which 
limits the clinical application of novel investigations [42]. 
Obtaining a convenient link between clinical trials and 
experimental animal models is an everyday challenge 
[43].

2D cell cultures are a well-known, attractive laboratory 
method used for simple assays that probe cell physiology 
and behaviour. In 2D cultures, the cell culture monolayer 
grows on polystyrene or glass materials in a simple envi-
ronment that does not realistically recapitulate in  vivo 

Fig. 2  The cellular components comprise the HCC microenvironment. TGF-β1 Transforming growth factor beta, PDGF Platelet-derived growth 
factor, CTGF Connective tissue growth factor
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tissue physiology. Therefore, the resultant cells usually 
have modifications in their architecture, polarity, bio-
chemical signalling, and, importantly, cell–cell interac-
tions [9]. Additionally, in 2D tumour cell cultures, several 
major features of cancer cells, including heterogeneity 
as well as morphological and genetic profiles, are mostly 
lost [8]. Hence, switching from a 2D system to a 3D sys-
tem may provide a better simulation of the complex biol-
ogy of malignant tumours for study. An ideal 3D culture 
would overcome 2D culture limitations and allow direct 
drug applications in human models by conserving the 
original cell morphology, polarity, heterogeneity, and 
genetic profile of both neoplastic and non-neoplastic 
stromal cells [8, 44]. Although there are great advan-
tages of 3D culture versus 2D culture, the simplicity and 
low cost of 2D systems, as well as the lack of a universal 
model for a 3D system, has limited the use of 3D cultures. 
Currently, several 3D culture models have been devel-
oped for liver, pancreatic, and breast cancer to clarify the 
role of the tumour-TME interaction in drug resistance 
[45–48]. Interestingly, 3D tumour homo-spheroids were 
observed to exhibit increased resistance to tested chemo-
therapy compared to the responses in 2D cancer models 
[49–51]. The advantages and disadvantages of 3D and 2D 
cell culture systems are summarized in Table 1.

Biomaterial‑based 3D liver models
The construction of three-dimensional (3D) tissue 
models in  vitro is critical for drug discovery research 
and development. The use of biomaterials to improve 
the design of cell function and activity is critical in this 
regard. Despite the fact that the 2D and 3D systems were 
utilized for different purposes, the 3D culture is prefer-
able in terms of drug development because it closely 
resembles the in vivo cancer environment. The active use 
of biomaterials is another way for improving cell func-
tioning [66].

Cell culture is frequently carried out on a dish or plate 
made primarily of polystyrene. Because the artificial envi-
ronment differs significantly from the in vivo body envi-
ronment of cancer cells, evaluating therapeutic impact or 
cytotoxicity is technologically constrained. Biomaterials 
containing extracellular matrix (ECM) components have 
been shown to improve cell activity and function. Cells 
will be able to improve their proliferation, differentiation, 
and biological capabilities as a result of their interaction 
with biomaterials, resulting in the realisation of cancer 
cell–environment interaction. Several studies have been 
published on 3D cancer models integrated with bioma-
terials to reproduce the cancer environment and illnesses 
in vitro [67–70].

Table 1  Advantages and disadvantages of three dimensional (3D) and two dimensional (2D) cell culture systems

Items 2D cell culture 3D cell culture Refs.

Disadvantages Time required for culture formation Minutes to a few hours A few hours to a few days [52]

Quality of culture Simple long-term culture
Easy to interpret results
High performance and reproducibility

More difficult to culture Difficult to 
interpret results Poor performance and 
reproducibility

[53]

Cost of culture maintenance Less time consuming Inexpensive
Commercially available media and assay 
materials

More time consuming More expensive
Fewer commercially available assay 
materials

[44, 45]

Advantages In vivo imitation Cannot mimic the natural tumour mass 
structure

Can mimic in vivo tissue structures [55]

Cell interactions No cell–cell or cell- extracellular microenvi‑
ronment interactions
No “niches” or in vivo-like microenviron‑
ment

Appropriate cell–cell and cell-extracellular 
microenvironment interactions
Microenvironment “niches” are present

[56–58]

CellCharacteristics Altered morphology from physiological 
tissue
Altered cell division activity
Lack of diverse phenotypes and polariza‑
tion

Preserved morphology Preserved cell 
division activity
Presence of diverse phenotypes and 
polarization

[59, 60]

Access to essential compounds Limited access to nutrients, oxygen, 
metabolites, and signalling molecules

Variable access to nutrients, oxygen, 
metabolites, and signalling molecules

[61, 62]

Molecular mechanisms Alterations in cellular biochemistry
Alterations in gene expression, mRNA 
splicing, and topology

Preserved cellular biochemistry
Preserved gene expression, mRNA splic‑
ing, and topology

[63, 64]

Angiogenesis Only observational Could be functional [65]

Mathematical model Possible Better geometry and structure–function 
links

[65]
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Natural biomaterials are sourced from animals or 
plants, while synthetic biomaterials are created artifi-
cially. Polysaccharide (amylose, cellulose, alginate, chi-
tosan, or hyaluronic acid), peptide (collagen or gelatin), 
nucleic acid, or polyhydroxyalkanoates are all examples 
of natural biomaterials. Most natural biomaterials can be 
destroyed enzymatically since the degradative enzyme 
and metabolic system already exist in the body [71]. Nat-
ural biomaterials are frequently employed to construct 
the 3D culture system of cancer cells because the com-
ponents that make up the cancer environment, such as 
the ECM, contribute to cancer diseases. Although natu-
ral biomaterials are highly biocompatible, they do have 
some immunogenicity and homogeneity limits. Synthetic 
biomaterials are employed to avoid the problems. The 
majority of synthetic biomaterials are destroyed nonen-
zymatically through simple hydrolysis. Synthetic bio-
materials have several advantages, such as the ability to 
control characteristics, high rigidity, and property clarity 
[66].

Several 3D cancer cell culture systems including bio-
materials are presented. In the 3D culturing system of 
cancer cells, two types of biomaterials have been used 
so far. One is a cancer cell culturing system using bioma-
terials in a spherical shape. Cancer cells spontaneously 
form a cell aggregate with a tissue-like 3D structure when 
incubated with microspheric hydrogels of biomaterial, 
which simulates the cancer environment [72]. The diffi-
culty of separating cells from cell-hydrogel complexes is 
one of the system’s drawbacks, and as a result, the results 
are sometimes inconsistent. The other is a cancer cell 
culture method using non-spherical biomaterials such as 
sponge forms or nonwoven textiles. Cells effectively mul-
tiply and move on the scaffold in this system; this form is 
appropriate for immunohistochemistry [66].

Basement membrane extract (BME/Matrigel) is a well-
defined soluble basement membrane extract that derived 
from an epithelial tumor [73]. It has a composition simi-
lar to real basement membrane and forms a hydrogel at 
24–37  °C [74]. It’s utilized in  vitro as a 3D cell culture 
substrate, in suspension for spheroid culture, and for a 
variety of tests, including angiogenesis, invasion, and 
dormancy. However in  vivo, BME/Matrigel is used for 
angiogenesis experiments and to promote the take and 
growth of xenograft and patient-derived biopsy sam-
ples [75]. According to several studies, the rigidity of the 
BME/Matrigel and its components are both responsible 
for its activity with so many distinct cell types. BME/
Matrigel is widely used in assays and models to help the 
better understanding of tumor biology and develop treat-
ment methods [73].

Individual tumor types can be better modeled with 
BME/Matrigel. For example, new stiffer and acidic 

matrices including extra ECM proteins are holding prom-
ise for more physiologically relevant models because they 
better simulate tumor settings. Coculture in  vitro and 
in  vivo has advanced the establishment of a physiologi-
cal tumor microenvironment significantly [73, 76]. Many 
malignancies are fibrotic, and the use of fibroblasts has 
helped us better understand how these cells interact 
with tumors [77]. Cancer stem cells have emerged as a 
key ’actor’ in the tumor field, with BME/Matrigel-based 
assays assisting in defining their identity, biology, and 
involvement in malignancy. When BME/Matrigel was 
first characterized in 1986 as a "basement membrane 
complex with biological activity," it seemed to play a key 
function in cell differentiation [73]. Multiple uses in can-
cer biology, such as 3D culture, invasion assays, endothe-
lial tube tests, dormancy assays, multicellular tumor 
spheroids, xenografts, and patient-derived xenografts, 
were not anticipated [78].

In terms of tumor metastasis, coculture of tumor cells 
with endothelial cells has revealed some unexpected 
interactions for some tumor types with vasculature [79]. 
The use of a BME/Matrigel based assay to better under-
stand the genes and processes of this type of metastatic 
spread along the outside of vasculature and nerves will 
begin to address the selection of therapeutic methods.

Development of novel 3D models for HCC
The aggregation of cells into a spheroid structure pro-
vides the advantage of minimizing the exposed cell sur-
face area [64, 80], with marked mimicking of natural 
cell organogenesis and morphogenesis [81]. Hence, the 
development of 3D spheroid cultures may be vital to 
investigate in vivo systems more efficiently, including cell 
morphology and the surrounding environment, which 
are reflected in the biological behaviour and gene expres-
sion of the cells. Several approaches are well established 
for the generation of 3D spheroid structures (Fig. 3).

Recently, a variety of 3D models have been developed 
to better understand the molecular and cellular inter-
actions between various cell types with regard to HCC 
progression [82, 83]. In 2011, Tang and colleagues [84] 
established a novel 3D model for metastatic HCC by cul-
turing MHCC97H cells on molecular scaffolds. Chemi-
cal, morphological, and pathological characterizations 
of the model showed several attributes that mirrored 
in vivo HCC, such as the morphological and ultrastruc-
tural features of neoplastic cells, gene expression pat-
terns, apoptotic signals, glucose metabolism, and protein 
production. Additionally, xenografts of such 3D HCC 
spheroids in nude mice livers led to carcinogenesis and 
distant metastatic effects.

Another model of 3D multicellular hetero-sphe-
roids was established by Yip and Cho [51] in a collagen 
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hydrogel culture system to investigate the effect of TME, 
multicellularity, and the ECM barrier on the potential 
resistance of the tested anticancer drug. The uniform het-
ero-spheroid was formed with the hanging drop method 
and via co-culture of stromal fibroblasts with liver carci-
noma followed by encapsulation in collagen gel to form 
a 3D spheroid. The results revealed that the chemo-
therapeutic resistance of the 3D hetero-spheroid model 
was higher than that of the homo-spheroid cultures and 
the 2D monolayer culture. In another study, Liu et  al., 
[85] explored the relationship between HCC therapeu-
tic resistance and 3D matrix stiffness using a model of 
alginate gel (ALG) beads with controlled matrix rigidity. 
They concluded that HCC cells in the ALG model with 
105  kPa stiffness showed the highest therapeutic resist-
ance against cisplatin, 5-FU, and paclitaxel. The authors 
suggested the role of endoplasmic reticulum stress-
related genes in HCC drug resistance due to their upreg-
ulation in the 3D model compared to the 2D model.

In 2015, Terashima and colleagues [86] studied the 
expression of the drug-metabolizing enzymes CYP1A1 
and CYP1A2 and their encoding genes in a 3D spheroid 

model of HCC cells (JHH1, Huh7, and HepG2). Results 
confirmed the increased expression of CYP1A1 and 
CYP1A2 in 3D spheroids compared to 2D cultured cells. 
As such, the authors concluded that the pregnane X 
receptor (PXR) increased CYP1A2 expression in JHH1, 
HepG2, and Huh7 spheroids. This study demonstrated 
the variation in gene expression between 3D spheroids 
and 2D cultured cells and between two different culture 
conditions.

Liu et  al. [85] investigated the safety of in  vitro co-
culturing of umbilical cord mesenchymal stem cells 
(UCMSC), a common vehicle for anticancer drug deliv-
ery, on the growth and characteristics of cancer stem 
cells (CSCs) and on metastasis and therapeutic resistance 
of 3D-cultured HCC cells. The authors concluded that 
the metastatic ability of 3D HCC spheroids was greatly 
enhanced compared to the other cultures; this increase 
was confirmed to be due to upregulation of migration 
abilities, the expression of matrix metalloproteinases 
(MMPs), and EMT-related genes. However, the thera-
peutic resistance and cell growth of HCC cells were not 
affected. Moreover, the addition of the TGF-β receptor 

Fig. 3  Various approaches for the development of 3D spheroid systems
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inhibitor SB431542 into 3D HCC cultures resulted in the 
reversion of EMT and downregulation of MMP-2 and 
migration ability.

Takai et  al. [87] studied the biological features and 
signalling pathways of tumour cells in a 3D organoid-
like spheroid model for HCC. They demonstrated that 
3D spheroid cells could mimic the in  vivo features of 
glandular epithelium and hepatic stem cells. Moreo-
ver, the authors showed the role of Wnt/β-catenin 
signalling activation in EpCAM + HCC spheroid forma-
tion and reported the chemotherapeutic resistance of 
EpCAM + HCC spheroids and their sensitivity to TGF-β-
induced EMT.

Interestingly, Jung and colleagues [48] established a 
spheroid-forming unit to produce economic, large, and 
homogenous spheroids of liver neoplastic cells using 
Huh7 HCC cells. In these spheroids, proliferation and 
apoptotic signalling were present at the surface and cen-
tre of the spheroids, respectively, due to activation of ERK 
signal and hypoxia-induced factor-1 alpha (HIF-1α). Co-
culturing of Huh7 HCC spheroids with 2% human umbil-
ical vein endothelial cells (HUVECs) led to the expression 
of HCC-related genes, with a subsequent reduction in 
necrosis at the spheroid core and enhanced tumorigenic 
characteristics. Moreover, these 3D Huh7 cell spheroids 
showed increased therapeutic resistance against high 
concentrations of the chemotherapeutic drugs doxoru-
bicin and sorafenib.

Recently, Sun et  al. [88] developed novel 3D spheroid 
cell cultures by culturing HCCLM3 cells in 1% de-cel-
lularized liver matrix-alginate (DLM–ALG) hybrid gel 
beads. They demonstrated that the DLM–ALG beads 
enhanced the activities of matrix MMPs, including 
MMP-2 and MMP-9, in HCCLM3 cells; a direct relation-
ship was detected between MMP activities in HCCLM3 
cells and the concentration of DLM powder used.

Another 3D HCC system was developed by Le et  al. 
[89]; this model consisted of HCC cells, stromal cells in 
the form of fibroblasts, and nanofibrous membranes to 
imitate the complex TME. This model was fabricated by 
three methods of culturing: (1) a mono model in which 
tumour cells grow directly on the nanofibrous mem-
brane, (2) a layer model in which fibroblasts grow on the 
nanofibrous membrane, and (3) a mixed model in which 
both tumour cells and fibroblasts develop on the nanofi-
brous membrane. Results showed that both the mono 
and layer models exhibited similar tissue features, while 
the mixed model resulted in phenotypic alterations of the 
neoplastic cells. In addition, the authors concluded that 
the mixed models enhanced the neoplastic cells’ resist-
ance to chemotherapeutic drugs as well as the expression 
of vimentin and fibronectin.

Another 3D mixed-cell spheroid model using Huh-7 
HCC cells and LX-2 stellate cells was recently developed 
by Khawar et al. [14] to mimic the natural in vivo TME 
and tumour-CAF interactions. The 3D system was cul-
tured as mono-spheroids by culturing tumour cells alone 
or as mixed-cell spheroids in ultra-low attachment plates. 
ed Results showed enhanced type I collagen production 
and expression of pro‐fibrotic factors, including TGF-β1 
and CTGF, compared to their levels in mono-spheroids. 
In addition, the expression of vimentin and E-cadherin 
was changed in the mixed-cell spheroids; these pro-
teins promote the EMT phenotype. Drug sensitivity was 
enhanced in mixed-cell spheroids, and an anti-prolifera-
tive effect was shown only after combined treatment with 
sorafenib and oxaliplatin in a dose-dependent manner. 
Co-treatment with TGF-β inhibitors enhanced the thera-
peutic activity of sorafenib in the mixed-cell spheroids, 
suggesting the role of TGF-β in drug resistance.

Ma et  al. [90] recently cultured HCC cell lines and 
fresh primary tumour cells in serum-free and ultra-low 
attachment conditions to enable the forming of HCC 
spheres and discovered that all cell lines and primary 
tumour cells shaped spheres. HCC spheres were capable 
of self-renewal, replication, and drug tolerance, as well as 
containing various subpopulations of CSCs. In immuno-
compromised animals, 500 sphere-forming Huh7 cells 
or 200 primary tumour cells could produce tumours. 
The shape of spheres was associated with tumour scale, 
numerous tumours, satellite lesions, and advanced stage. 
They came to the conclusion that there-forming culture 
would effectively enrich subpopulations with stem-cell 
properties, which are retained by activating the PPAR-
SCD1 axis.

Xie et  al. [91] developed a novel modelling method 
utilising three-dimensional (3D) bioprinting technol-
ogy and constructed hepatorganoids with HepaRG cells, 
which maintain liver function and extend the survival of 
mice with liver failure after abdominal transplantation 
in an updated review. Following surgery, they collected 
HCC specimens from six people. Following that, patient-
derived three-dimensional bio-printed HCC (3DP-HCC) 
models were successfully developed and grew well in 
long-term culture. These models maintained the char-
acteristics of parental HCCs, such as stable biomarker 
expression, stable genetic mutations, and expression 
profiles. 3DP-HCC models are capable of showing drug 
screening outcomes both intuitively and quantitatively. 
They conclude that 3DP-HCC models are faithful in vitro 
models that can forecast patient-specific drugs for cus-
tomised care and are accurate in long-term culture.

Overall, these results confirmed that different mod-
els of HCC 3D cell spheroids efficiently represent the 
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physiological in  vivo structure and function of HCC 
and the TME. Thus, these 3D models could be useful in 
advancing the study of tumour-stroma interactions as 
well as the molecular mechanisms underlying the thera-
peutic resistance of HCC.

Conclusion
The development of an optimal experimental model 
is necessary to maximize the usefulness of preclinical 
investigations and to pave the way for creating and test-
ing more novel, potential therapeutic drugs. Accord-
ingly, obtaining in vitro models with high similarity to the 
natural in vivo conditions of HCC is key in future cancer 
studies. The use of 3D spheroid culture of HCC cells is 
promising for clarifying tumour-TME interactions and 
the mechanistic details of chemotherapeutic resistance, 
as well as for subsequently detecting more safe and effec-
tive anti-neoplastic drugs.
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