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Abstract 

Background: Intra-tumor heterogeneity (ITH) results from the continuous accumulation of mutations during disease 
progression, thus impacting patients’ clinical outcome. How the ITH evolves across papillary thyroid carcinoma (PTC) 
different tumor stages is lacking.

Methods: We used the whole-exome sequencing data from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) 
cohort to track the ITH and assessed its relationship with clinical features through different stages of the PTC progres-
sion. We further assayed the expression levels of the specific genes in papillary thyroid cancer cell lines compared to 
an immortalized normal thyroid epithelial cell line by qRT-PCR.

Results: We revealed the timing of mutational processes and the dynamics of the temporal acquisition of somatic 
events during the lifetime of the PTC. ITH significantly influences the PTC patient’s survival rate and, as genetic hetero-
geneity increases, the prognosis gets worse in advanced tumor stages. ITH also affects the mutational architecture of 
each clinical stage which is subject to periodic fluctuations. Different mutational processes may cooperate to shape a 
stage-specific mutational spectrum during the progression from early to advanced tumor stages. Moreover, different 
evolutionary paths characterize PTC progression across pathological stages due to both mutations recurrently occur-
ring in all stages in hotspot positions and distinct codon changes dominating in different stages. A different expres-
sion level of specific genes also exists in different thyroid cancer cell lines.

Conclusions: Our findings suggest ITH as a potential unfavorable prognostic factor in PTC and highlight the dynamic 
changes in different clinical stages of PTC, providing some clues for the precision medicine and suggesting differ-
ent diagnostic decisions depending on the clinical stages of patients. Finally, complete clear guidelines to define risk 
stratification of PTC patients are lacking; thus, this work could contribute to defining patients who need more aggres-
sive treatments and, in turn, could reduce the social burden of this cancer.

Keywords: Papillary thyroid cancer, Tumor heterogeneity, TCGA-THCA, Tumor stages, Mutational signatures, 
Prognosis

© The Author(s) 2022, corrected publication 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were 
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. 
To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication 
waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in 
a credit line to the data.

Background
Tumorigenesis is often initiated by a single mutated neo-
plastic cell evolving through a series of sequential clonal 
or subclonal mutational events, thus influencing the 
course of disease [1, 2]. In this way, cell clones diversify, 
resulting in intratumor heterogeneity (ITH) [3, 4]. As 
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a result, cancer evolves as a mosaic entity composed of 
a mixture of cells with distinct genetic, phenotypic or 
behavioral features within the same tumor [5]. Changes 
in selection pressure within tumor microenvironment 
may also enhance clonal diversity or allow the positive 
selection of more aggressive clones with subclonal muta-
tions that increase the tumor’s fitness to its environment 
and determine a more aggressive evolution of diseases 
[6]. ITH may provide detailed records of tumor clonal 
evolution history and evolutionary dynamics of muta-
tions, chronologically accumulated and selected during 
the lifetime of a tumor [7–9]. Deciphering and tracking 
the clonal evolution pattern could provide valuable infor-
mation regarding crucial genetic events in tumorigenesis 
and progression, thus greatly benefiting therapy selection 
and prognosis management. Indeed, ITH represents a 
significant challenge in the implementation of precision 
medicine because it is responsible for the progression 
from an early tumor stage to a more aggressive cancer. 
Moreover, ITH is one of the major causes of poor prog-
nosis, treatment failure and drug resistance [8, 10–12]. 
Some evidence suggests that ITH influences the clinical 
outcome in several cancers, such as chronic lymphocytic 
leukemia [6], head and neck cancer [10, 11], colorectal 
[12] and lung adenocarcinoma [13]. Moreover, ITH has 
the potential to be a valuable predictor for clinical out-
comes [14] and may serve as a clinically useful biomarker 
in the development of personalized therapies and clinical 
outcomes [15, 16]. Thus, exploring intratumor heteroge-
neity and tumor evolution is of great clinical importance 
because, depending on the tumor evolution, different 
clinical approaches may exist in terms of diagnosis, prog-
nosis, and treatment of the individuals [17].

Despite its potential clinical relevance, ITH was poorly 
investigated in papillary thyroid carcinoma (PTC). PTC 
is the most frequent endocrine tumor accounting for 
almost 80% of thyroid cancer cases. Somatic mutations 
of genes involved in the mitogen-activated protein kinase 
(MAPK) signaling pathway, including point mutations in 
BRAF, RAS genes [18–21] and RET/PTC rearrangement 
[22]. Although PTC has in general a good prognosis with 
a 5-year survival of over 95% [23], in about 85% of case 
subjects, a small fraction (10–20%) shows higher aggres-
siveness with either local or distant relapse [24, 25]. A 
large Cancer Genome Atlas (TCGA) Research Network 
study [26], based on genetic, epigenetic and transcrip-
tomic analysis of almost 500 PTCs, demonstrated sub-
stantial inter-tumor heterogeneity in PTCs concerning 
their molecular alterations. Moreover, they found that 
driver mutations in genes such as BRAF, NRAS, HRAS, 
KRAS, and EIF1AX were present in most PTC cases and 
were largely clonal. On the other side, as regards the 
intra-tumoral heterogeneity, most studies focused on 

the most prevalent genetic alterations in PTC, the BRAF 
V600E mutation and RET rearrangements [27–30]. How-
ever, while each cancer cell may contain a driver muta-
tion, the PTC cells are still proliferating and can diversify 
through the gain of subclonal genetic alterations that can 
be positively selected and might impact prognosis and 
clinical outcome [31]. Moreover, these non-driver altera-
tions may provide insight into a tumor’s history and help 
to identify mutational processes occurring during tumo-
rigenesis [32]. Some evidence supports the occurrence 
of ITH in PTC [33], but the relevance of subclonality 
in PTC is still debated [34]. However, a comprehensive 
analysis taking into account the changes and the impact 
of ITH through different pathological stages of the PTC, 
along with the timing of mutational processes and the 
dynamics of the temporal acquisition of somatic events, 
is lacking.

In the current study, we analyzed the whole-exome 
sequencing data from The Cancer Genome Atlas Thyroid 
Cancer (TCGA-THCA) cohort to efficiently and compre-
hensively evaluate somatic variants across clinical stages 
of PTC. We tracked the intra-tumoral genetic hetero-
geneity by mutant-allele tumor heterogeneity (MATH) 
algorithm [35] and assessed its relationship with clini-
cal features through different stages associated with the 
PTC progression. We also revealed how mutational pro-
cesses vary over time during tumor evolution and iden-
tified several evolutionary patterns depending on the 
behavior of the mutated genes. We further investigated 
the relationship between the mutational status and RNA 
expression level. These findings highlighted the dynamic 
changes of oncogenesis in different clinical stages of PTC, 
providing some clues for the development of precision 
medicine and the improvement of diagnostic strategies in 
PTC patients.

Methods
Data source
Publicly available data were obtained from The Cancer 
Genome Atlas (TCGA) Research Network: https:// www. 
cancer. gov/ tcga. Mutation annotation format (MAF) files 
for single nucleotide variants (SNVs) analyzed with Var-
Scan2 variant Aggregation and Masking workflow were 
downloaded by using TCGAbioloinks R/Bioconductor 
package [36]. Survival and clinical data were downloaded 
from the cancer genomics cBioPortal (http:// www. cbiop 
ortal. org/) [37].

There were 487 patients with mutation data and 507 
with available clinical and survival data. Data were fil-
tered to exclude patients without mutation or clinical 
information. We also excluded patients without avail-
able information on tumor stage and retained patients 
with the following histological types: classical, follicular 

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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and tall cell variant papillary thyroid carcinoma. The final 
dataset was composed of 474 patients consisting of 265 
stage 1, 50 stage 2, 108 stage 3 and 51 stage 4.

Somatic mutation analysis and measurement 
of heterogeneity
We used the R/Bioconductor package Maftools [38] to 
efficiently and comprehensively analyze somatic variants 
in PTC. Genetic intra-tumor heterogeneity (ITH) was 
assessed by mutant-allele tumor heterogeneity (MATH) 
score [35]. To estimate MATH scores, the InferHeteroge-
neity function of the Maftools package was used, which 
infer clonality by clustering variants with similar allele 
frequencies and removing patients with less than 3 vari-
ants. The MATH score for each PTC patient was calcu-
lated according to the method described by Mroz et  al. 
[10]. The MATH score is defined as the percentage ratio 
of the median absolute deviation (MAD) and the median 
of the distribution of MAFs among the tumor’s mutated 
genomic loci: MATH = 100*MAD/median.

For each tumor stage, patients were categorized 
according to tumor heterogeneity into high- and low-
MATH groups by the median of the MATH scores. High- 
and low-MATH groups were then analyzed with respect 
to clinicopathologic features and Progression-free sur-
vival (PFS) data.

Mutation signature analysis
Somatic mutations of each sample were classified accord-
ing to base substitution (C > A, C > G, C > T, T > A, T > C, 
T > G) and immediately 5′/3′ base information. We iden-
tified mutational context based on the human reference 
genome hg38 through BSgenome.Hsapiens.UCSC.hg38 
R package. The resulting triplet SNV spectra were ana-
lyzed for contributions of known mutational signatures 
in Catalogue of Somatic Mutations in Cancer (COSMIC; 
https:// cancer. sanger. ac. uk/ cosmic/ signa tures). Muta-
tional signatures were predicted using the deconstruct-
Sigs R package [39]. This tool evaluates the contribution 
of the signatures reported in COSMIC (used as refer-
ence mutational signatures) to the mutational profile of 
the somatic SNVs in each tumor stage. Mutations not 
included in previously identified signatures were classi-
fied as “unknown”.

Expression level analysis using web resources
The expression level of the common mutated genes 
(JMJD1C, MALAT1, MUC16, PDZD2, PKHD1, RYR1, 
SLA and TTN) was analyzed across thyroid tumor tissues 
and normal thyroid samples and across thyroid cancer 
stages deposited in TCGA project using UALCAN data 
portal (http:// ualcan. path. uab. edu) [40].

RNA extraction and qRT‑PCR
Total RNA was extracted from an immortalized nor-
mal thyroid epithelial cell line (Nthy-ori 3-1) and from 
three papillary thyroid cancer cell lines (K1, TPC-1 
and BCPAP) using TRIzol reagent (Catalog number 
15596026) purchased from Thermo Fisher Scientific 
(Waltham, USA).

After extraction, RNA was quantified using the Nan-
oDrop spectrophotometer (Thermo Fisher Scientific). 
Next, cDNA was synthesized using 1  µg of total RNA 
from each sample using QuantiTect Reverse Transcrip-
tion (Catalog number 205311) purchased from Qiagen 
(Hilden, Germania) according to the manufacturer’s 
instructions.

The qRT-PCR was performed using iQ™ SYBR Green 
Supermix (Catalog number1708880) purchased from 
BioRad (Hercules, United States). The thermal cycler 
conditions were: 1:30  min at 95  °C for the denaturation 
and enzyme activation, followed by 40 cycles of 20  s at 
95  °C for denaturing and 1  min at 60  °C for annealing/
extension, according to the manufacturer’s instructions. 
Primers used were:

MUC16: reverse 5′-caacctcacctcctcccatt-3′; forward 
5′-atctgaagtgtggctcagct-3′;

JMJD1C: reverse 5′-gcctccaactctaatacccga-3′; forward 
5′ atggacgcacaatgacagatg-3′;

PDZD2: reverse 5′-gacttccaatcgagtgactgc-3′; forward 5′ 
cagcagctcatctcctaagga-3′;

RYR1: reverse 5′-gcgctgttggaagtactactg-3′; forward 
5′-tcaaagatgccccagaagagt-3′;

SLA: reverse 5′-cttgccgtgctaagtgactac-3′; forward 
5′-accgacagtgagtaaaaccct-3′;

β-ACTIN: reverse 5′-ccaaccgcgagaagatga-3′; forward 
5′-ccagaggcgtacagggatag-3′.

The relative expression level (expressed as fold change) 
was determined by applying the formula  2−ΔΔCt [41] 
where the Ct-value of each gene was technically normal-
ized using β-ACTIN. The experiment was carried out 
three independent times in triplicate.

DNA sequencing
Genomic DNA was purified from cultured thyroid 
cells (Nthy-ori 3-1, K1, TPC-1 and BCPAP) using 
QIAamp DNA mini kit (Catalog number, 51304) pur-
chased from Qiagen (Hilden, Germany) and quanti-
fied with the Nanodrop spectrophotometer (Thermo 
Fisher Scientific, Massachusetts, USA). Next, we 
designed specific primers able to amplify the exonic 
region of genes containing the high impact mutations. 
PCR was carried out on Applied Biosystems 2720 
Thermal Cycler (Thermo Fisher Scientific) using Taq 
DNA polymerase (Catalog Number EP0401, Thermo 

https://cancer.sanger.ac.uk/cosmic/signatures
http://ualcan.path.uab.edu
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Fisher Scientific) with the following thermal cycles: 
denaturation at 95  °C (for 3  min), 40 cycles at 95  °C 
(for 30 s), 60  °C (for 30 s), 72  °C (for 1 min), followed 
by 72 °C (for 5 min).

The genes, the exons harboring the high impact muta-
tions found in PTC patients, and the primer sequences 
used are listed in Additional file 1: Table S1.

The amplicons sequencing was performed as follows: 
8 μl of primer forward (concentrated 2 μM) and 20 μl of 
DNA (concentrated 16 ng/μl). Sanger electropherograms 
were analyzed to evaluate the presence/absence of the 
indicated mutations.

Statistical analysis
The normal distribution assumption for continuous 
variables was assessed by Shapiro–Wilk test. For com-
parisons between two groups, a two-tailed t-test for 
independent samples (for normally distributed data) or 
a Wilcoxon rank sum test (for not normally distributed 
data) was used. Comparisons among more than two 
groups were made using the Kruskal–Wallis test. p-values 
were also corrected for multiple testing by the Bonferroni 
method. Progression-free survival (PFS) data were used 
as endpoints for survival analysis. Survival rates were 
analyzed with the Kaplan–Meier method and the statisti-
cal relevance of the differences between survival curves 
was assessed by log-rank test. Univariate analysis Cox 
proportional hazards regression models were applied to 
evaluate the prognostic value of the MATH score and 
to analyze the effects of clinical confounding factors on 
survival. All confidence intervals (CIs) were stated at the 
95% confidence level. Statistical significance was set at 
p-value ≤ 0.05. All analyses were performed using R 3.6.0 
(https:// www.r- proje ct. org/).

Results
Tumor stage‑related survival analysis
We analyzed exome sequencing data from 474 patients 
with PTC obtained from the TCGA data portal. Clinico-
pathological information of the patients included in the 
current analysis is summarized in Table 1 and Additional 
file 2: Table S2.

A Kaplan–Meier survival analysis was conducted using 
PFS data to analyze the survival probability in different 
tumor stages (Fig.  1). The results showed a statistically 
significant difference in survival probability depend-
ing on the tumor stage (Log-rank test; p-value < 0.0001), 
with a worse survival odd for patients in stage 4. In 
addition, we performed an univariate Cox proportional 
hazards regression to evaluate the association between 
different tumor stages and prognosis (Table  2). The 
analysis showed that stages 3 and 4 were significantly 
associated with a poor prognosis (p-value = 0.0073 

Table 1 Clinical and pathological characteristics of patients in 
TCGA papillary thyroid carcinoma cohort

For each clinical feature, patients labeled as “Not available” or “Unknown” are not 
shown

Clinical features Category PTC, n = 474

Age Median (range) 46 (15–89)

Gender Female 351

Male 123

AJCC Tumor stage Stage 1 265

Stage 2 50

Stage 3 108

Stage 4 51

AJCC T stage T1 135

T2 160

T3 156

T4 22

TX 1

AJCC M stage M0 267

M1 9

MX 198

AJCC N stage N0 217

N1 209

NX 48

Primary neoplasm focus type Unifocal 255

Multifocal 210

Fig. 1 Kaplan–Meier analysis for Progression-Free survival rate 
among tumor stages. Log-rank test was performed to evaluate the 
survival differences

https://www.r-project.org/
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and p-value = 1.9e-05, respectively). Instead, patients 
in stage 2 also had a poor survival but not significant 
(p-value = 0.61).

Potential role of the MATH score in PTC for tumor 
stage‑related survival
We evaluated whether intratumor heterogeneity (ITH) 
could explain the different prognosis of tumor stages. 
ITH can be assessed using the mutant allele tumor het-
erogeneity (MATH) score. As reported in Fig.  2A, the 
MATH scores distribution showed a broad spectrum of 
values (from 0.49 to 89.01 with a mean ± standard devia-
tion (SD) of 28.64 ± 16.33), suggesting that PTC patients 
exhibit remarkable intra-tumoral heterogeneity. MATH 
score distribution according to tumor stage highlighted 
a statistically significant difference (Kruskal–Wallis rank 
sum test; p-value = 0.033) (Fig.  2B). According to the 

Table 2 Univariate Cox proportional hazards regression model

HR hazard ratio, CI confidence interval

*P < 0.05; **P < 0.01; ***P < 0.001

Tumor stage HR 95%CI p‑value

Stage 2 vs stage 1 1.29 0.48–3.43 0.61

Stage 3 vs stage 1 2.39 1.27–4.53 0.0073**

Stage 4 vs stage 1 4.63 2.29–9.36 1.9e−05***

Fig. 2 Frequency distribution of MATH scores among PTC patients. The MATH score represents a percentage measure of the level of intra-tumor 
heterogeneity and was calculated for each tumor as described in Material and Methods. A MATH values are displayed along the horizontal axis 
and the number of patients (frequency) with MATH within the specific ranges is displayed on the vertical axis. B Boxplots show the MATH scores 
distribution in different tumor stages of PTC. Boxplots show the MATH scores distribution in different PTC histological types (Classical/Usual, 
Follicular, Tall Cell) in C low-MATH and D high-MATH patients’ groups. E Kaplan–Meier survival curves in the low-MATH group according to tumor 
stage; F Kaplan–Meier survival curves in the high-MATH group according to tumor stage. MATH mutant allele tumor heterogeneity; PTC papillary 
thyroid carcinoma
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median value (25.16) of the MATH score, patients were 
stratified into two groups: the low-MATH group (252 
patients) and the high-MATH group (202 patients), with 
mean ± SD of 16.92 ± 6.15 and 43.26 ± 12.92, respec-
tively. Any statistically significant difference (Kruskal–
Wallis rank sum test; p-value > 0.05) was observed in 
MATH score distribution between different PTC histo-
logical types (classical/usual, follicular, tall cell) in either 
MATH group (Fig. 2C, D).

Next, we investigated the prognostic significance of 
MATH for each MATH group through a Kaplan–Meier 
survival analysis (Fig. 2E, F) and an univariate Cox pro-
portional hazards regression (Table  3). Kaplan–Meier 
survival analysis showed that the MATH values were sig-
nificantly associated with tumor stage (Fig.  2E, F). Spe-
cifically, we found that patients in advanced stages (stage 
3 and stage 4) exhibited shorter PFS rates than those in 
early stages (stage 1 and stage 2) in both MATH groups 
(Log-rank test; p-value = 0.015 for the low-MATH group; 
p-value = 0.0017 for the high-MATH group) (Fig.  2E, 
F). The univariate Cox proportional hazards regression 
analysis underlined the role of MATH score as potential 
risk factor associated with PTC aggressiveness. Specifi-
cally, low MATH score showed a statistical significance 
in stage 3 (p-value = 0.021) and stage 4 (p-value = 0.007), 
whereas high MATH score showed a statistical signifi-
cance in stage 4 (p-value = 0.0005) (Table 3).

Relationship between MATH and clinical features
We also investigated whether the tumor heterogene-
ity was associated with clinical features of PTC patients 
(Table 4, Additional file 3: Table S3 and Additional file 4: 
Table  S4). We performed a Kaplan–Meier analysis fol-
lowed by a univariate Cox regression model to estab-
lish the impact of different clinical features on survival 
and prognosis in low and high MATH groups. In the 
low-MATH group for stage 4, M stage was significantly 
associated with survival (Log-rank test; p-value = 0.02) 
with a poorer prognosis (p-value = 0.04) for M1 stage 
(p-value = 0.04) (Table  4). Moreover, the primary neo-
plasm focus type and neoplasm length clinical features 

were significantly associated with PFS (Log-rank test; 
p-value = 0.007 and p-value = 0.01, respectively), but 
their prognostic value was not significant (p-value > 0.05) 
(Table 4). All the other clinical features were not signifi-
cantly associated with survival and prognosis in the low-
MATH group (Additional file  3: Table  S3). None of the 
clinical features was significantly associated with survival 
and prognosis in the high-MATH group (Additional 
file 4: Table S4).

Exploring the PTC intra‑tumoral heterogeneity
To better understand the intratumor heterogeneity of 
PTC, we explored the mutational landscape in different 
tumor stages. We calculated the mutation rates of the top 
20 mutated genes for each stage and identified numerous 
somatic mutations. We identified several somatic muta-
tions that frequently occur in PTC, along with the most 
common and well-described [18–21] with particularly 
high frequencies (Fig. 3A–D; Additional file 5: Table S5). 
Indeed, the serine/threonine kinase BRAF gene pre-
sented relatively high mutation rates in all stages (57% 
in stage 1, 38% in stage 2, 69% in stage 3, 75% in stage 
4). The most frequent mutation was the well-known hot-
spot BRAF c.1799  T > A (p.V600E). In addition, in stage 
1 one patient had the simultaneous occurrence of two 
BRAF mutations at positions c.1799 T > A (p.V600E) and 
c.1800G > A (p.V600V). Also, one patient had the BRAF 
c.1801A > G (p.K601E) mutation, while another one 
had the BRAF c.1467_1481delACC TAC ACC TCA GCA 
(p.P490_Q494del) deletion. In stage 2, one patient had 
the BRAF c.1801A > G (p.K601E) mutation.

The second most mutated gene in stage 1 was the 
GTPase NRAS (9%), with the c.182A > G (p.Q61R) and 
c.181C > A (p.Q61K) mutations. In stage 2 the second 
most mutated genes were the GTPase NRAS (12%), with 
the same mutations of the stage 1, and the Thyroglobu-
lin (TG) (12%), with the c.1038dupG (p.H347Afs*14), 
c.1663G > A (p.E555K), c.450G > T (p.G150G), c.490 T > G 
(p.C164G), c.5707_5708dupTT (p.C1904Sfs*7), 
c.666  T > C (p.S222S) mutations. In stage 3, the sec-
ond most mutated genes were the GTPase NRAS (5%), 
with the same mutations of the stage 1, and Titin (TTN) 

Table 3 Univariate Cox proportional hazards regression model in low-MATH group and high-MATH group

HR hazard ratio, CI confidence interval
* P < 0.05; **P < 0.01; ***P < 0.001

Tumor stage Low‑MATH group High‑MATH group

HR 95% CI P‑value HR 95% CI P‑value

Stage 2 vs Stage 1 1.23 0.27–5.62 0.790 1.69 0.45–6.36 0.441

Stage 3 vs Stage 1 2.89 1.17–7.12 0.021* 2.16 0.81–5.76 0.124

Stage 4 vs Stage 1 4.05 1.45–11.32 0.007** 6.15 2.22–s17.00 0.0005***
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(5%), with the c.24810G > C (p.E8270D), c.68948C > T 
(p.T22983I), c.83902C > T (p.R27968*), c.97262  T > C 
(p.M32421T), c.9769C > T (p.R3257C). In stage 4, the 
second most frequent mutated genes were Mucin 16, Cell 
Surface Associated (MUC16) (8%), with the c.1295C > A 
(p.T432N), c.18018C > A (p.H6006Q), c.22026A > C 
(p.T7342T), c.32174C > G (p.P10725R) mutations; TBC1 
Domain Family Member 12 (TBC1D12) (8%), with the 
c.-1G > A and c.-3C > T mutations; and Ubiquitin Specific 
Peptidase 9 X-linked (USP9X) (8%), with the c.181G > T 
(p.E61*), c.3312dupA (p.P1105Tfs*4), c.4603 + 2  T > C 
(p.X1535_splice), c.5393A > C (p.K1798T) mutations.

Other less frequently mutated PTC-associated genes 
were reported in Additional file 5: Table S5.

We also reported altered pathways in different PTC 
tumor stages. The RTK/RAS/MAP kinase signaling 
pathway (hereafter RTK/RAS) was the most frequently 
affected by somatic mutations in all stages. The overall 
results were reported in supplementary Additional file 6: 
Figure S1.

Mutational processes vary dynamically during tumor 
evolution
Somatic alterations in cancer genome may provide 
insights into the mutational processes occurring during 
tumorigenesis. These processes leave a peculiar pattern 

of mutations, called as mutational signatures [32]. We 
analyzed these mutational signatures across tumor stages 
to determine the mutational processes contributing to 
intratumor heterogeneity and shaping PTC tumor evo-
lution. We identified two mutational signatures shared 
among all tumor stages (Fig.  4): Signature 1, related to 
endogenous spontaneous deamination of 5-methylcy-
tosines, and Signature 25, related to chemotherapy treat-
ment. While the Signature 25 was prominent in stage 1 
and decreased in stage 4, the Signature 1 had an opposite 
trend. Furthermore, the Signature 5 was enriched in stage 
2, although the etiologies of this signature have not been 
elucidated. Although its etiology is unknown, Signature 
5 shows a clock-like behavior in many cancer types in 
that the number of mutations increases with the age [42]. 
Moreover, Signature 5 exhibits transcriptional strand bias 
for T > C substitutions, potentially indicating that some of 
these mutations arise from adducts subject to transcrip-
tion-coupled repair [43]. In addition, we found that dis-
tinct defective DNA repair mechanisms might play a role 
in the tumor progression towards more aggressive stages. 
Indeed, we found a contribution of DNA mismatch repair 
(MMR) deficiency signatures (6, 15) in all tumor stages. 
Signatures 6 and 15 are two of the seven mutational sig-
natures associated with defective MMR and microsatel-
lite instability (MSI). As seen in more aggressive forms of 

Fig. 3 Oncoplots of the most frequently mutated genes in different PTC stages. Oncoplots display the most frequently mutated genes in A stage 
1, B stage 2, C stage 3, and D stage 4. Each column represents a sample and each row a different gene. Genes are ordered by their mutation 
frequency. The top barplot shows the frequency of mutations for each patient, while the right barplot shows the frequency of mutations in each 
gene. Colors indicate different mutation types (see legend for details)
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thyroid cancer [44], tumors harboring MMR deficiency 
signatures completely lack loss-of-function mutations 
in MMR genes (MLH1, MSH2 and MSH6). In addition, 
mutations in stages 2 and 3 were associated with Signa-
ture 30, related to defective DNA base excision repair due 
to inactivating mutations in NTHL1, while mutations in 
stages 1 and 4 were associated with Signature 7, related 
to Ultraviolet light exposure. Finally, advanced tumor 
stages (stage 3 and stage 4) were characterized by muta-
tions assigned to Signature 2, associated with the activity 
of APOBEC family of cytidine deaminase.

Common mutated genes in 4 tumor stages
To characterize changes in the genetic architecture of 
PTC, we extracted the 12 common mutated genes across 
clinical stages, regardless of mutation type. We identified 
three patterns depending on the behaviors of these genes’ 
mutation changes: (i) recurrently mutated genes in all 
the stages; (ii) some genes mostly mutated in early stages 
while disappeared in later stages; (iii) other mutated 
genes emerged in a dominant way in advanced stages.

In the first scenario, we found the BRAF gene, with 
the lowest mutation frequency in stage 2 (38%) and the 

highest one in stage 4 (75%). However, compared to other 
mutated genes, it has the highest mutation rate in all clin-
ical stages (Fig. 5).

In the second scenario, we found genes mostly mutated 
in the early stages (stage 1 and stage 2). Specifically, in 
stage 1, the dominant mutated gene was NRAS (9%); its 
frequency decreased in stage 3 (5%) and stage 4 (6%). 
JMJD1C and PDZD2 reached a plateau from stage 2 
with a mutation frequency of 2% and remained con-
stant in advanced stages (Fig. 5). In stage 2, the dominant 
mutated genes were NRAS (12%) and TG (12%) genes. 
Both of them decreased in advanced stages: NRAS had a 
mutation frequency of 5% in stage 3 and 6% in stage 4, 
while TG had a mutation frequency of 3% in stage 3 and 
4% in stage 4 (Fig. 5).

In the last scenario, we found genes mostly mutated 
in advanced stages (stage 3 and stage 4). In stage 3, the 
dominant mutated genes were NRAS (5%) and TTN (5%). 
Both of them had a tendency to slightly increase in stage 
4 (6% for NRAS and 6% for TTN) (Fig. 5). In stage 4, the 
dominant mutated genes were MUC16 (8%), followed by 
HRAS and TTN genes showing a similar mutation fre-
quency (about 6%).

Fig. 4 Mutational signatures in different stages of PTC. Barplot shows the weighted contributions of mutation signatures in the 4 tumor stages. Bars 
colors indicate the 4 tumor stages. Vertical axes depict the mutational signature frequency in each tumor stage. Signatures indicate as “unknown” 
has an undetermined etiology (see “Results” section for more details)
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Taken together, our results suggest that: (i) BRAF 
driver gene shows a dominant or “wave” role across all 
stages, (ii) one to three driver genes exhibit a dominant 
role in certain stages; (iii) common genes, differently 
mutated across clinical stages, drive the cancer cells 
developing from early to advanced stages and highlight 
the dynamic changes of PTC oncogenesis (Fig. 5).

It is noted that mutation frequency changes were also 
sometimes associated with a different codon change 
(Table 5). Indeed, the codon changes also showed cer-
tain dynamics across stages. Specifically, some codon 
changes highly occurred in all stages in specific hot-
spots positions, such as the c.1799  T > A (p.V600E) 
mutation in BRAF gene, the c.182A > G (p.Q61R) muta-
tion in HRAS gene, and the c.182A > G (p.Q61R) and 

c.181C > A (p.Q61K) mutations in NRAS gene. For the 
other genes, different codon changes dominated in dif-
ferent stages.

Expression level analysis using web resource
We aimed to evaluate the common mutated genes 
(JMJD1C, MALAT1, MUC16, PDZD2, PKHD1, RYR1, 
SLA and TTN) between thyroid tumor and normal sam-
ples. To this aim, we performed an in-silico analysis 
with UALCAN interactive computational tool [40]. The 
UALCAN data portal generated boxplots for each gene 
across 505 primary tumors and 59 normal thyroid tis-
sues. The analysis showed that the gene expression level 
of JMJD1C, MUC16 and SLA were statistically down-
regulated while the gene expression level of PDZD2 and 

Fig. 5 Mutation Frequency of common genes across clinical stages. For each gene in each tumor stage—indicated with bars of different colors—
the mutation frequency is shown. Note that the maximum range is 12% for all genes and, in addition, the barplot for BRAF has a secondary y-axis to 
show its maximum mutation frequency in different tumor stages
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Table 5 Mutation rate and codon changes of the common mutated genes in each tumor stage

Gene Stage 1 Stage 2 Stage 3 Stage 4

Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp)

BRAF 57 c.1799 T > A (p.V600E) 38 c.1799 T > A 
(p.V600E)

69 c.1799 T > A (p.V600E) 75 c.1799 T > A 
(p.V600E)

c.1801A > G (p.K601E) c.1801A > G 
(p.K601E)

c.1800G > A (p.V600V)

c.1467_1481delACC TAC 
ACC TCA GCA (p.P490_
Q494del)

HRAS 3 c.182A > G (p.Q61R) 2 c.182A > G 
(p.Q61R)

3 c.182A > G (p.Q61R) 6 c.182A > G (p.Q61R)

c.181C > A (p.Q61K) c.181C > A (p.Q61K) c.181C > A (p.Q61K)

JMJD1C 0 c.4402C > T (p.Q1468*) 2 2 2

c.2203C > T 
(p.Q735*)

c.2014A > T (p.R672*)

c.3491delC 
(p.P1164Qfs*13)

c.2241C > A 
(p.T747T)

MALAT1 1 6 1 4

MUC16 1 c.17957C > A (p.A5986E) 6 1 8

c.32628A > T (p.G10876G)

c.41805G > A (p.L13935L)

c.12963 T > C 
(p.A4321A)

c.23070G > A 
(p.P7690P)

c.7382C > A 
(p.T2461K)

c.12466A > G 
(p.T4156A)

c.1295C > A 
(p.T432N)

c.18018C > A 
(p.H6006Q)

c.22026A > C 
(p.T7342T)

c.32174C > G 
(p.P10725R)

NRAS 9 c.182A > G (p.Q61R) 12 c.182A > G 
(p.Q61R)

5 c.182A > G (p.Q61R) 6 c.182A > G (p.Q61R)

c.181C > A (p.Q61K) c.181C > A 
(p.Q61K)

c.181C > A (p.Q61K) c.181C > A (p.Q61K)

PDZD2 0 c.2039C > G (p.P680R) 2 2 2

c.805G > A 
(p.G269S)

c.3424_3427delACAG 
(p.T1142*)

c.3887C > A 
(p.A1296E)

c.937G > T (p.G313C)

PKHD1 1 c.3197C > T (p.S1066L) 2 1 2

c.8549C > A (p.T2850K)

c.8671C > T 
(p.R2891C)
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Table 5 (continued)

Gene Stage 1 Stage 2 Stage 3 Stage 4

Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp)

c.1674C > T (p.L558L)

c.3568C > T  
(p.L1190F)

RYR1 1 c.3206A > T (p.D1069V) 2 1 2

c.3575G > T (p.S1192I)

c.9858G > C 
(p.E3286D)

c.6244G > A 
(p.E2082K)

c.5335C > G 
(p.P1779A)

SLA 0 c.225A > G (p.I75M) 2 1 2

c.-3_1delGAAA 
(NA)

c.694A > C (p.S232R)

c.695G > A (p.S232N)

c.696C > T (p.S232S)

c.645_646delGA 
(p.N216Pfs*26)

TG 3 c.2037C > T (p.G679G) 12 3 4

c.2462_2466delTTCAA 
(p.I821Kfs*4)

c.3737A > C (p.Q1246P)

c.3917G > C (p.C1306S)

c.4847_4853dupTCA CCG 
T (p.S1619Hfs*12)

c.5673dupA 
(p.W1892Mfs*38)

c.5928_5929dupAT 
(p.S1977Yfs*37)

c.6844_6847delTTGT 
(p.L2282Ifs*61)

c.1038dupG 
(p.H347Afs*14)

c.1663G > A 
(p.E555K)

c.450G > T 
(p.G150G)

c.490 T > G 
(p.C164G)

c.5707_5708dupTT 
(p.C1904Sfs*7)

c.666 T > C 
(p.S222S)

c.1531_1534delAATG 
(p.N511Efs*15)

c.2412G > A (p.V804V)

c.84C > T (p.A28A)

c.418 T > G 
(p.C140G)

c.4544_4546delAGA 
(p.Q1515del)
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RYR1 were up-regulated in thyroid cancer with respect to 
normal thyroid tissues (Fig. 6).

We also compared the expression of these genes across 
different cancer stages. Based on AJCC (American Joint 
Committee on Cancer) 284 patients were in stage 1, 52 in 
stage 2, 112 in stage 3 and 55 in stage 4. Box-whisker plots 
in Fig. 7 showed that JMJD1C, PDZD2, PKHD1, RYR1 and 
SLA presented a different expression among thyroid can-
cer stages, suggesting that the expression of these genes 
could reflect the intra-tumoral genetic heterogeneity across 
specific stages. Interestingly, since RYR1 was differentially 
expressed across all the stages, it is possible that this gene 
could play a key role in the pathogenesis of thyroid cancer.

Expression level of the common mutated genes in human 
thyroid cancer cell lines
Finally, we investigated the expression levels of the 
common mutated genes (JMJD1C, MUC16, PDZD2, 

RYR1, and SLA) in papillary thyroid cancer cell lines 
(K1, TPC-1 and BCPAP) compared to an immortal-
ized normal thyroid epithelial cell line (Nthy-ori 3-1) 
by qRT-PCR. We found a different expression levels 
of these genes among the different cell lines (Fig. 8). In 
line with our previous findings based on TCGA, RYR1 
was highly expressed in an aggressive cell line, K1, 
derived from metastasis of a well-differentiated PTC 
compared to Nthy-ori 3-1 (Fig. 8).

Finally, to verify whether the different expression 
level of the investigated genes in the thyroid cancer 
cell lines was due to their different mutational status, 
we purified the genomic DNA from cultured cells and 
sequenced the exonic region of the genes carrying high 
impact mutations (Table  5). We found that the high 
impact mutations in JMJD1C, SLA, PDZD2, identified 
from in-silico analysis in PTC samples, are missing in 
the thyroid cancer cell lines analyzed, thus suggesting 

Table 5 (continued)

Gene Stage 1 Stage 2 Stage 3 Stage 4

Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp) Mut.Rate (%) HGVSc (HGVSp)

TTN 3 c.10361-3907 T > C (NA) 4 5 6

c.10361-4179G > A (NA)

c.34264 + 5360G > T (NA)

c.34264 + 578A > G (NA)

c.56257A > C 
(p.K18753Q)

c.57311_57314delCAAA 
(p.T19104Rfs*10)

c.62135-36delA (NA)

c.7061G > A 
(p.R2354H)

c.97072 T > A 
(p.W32358R)

c.24810G > C 
(p.E8270D)

c.68948C > T 
(p.T22983I)

c.83902C > T 
(p.R27968*)

c.97262 T > C 
(p.M32421T)

c.9769C > T 
(p.R3257C)

c.10360 + 5384 T > C 
(NA)

c.45373C > T 
(p.R15125*)

c.91311C > T 
(p.Y30437Y)
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that the altered expression of these genes is due to 
other regulative biological mechanisms.

Discussion
Tumor heterogeneity results from the continuous accu-
mulation of mutations during disease progression, 
leading to the occurrence of genetically different tumor 
subpopulations and influencing the clinical outcome of 
patients [1, 4, 5, 45]. Due to tumor heterogeneity, the 
mutational landscape may differ considerably among 
different clinical stages of the same tumor. Based on lit-
erature results, our study is the first to directly address 

the evolution of intra-tumoral genetic heterogeneity 
during PTC progression across tumor stages. Using the 
whole-exome sequencing data from the TCGA-THCA 
cohort, we tracked the intra-tumoral heterogeneity and 
assessed its clinical relevance through different stages 
of the PTC progression to better understand the genet-
ics of PTC carcinogenesis. We also revealed the timing 
of mutational processes and the dynamics of the tem-
poral acquisition of somatic events during the lifetime 
of the PTC. Finally, we assayed the relationship between 
the mutational status and RNA expression level in a 
panel of thyroid cancer cell lines. Overall, the findings 

Fig. 6 Expression levels of the common mutated genes in human thyroid cancers. Gene expression level of JMJD1C, MALAT1, MUC16, PDZD2, 
PKHD1, RYR1, SLA and TTN was analyzed in the TCGA database using UALCAN data portal. Box-Whisker plots show the expression level of the 
indicated genes in 59 normal thyroid tissues (in blue) and in 505 primary thyroid tumors (in red). Significant differences, estimated by Student’s 
t-test, have been highlighted in red characters
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support the occurrence of the genetic instability in 
tumor progression so that the mutational landscape 
of each tumor stage is not stable; rather, it is subject to 
periodic fluctuations and multiple mutational processes 
shape the mutational spectra of the lesion. This appears 
to occur in a temporal-specific manner, thus paint-
ing a stage-specific mutational picture in a continuous 
dynamic manner and determining ITH to some extent. 
The expression levels of selected genes also showed a 
different expression level among cell lines characterized 
by different origins (primary PTC or metastasis from 
PTC) and by different mutation status [46].

Pan-cancer studies have shown that ITH impacts the 
clinical outcome and contributes to the risk of poor sur-
vival in tumor patients [14, 15]. However, the association 
between ITH, measured by MATH score, and different 
tumor stages of PTC have not been thoroughly explored. 
Our study represents the first attempt to describe the 
prognostic value of MATH score. We found that ITH sig-
nificantly influences the PTC patient’s survival rate and 
as genetic heterogeneity increases, the prognosis gets 
worse in advanced tumor stages, mainly in stage 4. A high 
MATH score indicates a high percentage of heterogene-
ous subclones [47], which also likely makes the tumor 
more aggressive. Indeed, high MATH scores were asso-
ciated with advanced-stage tumors and shorter overall 
survival in head and neck squamous cell carcinoma [10, 
11], with tumor stage and triple-negative or basal-like 
subtypes in breast cancer [48, 49] and with higher risks of 
metastasis in stage 2 and 3 colon cancer [50]. Moreover, a 
high MATH score was a potential unfavorable prognostic 
factor in PTC, not affected by any other clinic-pathologic 
features. Conversely, the MATH value was not the only 
factor affecting the prognosis in patients with low tumor 
heterogeneity. Indeed, the low MATH score showed a 
potential M stage-dependent prognostic power, thus 
associated with a worse prognosis when the tumor in 
an advanced stage spreads to distant organs and tissues. 
Although the mechanisms underlying the links between 
high genetic heterogeneity and short overall survival can-
not be deduced from these results, the strong association 
between ITH and disease stage supports a possible role 
for ITH as a prognostic biomarker in PTC. Further inves-
tigation will be required to use ITH as a novel potential 
biomarker for survival prediction and therapy selection.

Both somatic mutations and mutational processes can 
account for this heterogeneity, providing mutational fuel 
upon which selection can act. Some of these mutational 
processes are active throughout the lifetime of the can-
cer cell while other ones are active in a temporal-specific 
manner [42, 51]. In accordance with this evidence, we 
found that the PTC genome harbored a mixture of sig-
natures from different mutational processes. Multiple 

endogenous or exogenous mutational forces can oper-
ate simultaneously or successively in tumor stage diver-
sification during PTC progression. Worthy of note is 
that several mutational signatures related to DNA repair 
deficiency (APOBEC-mediated mutagenesis, mismatch 
repair and base excision repair) increased later in tumor 
evolution or were specific for advanced stages [52], thus 
supporting the notion that biological processes driving 
the development of PTC may differ from those resulting 
in their progression.

The well-known driver genes (BRAF, RAS) belonging 
to MAPK or PI3K pathways [18–21] harbored the natu-
rally occurring mutations and were commonly mutated 
across tumor stages. Specifically, mutations in BRAF and 
RAS were established at the early stages and confirmed in 
advanced stages; thus they can be considered early clonal 
events. On the other hand, some genes with moder-
ate frequency emerged with a stage-by-stage expansion. 
Therefore, a rapidly growing clone may arise from several 
early key mutations, with subsequent mutations improv-
ing the fitness of tumor cell subpopulations in each stage. 
These subclonal alterations may likely predispose to the 
advancement towards more aggressive stages and poten-
tially poorer prognosis tumors.

To better characterize the changing genetic architec-
ture of PTC and highlight the dynamic changes of PTC 
oncogenesis, we followed the mutational patterns of 12 
common mutated genes across clinical stages, regardless 
of mutation type. We identified three evolutionary paths 
of gene mutations that could drive PTC progression 
across pathological stages: (i) recurrently mutated genes 
in all the stages, with BRAF driver gene showing a domi-
nant role across all stages; (ii) some genes (NRAS and TG) 
mostly mutated in the early stages while disappearing 
in the advanced stages; (iii) other mutated genes (TTN, 
MUC16 and HRAS) emerged dominantly in advanced 
stages, thus suggesting their impact in the aggressive 
phenotype of this tumor. It also appeared that distinct 
somatic events affecting the same gene occurred in dis-
tinct tumor subclones. Indeed, the mutation frequency 
changes, sometimes associated with a different codon 
change, also showed certain dynamics across stages. 
Specifically, some codon changes highly occurred in all 
stages in specific hotspots positions (BRAF c.1799 T > A, 
HRAS c.182A > G, NRAS c.182A > G and c.181C > A) 
while for the other genes, different codon changes domi-
nated in various stages. The theory of clonal evolution 
of tumor [5] argues that the accumulation of mutations 
drives early slow-growing subclones into fast-growing 
subclones, thus accelerating the tumor progression. In 
accordance with this theory, mutations occurring at hot-
spot positions may drive the PTC progression towards 
more aggressive stages. Meanwhile, each stage acquires a 
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specific mutational landscape that does not directly drive 
cancer progression but may have a strong cumulative 
effect, thus contributing to the aggressiveness of cancer.

Except for BRAF, HRAS, NRAS and TG, whose involve-
ment in PTC is deeply revealed [18–21], for the other 
commonly mutated genes in all tumor stages, we further 
assayed the relationship between TCGA data, the RNA 
expression level of thyroid cancer-derived cell lines and 
their mutational status. We found different expression 
levels of the common mutated genes among cell lines. 
These differences were not due to high impact muta-
tions harboring by these genes but probably to additional 
altered mechanisms such as transcriptional regulatory 
networks (e.g., expression of miRNAs and transcrip-
tional factors) and epigenetic networks (e.g., DNA meth-
ylation or chromatin remodeling complex). Additionally, 

the BCPAP cell line is derived from a poorly differenti-
ated PTC; the TPC-1 cell line is derived from differenti-
ated PTC, and K1 cell line derives from metastasis of a 
well-differentiated PTC. Also, the mutation status of 
these cell lines is different: BCPAP harbored BRAF and 
TP53 mutations, TPC-1 cells harbored the RET/PTC1 
gene rearrangement, and K1 harbored mutations in 
PIK3CA and BRAF genes [46]. All these data confirmed 
the intra-tumoral genetic heterogeneity across different 
papillary thyroid carcinoma models. In accordance with 
our results, Shen et al. [53] found an up-regulation of the 
RYR1 gene in 100 thyroid cancer samples compared to 64 
normal thyroid tissue samples. RYR1 protein belongs to 
ryanodine receptors family and acts as a calcium  (Ca2+) 
release channel. Since the altered homeostasis of intra-
cellular  Ca2+ is correlated to several hallmarks of cancer 

Fig. 7 Expression levels of the common mutated genes based on thyroid cancer stages. Gene expression of JMJD1C, MALAT1, MUC16, PDZD2, 
PKHD1, RYR1, SLA and TTN was analyzed across the different thyroid cancer stages deposited in the TCGA project using UALCAN data portal. 
Box-Whisker plots show the expression level of the indicated genes in 59 normal thyroid tissues (in blue), 284 PTC in stage 1 (in orange), 52 PTC in 
stage 2 (in brown), 112 PTC in stage 3 (in green) and 55 PTC in stage 4 (in red). Statistical differences were calculated using Student’s t-test. *p ≤ 0.05; 
**p ≤ 0.01; ***p ≤ 0.001
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cells, the study of RYR1 could be interesting to better 
understand the pathogenesis of thyroid cancer. Although 
it is not clear how these mutations regulate RNA expres-
sion levels, the here screened genes were meaningful and 
worthy of further studies to better investigate the func-
tional mechanism of how mutations work.

One of the most notable strengths of this study is the 
stratification of patients by tumor stage. This allowed 
us to obtain homogeneous patient subpopulations to be 
profiled for mutational landscape. However, our study 
has several limitations. First, we used samples taken 
from one small area of the tumor and at one point in 

Fig. 8 Expression levels of the common mutated genes in human thyroid cancer cell lines. Gene expression of JMJD1C, MUC16, PDZD2, RYR1 
and SLA was analyzed in immortalized normal thyroid epithelial (Nthy-ori 3-1) and papillary thyroid cancer cell lines (K1, TPC-1 and BCPAP) by 
qRT-PCR. Fold‐change was determined by  2−ΔΔCt formula and β‐actin was used as internal control. Results are the means of three independent 
experiments ± standard error of the mean (SEM). **p ≤ 0.01
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the disease course. The analysis of a single biopsy could 
not be representative of the whole tumor. Thus, we likely 
underestimated the true extent of heterogeneity within 
each tumor stage. Comprehensive longitudinal studies, 
coupled with deep multi-region sequencing, are required 
to better understand the mutational evolution of PTC 
over time. Second, our study is a retrospective analysis of 
a single publicly available data. Thus, a multi-data analy-
sis and a prospective study will be needed to validate the 
prognostic value of the MATH score and the mutational 
processes driving the PTC progression towards more 
advanced and aggressive tumor stages. Thirdly, further 
in-depth studies in  vitro and/or in  vivo are required to 
gain a deeper understanding of the functional impact 
of JMJD1C, MALAT1, MUC16, PDZD2, PKHD1, RYR1, 
SLA and TTN on changes of RNA expression levels. As 
such, our results should be considered as hypothesis-gen-
erating findings.

Despite these limitations, our results improve the 
knowledge of intra-tumoral heterogeneity in different 
tumor stages of PTC, revealing for the first time that ITH 
measured by MATH could be a potential unfavorable 
prognostic factor in PTC and a potential risk factor for 
shorter survival. Moreover, this study shed light that dif-
ferent biological processes contributed to tumor hetero-
geneity of PTC, by both adding to the mutational burden 
and promoting molecular diversification of PTC in dif-
ferent tumor stages. In conclusion, our study may con-
tribute to the development of precision medicine and the 
improvement of diagnostic strategies in PTC patients.

Conclusions
Emerging data, mainly due to new technologies, 
showed that the intra-tumoral heterogeneity represents 
an important feature of human cancer. Our research 
unveiled that the intra-tumoral heterogeneity charac-
terized the PTC aggressiveness among different stages 
opening new scenarios about its impact on diagnosis, 
prognosis and treatment of PTC patients. Indeed, the 
high ITH profile associated with advanced clinical stages 
could be responsible for the drug resistance, thus posing 
clinical challenges.

The identification of specific genetic alterations in 
PTC patients could represent a novel tool capable to 
increase the diagnostic sensitivity, providing novel 
implications for therapeutic decisions. Thus, the impli-
cation of this work could be important in clinical prac-
tice and highlight that pathologists should consider the 
ITH for a precise diagnosis. The findings of this work 
could also give insight into the molecular mechanisms 
associated with the progression from the less to the 
more aggressive form of PTCs.
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