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Abstract 

Background: Thyroid carcinoma (THCA) is the most common endocrine-related malignant tumor. Despite the good 
prognosis, some THCA patients may deteriorate into more aggressive diseases, leading to poor survival. This may be 
alleviated by developing a novel model to predict the risk of THCA, including recurrence and survival. Ferroptosis is 
an iron-dependent, oxidative, non-apoptotic form of cell death initially described in mammalian cells, and plays an 
important role in various cancers. To explore the potential prognostic value of ferroptosis in THCA, ferroptosis-related 
long non-coding RNAs (FRLs) were used to construct model for risk prediction of THCA.

Methods: RNA-sequencing data of THCA patients and ferroptosis-related genes were downloaded from The Cancer 
Genome Atlas (TCGA) and FerrDb, respectively. A total of 502 patients with complete data were randomly separated 
into a training cohort and a validation cohort at the ratio of 2:1. The Pearson correlation coefficients were calculated 
to determine the correlation between ferroptosis-related genes (FRGs) and the corresponding lncRNAs, and those 
meeting the screening conditions were defined as FRLs. Gene Expression Omnibus (GEO) database and qRT-PCR 
were used to verify the expression level of FRLs in THCA tissues. Univariate and multivariate cox regression analysis 
were performed to construct a FRLs signature based on lowest Akaike information criterion (AIC) value in the training 
cohort, then further tested in the validation cohort and the entire cohort. Gene set enrichment analysis (GSEA) and 
functional enrichment analysis were used to analyze the biological functions and signal pathways related to differen-
tially expressed genes between the high-risk and low-risk groups. Finally, the relative abundance of different tumor-
infiltrating immune cells were calculated by CIBERSORT algorithm.

Results: The patients were divided into high-risk group and low-risk group based on a 5-FRLs signature (AC055720.2, 
DPP4-DT, AC012038.2, LINC02454 and LINC00900) in training cohort, validation cohort and entire cohort. Through 
Kaplan–Meier analysis and area under ROC curve (AUC) value, patients in the high-risk group exhibited worse prog-
nosis than patients in the low-risk group. GEO database and qRT-PCR confirmed that LINC02454 and LINC00900 were 
up-regulated in THCA. Univariate and multivariate cox regression analyses showed that the risk score was an inde-
pendent prognostic indicator. GSEA and functional enrichment analysis confirmed that immune-related pathways 
against cancer were significantly activated in the low-risk THCA patients. Further analysis showed that the immune 
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Introduction
Thyroid carcinoma (THCA) is the most common malig-
nancy of human endocrine system. The latest follow-up 
prevalence study revealed that the incidence of THCA 
ranked fifth in female malignancies worldwide [1]. Papil-
lary thyroid carcinoma (PTC) is the most common path-
ological subtype of THCA, accounting for 85% to 90% of 
the total incidences. Due to the relatively inert biological 
behavior of PTC, its overall prognosis is relatively good, 
and the 10-year survival rate of patients is greater than 
90% [2]. However, many cases still die of THCA due to 
malignant pathological subtypes, postoperative recur-
rence and distant metastasis [3]. Therefore, finding out 
novel diagnostic and prognostic markers as well as new 
therapeutic targets for THCA is of great significance.

Ferroptosis is generally referred to as one type of regu-
lated cell death involving the production of iron-depend-
ent reactive oxygen species (ROS), which is distinct from 
other forms of cell death regarding the morphological, 
biochemical, and genetic features [4, 5]. As revealed by 
more and more studies, ferroptosis plays an important 
role in tumor progression and treatment [6, 7]. Besides, 
various tumor types, such as lung adenocarcinoma, 
hepatocellular carcinoma, and ovarian cancer, have been 
demonstrated to be sensitive to ferroptosis [8, 9]. Simi-
larly, ferroptosis has been proved as an essential part in 
THCA. Recent research has found that circular RNA 
circ_0067934 could attenuate ferroptosis of THCA cells 
by miR-545-3p/SLC7A11 signaling [10]. Another study 
has reported that knockdown of ETV4 could inhibit the 
PTC development by promoting ferroptosis through 
downregulating SLC7A11 [11].

In recent years, immune checkpoint blockage therapy 
has increasingly attracted the attention of research-
ers due to its great breakthrough in cancer immu-
notherapy. Immune checkpoint inhibitors targeting 
programmed cell death protein 1 (PD-1), programmed 
cell death ligand 1 (PD-L1), T cell immunoglobulin and 
ITIM domain (TIGIT), T cell immunoglobulin mucin-3 
(TIM-3), and cytotoxic T lymphocyte antigen 4 (CTLA4) 
have been effective in treatment of various cancer types 
[12]. The response to immune checkpoint blockage 
therapy is closely related to the tumor microenviron-
ment (TME). Ferroptosis related damage may result 

in inflammation-induced immunosuppression in the 
TME, facilitating tumor development [13]. Surprisingly, 
a research showed that CD8 + T cells with anti-tumor 
activity promote ferroptosis by down-regulating SLC3A2 
and SLC7A11 [13]. However, the in-depth mechanisms 
of the interaction between ferroptosis and TME are still 
unclear. Therefore, exploring the relationship between 
ferroptosis and TME can help us better understand the 
pathogenesis of THCA and promote the development of 
treatment strategies.

The long non-coding RNAs (lncRNAs) are defined 
as the RNAs with over 200 nucleotides in length and 
without protein-coding ability [14, 15]. Increasing stud-
ies have demonstrated that the abnormal expression of 
lncRNAs exhibits both tumor-supportive or tumor-sup-
pressive effect in various cancers [16–18]. Recent stud-
ies have indicated that dysregulation of specific lncRNAs 
was inextricably linked with the ferroptosis of malig-
nant tumors [19, 20]. It was reported that upregulation 
of lncRNA OIP5-AS1 inhibited ferroptosis in prostate 
cancer with long-term cadmium exposure through miR-
128-3p/SLC7A11 signaling [21]. Another study revealed 
that upregulation of lncRNA LINC00618 promoted 
vincristine-induced ferroptosis in human leukemia [22]. 
However, the complete role of lncRNAs in ferroptosis 
process of THCA remains obscure. The prognostic value 
of ferroptosis-related lncRNAs (FRLs) for THCA patients 
has never been systematically evaluated.

In this study, we aimed to identify FRLs in THCA, and 
provide important insight on the biological significance 
of ferroptosis in THCA. Furthermore, we analyzed the 
relationship between FRLs and immune microenviron-
ment in THCA. FRLs were found as both prognostic 
markers and potential therapeutic targets of THCA 
patients.

Materials and methods
Data acquisition
The Cancer Genome Atlas (TCGA), a database with tre-
mendous amounts of genomic and clinical data, facili-
tates relevant researches for genetic alterations and 
pathways that influence tumorigenesis, tumor progres-
sion, tumor differentiation, and tumor metastasis [23]. 
The RNA-sequencing (RNA-seq) data of 58 adjacent 

cells such as plasma cells, T cells CD8 and macrophages M1, and the expression of immune checkpoint molecules, 
including PD-1, PD-L1, CTLA4, and LAG3, were remarkably higher in the low-risk group.

Conclusion: Our study used the TCGA THCA dataset to construct a novel FRLs prognostic model which could 
precisely predict the prognosis of THCA patients. These FRLs potentially mediate anti-tumor immunity and serve as 
therapeutic targets for THCA, which provided the novel insight into treatment of THCA.
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non-tumorous tissues (N) and 502 tumor tissues (T) as 
well as the corresponding clinical information of 502 
THCA patients (patients with incomplete follow-up data 
were excluded) were downloaded from TCGA database 
(https:// portal. gdc. cancer. gov/ repos itory). The lncR-
NAs and protein-coding genes were classified by the 
Ensembl human genome browser GRCh38. p13 (http:// 
asia. ensem bl. org/ index. html) [24]. FRGs were obtained 
from an authoritative public database (241 FRGs were 
obtained and their detailed information is provided in 
Additional file 1: Table S1), FerrDb (http:// www. zhoun an. 
org/ ferrdb/), which provides the information of markers, 
regulators, and inducers of ferroptosis [25]. The present 
study did not require approval from an ethics commit-
tee because TCGA and FerrDb are publicly accessible 
databases.

Establishment and verification of the prognostic model
The Pearson correlation coefficients were calculated to 
determine the correlation between FRGs and the cor-
responding lncRNAs. The FRLs were identified with 
the p value less than 0.001 (p < 0.001) and the absolute 
value of Pearson correlation coefficient more than 0.3 
(|R|> 0.3). After normalizing data from TCGA database, 
the “limma” R package was used to obtain differentially 
expressed lncRNAs between tumor tissues and non-
tumorous tissues based on the criteria of false discovery 
rate (FDR) < 0.05 and |log2FC|≥ 1 [26]. A total of 502 
patients were randomly separated into a training cohort 
and a validation cohort at the ratio of 2:1 for constructing 
and validating the FRLs signature. Univariate cox regres-
sion analysis was performed to identify prognostic lncR-
NAs regarding OS (p < 0.05) in the training cohort. The 
intersected lncRNAs of differentially expressed lncRNAs, 
FRLs and prognostic lncRNAs were identified as the can-
didate lncRNAs for developing the FRLs prognostic sig-
nature. Then, multivariate cox regression analysis was 
performed on the candidate FRLs to evaluate their prog-
nostic value. We identified five optimal FRLs for con-
structing the prognostic model based on lowest Akaike 
information criterion (AIC) value. The risk score of 
each patient was calculated according to the normalized 
expression levels of FRLs and their corresponding regres-
sion coefficients. The computational formula was as fol-
lows: Risk Score =  esum (corresponding regression coefficient × each 

lncRNA’s expression). Based on the median value of risk score, 
we divided the patient into high-risk and low-risk groups 
in the training cohort, validation cohort and entire 
cohort, respectively. Kaplan–Meier (KM) survival curves 
with log-rank tests were used to analyze differences in 
OS between high-risk and low-risk groups. Then, time-
dependent ROC curve was generated with “survival 

ROC” R package to evaluate the predictive accuracy of 
the FRLs signature.

Sample collection
Eight pairs of THCA tissues and corresponding adja-
cent non-cancerous tissues were obtained from patients 
undergoing thyroidectomy at the Xijing Hospital from 
2018 to 2020. All samples were immediately dissected, 
placed on ice, snap-frozen in liquid nitrogen, then stored 
at − 80℃ until use. The patient tissue samples were con-
firmed by histopathological examination to be PTC tis-
sues and adjacent non-cancerous tissues. None of the 
patients had received preoperative local or systemic 
treatment. All procedures involving human participants 
in the study were in accordance with the ethical stand-
ards of the Research Ethics Committee of The Air Force 
Medical University as well as the 1964 Helsinki declara-
tion and its later amendments.

Total RNA isolation and quantitative real‑time PCR 
(qRT‑PCR)
Total RNA was isolated from frozen tissue and cell sam-
ples by RNAiso (Takara, Dalian, China). A reverse tran-
scription kit (RR036A, Takara, Shiga, Japan) was used to 
transcribe total RNA and produce complementary DNA. 
For the analysis of gene expression, qRT-PCR was per-
formed using SYBR Premix Ex Taq II (Takara) and the 
LightCycler 480 system (Roche, Indianapolis, IN, USA). 
The relative expression levels were calculated using the 
 2−ΔCt method (Ct, cycle threshold). ΔCt indicates the 
difference in the Ct value between a target gene and the 
endogenous reference. GAPDH was used as the internal 
control. Each PCR was performed in triplicate to verify 
the stability and repeatability of the results. The primer 
sequences are available in Additional file 3: Table S3.

Construction of the lncRNA‑mRNA co‑expression network
In order to demonstrate the correlation between the 
FRLs and their corresponding FRGs, the lncRNA-mRNA 
co-expression network was constructed and visualized 
using the Cytoscape software (version 3.7.2, http:// www. 
cytos cape. org/). Then, the Sankey diagram was plotted 
to further demonstrate the correlation degree between 
FRLs and their corresponding FRGs.

Gene set enrichment analysis and functional enrichment 
analysis
The “edgeR” R package was used to identify the differen-
tially expressed genes between the high-risk and low-risk 
groups with the criteria of FDR < 0.05 and |log2FC|≥ 1. 
The identified differentially expressed genes were ana-
lyzed by gene set enrichment analysis (GSEA; http:// 
www. broad insti tute. org/ gsea) to explore the molecular 

https://portal.gdc.cancer.gov/repository
http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
http://www.cytoscape.org/
http://www.cytoscape.org/
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
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and biological differences between the two groups. The 
gene sets were filtered based on the minimum and maxi-
mum sizes of 10 and 500 genes, respectively. In addition, 
Gene Ontology (GO) enrichment analysis was per-
formed to determine the biological processes, molecular 
functions, and cellular components related to the FRLs 
signature. And the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was performed to 
identify the signaling pathways associated with the FRLs 
signature.

Estimation of tumor‑infiltrating immune cells
The relative abundance of different tumor-infiltrating 
immune cells were calculated by CIBERSORT algorithm 
[27]. The normalized gene expression data were uploaded 
to the CIBERSORT web portal (http:// ciber sort. stanf ord. 
edu/), and the algorithm was based on LM22 gene signa-
ture and 1,000 permutations. The samples were filtered 
based on a p value < 0.05.

Statistical analysis
Wilcox-test was used to compare relative abundance of 
tumor-infiltrating immune cells and expression levels of 
immune checkpoint molecules between high-risk and 
low-risk groups. Spearman correlation analysis was used 
to analyze the correlation between tumor-infiltrating 
immune cells. The proportions of patients with different 
clinical characteristics between groups were analyzed by 
the Chi-squared test. Univariate Cox regression analysis 
and multivariate Cox regression analysis were performed 
to identify independent prognostic factors. The predic-
tive accuracy of the prognostic model regarding OS was 
evaluated by time-dependent ROC curve. All statisti-
cal analyses were conducted by SPSS (Version 21.0) or R 
software (Version 3.5). Statistical significance was defined 
as a p value < 0.05, and all tests were two-tailed.

Results
The clinical characteristics of patients in the training 
cohort, validation cohort and entire cohort
A total of 502 THCA patients from the TCGA database 
were defined as the entire cohort. They were randomly 
divided into a training cohort and a validation cohort 
at a ratio of 2:1 (n = 334 and 168, respectively). The 
detailed clinical characteristics of patients are presented 
in Table 1. There was no significant difference in clinical 
characteristics of patients between the training cohort 
and the validation cohort (Fig. 1).

Identification of prognostic differentially expressed FRLs 
in THCA patients
Firstly, a total of 502 THCA samples and 58 normal thy-
roid tissue samples were included for analyses. A total 

of 14,062 lncRNAs were identified by analyzing the 
RNA-seq data of the THCA patients in TCGA database. 
According to the threshold of adjusted p value < 0.05 and 
|log2 FC|≥ 1, 2,201 lncRNAs were found to be differen-
tially expressed between tumor and normal tissues. Then, 
we identified 280 prognostic lncRNAs by univariate cox 
regression analysis (p < 0.05) in the training cohort. To 
identify FRLs, 241 ferroptosis-associated genes (FRGs) 
were downloaded from the ferroptosis database. We 
found that 1,268 FRLs were significantly correlated 
with FRGs (|R|> 0.3 and p < 0.001). Finally, Venn dia-
grams were used to exhibit the intersected lncRNAs of 
lncRNAs, prognostic lncRNAs and FRLs. We identified 
22 lncRNAs (DOCK9-DT, AC046143.1, AC022509.2, 
MIR181A2HG, AF131215.7, AC055720.2, AC084375.1, 
LINC02471, DPP4-DT, AL162511.1, HMGA2-AS1, 
AL031985.3, AC141930.1, AC012038.2, TBILA, 
AL158206.1, FAM111A-DT, LINC02454, AC254633.1, 
AC005479.2, AC007255.1 and LINC00900) that were 
shared by three lncRNA sets, and these 22 lncRNAs 
were defined as prognostic differentially expressed FRLs 
between normal and tumor tissues (Fig. 2A–D).

Construction of prognostic model based on frls 
in the training cohort
The expression levels of the 22 FRLs were used to con-
struct a prognostic model by multivariate cox regression 
analysis in the training cohort regarding the overall sur-
vival (OS). An optimal 5-lncRNAs (AC055720.2, DPP4-
DT, AC012038.2, LINC02454 and LINC00900) signature 
was identified based on the lowest Akaike information 
criterion (AIC) (Additional file  2: Table  S2). The risk 
score was calculated using the following formula:  e(−0.347 

× expression level of AC055720.2 − 1.923 × expression level of DPP4−DT − 

0.591 × expression level of AC012038.2 + 0.43 × expression level of LINC02454 

− 0.91 × expression level of LINC00900). The patients were further 
divided into a high-risk group (n = 167) and a low-risk 
group (n = 167) based on the median value of risk score. 
The risk score was significantly associated with T stage 
and N stage of THCA cancer patients (Table 2).

As shown in Fig.  3A, patients in the high-risk group 
presented decreased survival compared with patients 
in the low-risk group. And the Kaplan–Meier analy-
sis showed that patients in the high-risk group had sig-
nificantly worse OS than patients in the low-risk group 
(Fig.  3G, p = 0.009). The area under ROC curve (AUC) 
value reached 0.969 at 1 year, 0.882 at 3 years, and 0.962 
at 5 years (Fig. 3J).

To test the reliability of the FRLs signature constructed 
in the training cohort, risk scores of the patients in the 
validation cohort and the entire cohort were calculated as 
described above. The patients in validation cohort were 
divided into a high-risk group (n = 84) and a low-risk 

http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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group (n = 84), and the patients in entire cohort were 
also divided into a high-risk group (n = 251) and a low-
risk group (n = 251) based on the corresponding median 
value of risk scores, respectively. Likewise, patients in the 
high-risk group of validation cohort and entire cohort 
were associated with worse survival outcome (Fig. 3B and 
3C). And the Kaplan–Meier analysis showed that patients 
in the high-risk group had worse OS than patients in the 
low-risk group in both the validation cohort and the 
entire cohort (Fig.  3H and 3I, p = 0.023 and p < 0.001, 
respectively). The AUC values in the validation and entire 
cohorts reached 0.921 and 0.954 at 1  year, 0.981 and 
0.913 at 2 years, and 0.995 and 0.918 at 5 years, respec-
tively (Fig. 3K and L).

Then, we used three GEO databases (GSE29265, 
GSE33630, GSE53157) to verify the expression differ-
ence of FRLs between THCA and normal tissues. How-
ever, due to the limitation of sequencing platform, we 
can only obtain the expression of LINC00900. The results 
showed that the expression of LINC00900 in THCA 
was higher than that in normal tissues in all three GEO 

databases (Fig. 3M). Finally, qRT-PCR was used to detect 
the expression of LINC02454, LINC00900 and DPP4-DT 
in 80 pairs of THCA and paired adjacent tissues, and the 
expression of LINC02454, LINC00900 and DPP4-DT sig-
nificantly increased in THCA (Fig. 3N).

Independent prognostic value 
of the five‑ferroptosis‑related lncRNAs model
To determine whether the risk score was an independ-
ent prognostic factor for THCA patients, univariate 
cox regression and multivariate cox regression analyses 
were performed on the clinical characteristics and risk 
score. The results of univariate cox regression analy-
sis showed that the risk score was significantly associ-
ated with OS in the training cohort, validation cohort 
and entire cohort (training cohort: HR = 1.088, 95% 
CI = 1.039–1.14, p < 0.001; validation cohort: HR = 1.148, 
95% CI 1.047–1.26, p < 0.001; entire cohort: HR = 1.094, 
95% CI 1.054–1.136, p < 0.001) (Fig. 4A–C). After adjust-
ing for other confounders, the risk score remained to be 
an independent predictor of OS in the multivariate cox 

Table 1 Clinical characteristics of patients in entire cohort, training cohort and validation cohort

Variables Entire cohort (n = 502) Training cohort (n = 334) Validation cohort
(n = 168)

p‑value

No % No % No %

Age

Median(years) 46 – 46 – 46 – –

 < 55 335 66.7 224 67.1 111 66.1 0.823

  ≥ 55 167 33.3 110 32.9 57 33.9

Gender

 Female 367 73.1 248 74.3 119 70.8 0.41

 Male 135 26.9 86 25.7 49 29.2

AJCC Stage 0.09

 I 396 78.9 269 80.5 127 75.6

 II 84 16.7 46 13.8 38 22.6

 III 17 3.4 16 4.8 1 0.6

 IV 5 1 3 0.9 2 1.2

T Stage 0.61

 T1 145 28.9 94 28.1 51 30.4

 T2 164 32.7 111 33.2 53 31.5

 T3 170 33.9 111 33.2 59 35.1

 T4 23 4.6 18 5.4 5 3

N Stage 0.207

 N0 229 45.6 147 44 82 48.8

 N1 223 44.4 155 46.4 68 40.5

 Nx 50 10 32 9.6 18 10.7

M Stage 0.471

 M0 282 56.2 188 56.3 94 56

 M1 9 1.8 5 1.5 4 2.4

 Mx 211 42 141 42.2 70 41.6
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regression analysis (training cohort: HR = 1.067, 95% 
CI = 1.037–1.077, p < 0.001; validation cohort: HR = 1.16, 
95% CI 1.031–1.206, p = 0.001; entire cohort: HR = 1.092, 
95% CI 1.033–1.176, p < 0.001) (Fig. 4D–F).

Furthermore, the ROC curve showed that the AUC 
values of the FRLs prognostic signature in the training 
cohort, validation cohort and entire cohort were 0.95, 
0.936 and 0.951, respectively, which were higher than 
the AUC values of other traditional prognostic factors 
(Fig. 4G–I). Based on the analysis results of multivariate 
logistic regression, the independent variables including 
age, gender, stage, T stage, and risk score were screened 
out for establishing a visualized nomogram to predict 
survival analysis for individual THCA patients (Fig.  4J). 
The decision curve analysis (DCA) showed that the 

prediction ability of the nomogram was more effective 
than a treat-none or treat-all strategy (Fig. 4K).

Construction of the lncRNA‑mRNA co‑expression network
To further explore the potential roles of FRLs in THCA, 
the lncRNA-mRNA co-expression network was con-
structed using Cytoscape for elucidating the correlation 
between FRLs and FRGs. The lncRNA-mRNA co-expres-
sion network included 92 pairs in total, among which 54 
pairs were positively correlated and 38 pairs were nega-
tively correlated (Fig. 5A). Within the network, LncRNA 
LINC02454 positively correlated with 16 FRGs (ARNTL, 
TGFBR1, LAMP2, HMGB1, CHMP5, ANO6, RELA, 
MAPK1, DPP4, BID, SRC, ISCU, PRDX6, ZFP69B, 
HIF1A, CD44) and negatively correlated with 20 FRGs 

Fig. 1 The flow diagram of this study

(See figure on next page.)
Fig. 2 Identification of prognostic differentially expressed FRLs in THCA patients. A Venn diagram was established to identify the common lncRNAs 
of differentially expressed lncRNAs, FRLs, and prognostic lncRNAs. B The 22 intersected lncRNAs were differentially expressed in normal and tumor 
tissues. C Forest plot showing the univariate cox regression analysis on 22 lncRNAs. D lncRNA-mRNA co-expression network of candidate FRLs and 
FRGs. The left indicates positive correlation between FRLs and FRGs and the right indicates negative correlation between FRLs and FRGs
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Fig. 2 (See legend on previous page.)



Page 8 of 17Qin et al. Cancer Cell International          (2022) 22:296 

(ABCC1, HSPA5, CARS1, PEBP1, GPT2, HERPUD1, 
MAP1LC3A, ACSF2, FH, ATG4D, NFS1, PRDX1, PGD, 
SLC2A8, ATP5MC3, WIPI1, MT1G, CEBPG, MIOX, 
BAP1). LncRNA DPP4-DT had positive relationship 
with 12 FRGs (SAT1, ALOX15B, MAP3K5, TFAP2C, 
FANCD2, RELA, MAPK1, DPP4, BID, SRC, ALOX5, 
HIF1A) and negative relationship with 9 FRGs (HSPA5, 
HERPUD1, MAP1LC3A, ACSF2, NFS1, SLC2A8, 
ATG13, BAP1, SNX4). Nine FRGs (OTUB1, HMGB1, 
GABPB1, ANO6, DUOX2, MAPK14, DUOX1, ATG13, 
CD44) positively correlated with lncRNA LINC00900 

and 5 FRGs (MUC1, FTH1, ALOX5, WIPI1, CISD1) 
negatively correlated with lncRNA LINC00900, respec-
tively. LncRNA AC055720.2 positively correlated with 
10 FRGs (CHMP6, OTUB1, TMBIM4, PHKG2, HMGB1, 
GABPB1, SRC, ISCU, CD44 and ELAVL1) and nega-
tively correlated with 4 FRGs (STEAP3, WIPI1, NCOA4, 
CISD1). Only lncRNA AC012038.2 was positively related 
to 7 FRGs (CHMP6, EGLN2, HRAS, GPX4, SOCS1, 
ISCU, HSPB1), with no negatively related FRGs being 
detected.

The Sankey diagram not only demonstrated the rela-
tionship between FRLs and FRGs, but also demonstrated 
the relationship between FRLs and OS of THCA patients 
(Fig. 5B).

Explore cancer related pathways by gene set enrichment 
analysis
To explore the biological functions and signal transduc-
tion pathways associated with the FRLs, the differen-
tially expressed genes between the high-risk and low-risk 
groups were used to perform Gene Set Enrichment Anal-
ysis (GSEA). The results showed that the metabolism 
pathways and cell proliferation pathways, such as pro-
panoate metabolism, valine leucine and isoleucine degra-
dation, citrate cycle tca cycle, DNA replication, fatty acid 
metabolism and cell cycle, were active in the high-risk 
THCA patients (Fig.  6A). While some immune-related 
pathways against cancer were significantly activated in 
the low-risk THCA patients, such as T cell receptor sign-
aling pathway, natural killer cell-mediated cytotoxicity, 
B cell receptor signaling pathway and cytokine cytokine 
receptor interaction (Fig. 6B).

Immune‑Related pathways were activated in the FRLs 
model
In addition to GSEA, GO enrichment analysis and 
KEGG enrichment analysis were performed to deter-
mine the biological functions related to the FRLs. We 
used the aforementioned differentially expressed genes 
between the high-risk and low-risk groups for enrich-
ment analysis and found that the differentially expressed 
genes were obviously enriched in many immune-related 
pathways, such as immune response, immune response-
activating signal transduction, B cell-mediated immu-
nity in biological processes (Fig.  7A), immunoglobulin 

Table 2 Relationship between risk score and clinical 
characteristics of patients in the training cohort

Variables Low‑risk score 
(n = 167)

High‑risk score 
(n = 167)

p‑value

No % No %

Age

Median(years) 46 – 47 – –

 < 55 111 66.5 113 67.7 0.816

  ≥ 55 56 33.5 54 32.3

Gender

 Female 124 74.3 124 74.3 1

 Male 43 25.7 43 25.7

AJCC Stage 0.49

 I 130 77.8 139 83.2

 II 26 15.6 20 12

 III 10 6 6 3.6

 IV 1 0.6 2 1.2

T Stage 0.034

 T1 58 34.7 36 21.6

 T2 55 32.9 56 33.5

 T3 47 28.1 64 38.3

 T4 7 0.6 11 6.6

N Stage 0.753

 N0 75 44.9 72 43.1

 N1 78 46.7 77 46.1

 Nx 14 8.4 18 10.8

M Stage 0.295

 M0 87 52.1 101 60.5

 M1 3 1.8 2 1.2

 Mx 77 46.1 64 38.3

Fig. 3 Prognostic analysis of the FRLs signature model in the training cohort, validation cohort and entire cohort. The distribution of the risk score 
and survival status in the A training cohort, B validation cohort and C entire cohort. Heatmap of five FRLs between the high-risk and low-risk groups 
in the (D) training cohort, E validation cohort and F entire cohort. Kaplan–Meier curves for the OS between the high-risk and low-risk groups in the 
G training cohort H validation cohort and I entire cohort. AUC of time-dependent ROC curves verified the prognostic accuracy of the risk score in 
the J training cohort, K validation cohort and L entire cohort. M LINC00900 expression in THCA tissues and normal tissues from GEO database. N 
The relative mRNA expression of LINC02454, LINC00900 and DPP4-DT in 80 paired THCA tissues and adjacent non-cancerous tissues

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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complex, immunological synapse, T cell receptor com-
plex in cellular components (Fig.  7B), immunoglobulin 
receptor binding, cytokine activity in molecular func-
tions (Fig. 7C). The result of KEGG enrichment analysis 

also showed that the differentially expressed genes were 
enriched in cytokine-cytokine receptor interaction, T cell 
receptor signaling pathway, TNF signaling pathway and 
IL-17 signaling pathway (Fig. 7D).

Fig. 4 Independent prognostic value of the FRLs signature. Results of the univariate cox regression analysis and multivariate cox regression analysis 
regarding OS in the A and D training cohort, B and E validation cohort and C and F entire cohort. AUC of ROC curves compared the prognostic 
accuracy of the risk score and other prognostic factors in the G training cohort, H validation cohort and I entire cohort. J Nomogram to predict 
survival analysis for THCA patients. K Decision curve analysis (DCA) of the nomogram for predicting the overall survival (OS)
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The immune cell infiltration landscape in THCA
The results of GSEA, GO enrichment analysis and 
KEGG enrichment analysis suggested that FRLs may be 
involved in immune-related functions in THCA. There-
fore, we further explored the relationship between FRLs 
and anti-tumor immunity. CIBERSORT algorithm was 
used for investigating the immune cell infiltration land-
scape of the 502 THCA patients. The proportions of 
tumor-infiltrating immune cells were found to be sig-
nificantly different between the high-risk group and the 
low-risk group (Fig. 8A). We also showed the correlation 
matrix of all tumor infiltrating immune cells (Fig.  8B). 
To compare the differences of infiltrating immune cells 
between the high-risk and low-risk groups, a violin plot 
was generated and showed that the proportions of T cells 
CD4 + memory activated (p = 0.011), T cells regulatory 
(Tregs) (p = 0.016), monocytes (p = 0.028), macrophages 
M0 (p = 0.0024) and macrophages M2 (p < 0.001) in the 
high-risk group were significantly higher than those in 
the low-risk group, while the proportions of plasma cells 
(p = 0.027), T cells CD8 (p = 0.025) and macrophages 
M1 (p = 0.006) in the high-risk group were lower than 
those in the low-risk group (Fig. 8C). Then we compared 
the expression levels of classic immune checkpoint mol-
ecules in the high-risk group and low-risk group, and 
found that some common immune checkpoint molecules 
such as PD-1, PD-L1, CTLA4 and LAG3 were all more 
abundantly expressed in the low-risk group than in the 
high-risk group. However, other immune checkpoint 
molecules, such as B7H3 and TIGHT, were not differen-
tially expressed between the high-risk group and the low-
risk group (Fig. 8D).

Discussion
In this study, we systematically explored the relation-
ship between lncRNAs and FRGs in THCA. The differ-
entially expressed lncRNAs between THCA and normal 
tissues, FRLs, and prognostic lncRNAs were obtained 
from TCGA database and FerrDb database. Twenty-two 
prognostic differentially expressed FRLs were finally 
included for analyses. A novel prognostic model con-
taining five FRLs was developed by further multivariate 
analysis. According to the prognostic model, we divided 
the patients of the training cohort, validation cohort and 
entire cohort into high-risk and low-risk groups. KM sur-
vival curves and time-dependent ROC curves between 
the high-risk group and the low-risk group were com-
pared, and the differentially expressed genes between two 

groups were screened out. GSEA and functional enrich-
ment analysis both showed that immune-related path-
ways were significantly differentially enriched between 
the two groups. Finally, we analyzed the infiltration 
level and the correlation matrix of all tumor-infiltrating 
immune cells in THCA. We also found that the expres-
sion levels of common immune checkpoint molecules in 
the low-risk group were higher than those in the high-
risk group, which indicated that the low-risk group in 
THCA was immunologically “hot”.

Ferroptosis is an iron-dependent oxidative form of cell 
death associated with increased lipid peroxidation and 
insufficient capacity to eliminate lipid peroxides. Ferrop-
tosis is distinct from other reported forms of cell death, 
namely apoptosis, necroptosis, and classic necrosis [28]. 
After several years of study, ferroptosis has been rec-
ognized as clinically important. Preliminary evidence 
suggests that ferroptosis suppresses tumor growth, pro-
gression and have potential benefits for cancer therapy 
in hepatocellular carcinoma, colorectal cancer, bladder 
cancer, lung cancer, thyroid cancer, pancreatic cancer, 
and prostate cancer [5]. For example, the E3 ligase MIB1 
promotes proteasomal degradation of NRF2 and sensi-
tizes lung cancer cells to ferroptosis [29]. Another study 
showed that miR-15a-3p regulated ferroptosis by target-
ing glutathione peroxidase GPX4 in colorectal cancer 
[30]. In addition, ferroptosis is also associated with exac-
erbation of other diseases, including infection, injury, 
and neurological degeneration. It has been reported that 
ferroptosis can exacerbate kidney injury, heart failure, 
bone marrow injury, brain injury, and spinal cord injury, 
and result in Huntington’s disease, rapid motor neuron 
degeneration, paralysis, Parkinson’s disease, stroke, and 
Alzheimer’s disease [31–33]. In these studies, many genes 
and small molecules have been shown to play impor-
tant roles in the progression of ferroptosis. Zhou et  al. 
built FerrDb that collects genes and small molecules and 
annotates them as regulators and markers of ferroptosis, 
also named as FRGs. We downloaded 241 FRGs from 
FerrDb as the basis of this study.

Many studies have recently found that lncRNAs can 
regulate the progression of various tumors by affect-
ing ferroptosis. For example, lncRNA RP11-89 facili-
tates tumorigenesis and ferroptosis resistance through 
PROM2-activated iron export by sponging miR-129-5p 
in bladder cancer [34]. lncRNA LINC00336 inhibits 
ferroptosis in lung cancer by functioning as a compet-
ing endogenous RNA [35]. In addition, some studies 

Fig. 5 Construction of the FRLs–FRGs co-expression network A Diagram of the FRLs–FRGs network. The left indicates positive correlation between 
FRLs and FRGs and the right indicates negative correlation between FRLs and FRGs. B The Sankey diagram showing the connection degree 
between the FRLs and FRGs. The left indicates positive correlation between FRLs and FRGs and the right indicates negative correlation between 
FRLs and FRGs

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Fig. 6 GSEA of high-risk and low-risk groups based on the FRLs prognostic signature. A GSEA results showing significant enrichment of metabolism 
pathways and cell proliferation pathways in the high-risk THCA patients. B GSEA results showing significant enrichment of immue-related pathways 
in the low-risk THCA patients
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constructed the FRGs signature to predict prognosis of 
several cancers, such gliomas, gastric cancer and lung 
adenocarcinoma [36–38]. However, prognostic mod-
els based on FRLs in THCA are still limited. Therefore, 
we performed Pearson correlation analysis between 
the discovered FRGs and lncRNAs to identify FRLs. 
By analyzing the intersections between differentially 
expressed lncRNAs between tumor and normal tis-
sues, and prognosis-related lncRNAs, 22 FRLs were 
identified in THCA, which were named as prognostic 
differentially expressed FRLs. Furthermore, five FRLs 
(AC055720.2, DPP4-DT, AC012038.2, LINC02454 and 
LINC00900) were selected to construct a prognostic 
signature based on their performance in the multi-
variate cox regression analysis. According to the five 
FRLs prognostic signature, we divided the training 
cohort, validation cohort, and entire cohort into high-
risk and low-risk groups. Notably, we found that the 
OS of patients in the high-risk group was significantly 
shorter than that in the low-risk group. Furthermore, 
the ROC curve showed that the AUC values of the FRLs 
prognostic signature in the training cohort, validation 

cohort, and entire cohort were higher than those of 
other traditional prognostic factors.

Growing evidence has suggested that immune cells 
in TME play vital roles in tumorigenesis. These innate 
immune cells, including macrophages, neutrophils, den-
dritic cells, innate lymphoid cells, myeloid-derived sup-
pressor cells, and natural killer cells, potentially possess 
tumour-inhibiting or tumour-promoting functions [39]. 
THCA is considered as the “inflammatory tumor” and 
cancer-related inflammation could be the potential diag-
nostic and therapeutic target in THCA patients [40]. Fer-
roptosis also plays an important immunological role in 
the process of tumour surveillance by affecting tumour 
immunity [39, 41]. For example, CD8 + T cells sup-
press tumor development by promoting tumor ferrop-
tosis (31043744). CD36-mediated ferroptosis dampens 
the effector function of intratumoral CD8 + T cells and 
decreases their antitumor ability [42]. However, the role 
of ferroptosis, especially of the FRLs, in THCA immune 
microenvironment is still unclear. In our study, through 
GSEA and functional enrichment analysis, immune-
related pathways, including T cell receptor signaling 

Fig. 7 Results of GO and KEGG analyses. GO analysis showed that differentially expressed genes between high-risk and low-risk groups were 
obviously enriched in A immune-related biological processes, B immune-related cell components, C and immune-related molecular functions. D 
KEGG analysis showed that differentially expressed genes were enriched in immune-related pathways
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Fig. 8 The immune cell infiltration landscape in THCA. A Barplot of the tumor-infiltrating cell proportions. B Heatmap of the tumor-infiltrating cell 
proportions. C Correlation matrix of immune cell proportions. D Violin plot showing the different proportions of tumor-infiltrating cells between 
high-risk group and low-risk groups. E The expression levels of immune checkpoint molecules in the high-risk group and low-risk group
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pathway, natural killer cell-mediated cytotoxicity, B cell 
receptor signaling pathway and cytokine cytokine recep-
tor interaction were found to be activated and inhibited 
in the high-risk and low-risk groups, respectively. There-
fore, FRLs were proposed to be closely related to anti-
tumor immunity in THCA. Subsequently, we further 
analyzed the relationship between FRLs and immune cell 
infiltration in THCA. CIBERSORT algorithm was used 
to calculate the relative abundance of different types of 
tumor-infiltrating immune cells. Compared with the low-
risk group, the proportions of infiltrating tumor-killing 
immune cells, such as plasma cells, CD8 + T cells and 
M1 macrophages, in the THCA tissues of the high-risk 
group were significantly reduced, whereas those of infil-
trating tumor-promoting immune cells, such as M2 mac-
rophages and Tregs, were significantly increased [43, 44]. 
Therefore, ferroptosis was concluded to significantly cor-
relate with the activity of tumor-infiltrating immune cells 
in THCA.

In addition, immune checkpoint molecules, including 
PD-1, PD-L1, CTLA4, and LAG3, were revealed to be 
more remarkably expressed in the low-risk group. Our 
study suggested that the low-risk score group is likely to 
present an immunogenic TME. We inferred that THCA 
patients with low-risk scores might respond better to 
immune checkpoint blockage therapy, which could also 
account for the promising survival outcome in this group.

Nevertheless, there were some limitations in our study. 
The FRLs prognostic model was only constructed and 
verified using data from TCGA public database. The uni-
versality and reliability of the prognostic model remain 
to be further verified in an external prospective, multi-
center, real-world cohort. In addition, although our study 
revealed the relationship between FRLs and anti-tumor 
immunity, the underlying mechanisms need to be further 
explored by experiments.

Conclusion
In summary, our study used the TCGA THCA dataset 
to construct a novel FRLs prognostic model which could 
precisely predict the prognosis of THCA patients. These 
FRLs potentially mediate anti-tumor immunity and serve 
as therapeutic targets for THCA, which provided the 
novel insight into treatment of THCA.
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