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Abstract 

ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and 
cellular senescence. These include a family of proteins with 5 members (ING1‑5), which are downregulated in human 
malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins 
containing several domains through which bind to chromatin structures by exerting their effects as readers of histone 
modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. 
Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regu‑
latory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of 
normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and 
experimental confirmation are required for these models. This paper highlights the potential impact that INGs may 
have on the development of human cancer and explores what new information has recently arise on the functions of 
ING genes.
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Introduction
The family of tumor suppressors known as the Inhibitor 
of Growth (ING) proteins has five conserved genes in 
humans and mice, with the majority of these genes gen-
erating several proteins via alternative splicing [1]. The 
key factors encouraging cancer formation and progres-
sion are the inactivation of some genes and the activation 
of others [2, 3]. Notably, 3 categories of gene sets playing 
role in critical cellular functions are known to be affected 

by accumulating mutations and involved in human 
malignancies.

Accumulating evidence shows that pathogenic muta-
tions damage these groups and turn them into sequences 
with changed/inactivated functionality. Firstly, "proto-
oncogenes" play a role in cellular processes related to 
proliferation and differentiation. When influenced by 
activating or "gain-of-function" mutations, they become 
"oncogenes" able to promote or develop cancer [4]. Based 
on structure and functions, proto-oncogenes classify into 
tyrosine protein kinase, kinase-related, GTP-binding pro-
teins, growth factor, growth factor receptor, and nuclear 
proteins [5].

The second group of genes, called TSGs, effectively 
limit cell growth, differentiation, and apoptosis. This 
makes sure that cell growth only happens when it needs 
to and is controlled, which inhibit cancer development 
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[6]. Unlike proto-oncogenes, "loss-of-function" muta-
tions reduce TSG expression in human cancers. Inac-
tive TSGs promote cancer formation and progression by 
speeding cell proliferation and suppressing apoptosis.

The Inhibitor of Growth (ING) genes are members of 
TSG family which initially were identified in human cells. 
Homologs to ING genes have been identified in different 
eukaryotic species from plants to rats such as Yng iso-
forms in Saccharomyces cerevisiae sequences [7], while 
their sequences are known to be well conserved during 
evolution proposing their substantial functions [8]. They 
all have been categorized as type-II or gatekeeper TSGs 
[9]. Based on the “two-hit hypothesis” by Alfred Knud-
son, two alleles of a TSG are required to be inactivated 
to allow a cell for tumorigenic excess proliferation [10]. 
TSGs are classified into five types according to the func-
tion of encoded proteins: 1- regulating cell cycle pro-
gression, 2- repressing cell proliferation, 3-checkpoint 
proteins responding to DNA damages, 4- promoting 
apoptosis, and 5- playing role in DNA mismatch repair 
[11]. The second class, which a majority of TSGs belongs 
to, are translated into receptor proteins or signal trans-
ducers responding to hormones and stimuli which sup-
press the cell growth [11]. The best-known example for 
these is the cytokine TGF-β which acts as a TSG via sup-
pressing the cell proliferation and promoting apoptosis 
[12]. Other examples are well studied in human malig-
nancies such as APC, BRCA1, p53, and Rb [6].

The first member of the ING gene family was reported 
for the first time by Garkavtsev et al. in 1996 [13]. They 
employed subtractive hybridization based on a polymer-
ase chain reaction (PCR) technique and then screening 
the tumor suppressor genes, cloned a newly discovered 
gene they termed ING1 with a 33 kDa-encoded protein. 
ING1 overexpression caused suppression of Hs578T 
human breast cancer cell lines, while its inhibition 
enhanced malignant phenotype of cells and so ING1 was 
introduced as a tumor suppressor gene.

Several members of the ING family have been identi-
fied with regulatory roles in cell migration, angiogenesis, 
inflammatory responses, and spermatogenesis. However, 
these models need to be studied more and verified by 
experiments. This study discusses what is recently known 
about ING  gene functions and highlight the potential 
impact of INGs on the development of human cancer.

Figure 1 illustrates an overview of ING proteins partici-
pate in the regulation of chromatin through epigenetic 
marks.

Structure and functions of ING proteins
The ING proteins multidomain proteins, which are 
mainly conserved among all members and required 
for their regulatory functions on the cellular growth 

(Fig.  2) [16]. Through these domains, the ING pro-
teins emerge as binding structures connecting the 
enzymatic activities to chromatin [17]. Through these 
interactions, INGs are able to affect pro-proliferative or 
growth-inhibitory behaviors via epigenetic regulations. 
Several homologs to human ING proteins have been 
reported in animals and plants and they all possess 
N-terminal domains with unique amino acid sequences 
[16] in addition to a plant homeodomain (PHD) at the 
C-terminus with conserved sequence between eukary-
otic cells [18].

The main domain found in ING proteins is the PHD 
domain encoding a zinc finger, which is already identified 
with essential role for the function of many epigenetic 
regulatory proteins known as chromatin remodeling fac-
tors playing role in gene expression [19]. PHD domains 
act in controlling gene expression via gathering several 
epigenetic regulatory proteins and transcription factors 
to the target sequences. Through the PHD, they particu-
larly bind to the histone H3 with 3 methyl groups added 
at lysine 4 (H3K4me3). H3K4me3 is a mark for active 
transcription located preferentially near the gene pro-
moters and start sites of loci being actively transcribed 
[20, 21] and so, ING proteins can impact the expression 
of several target genes required for activation or inhibi-
tion of cellular growth [22]. This is partially conducted 
through recruiting the “Gadd 45a” factor, which is acti-
vated in response to DNA damage and consequently 
changing the acetylation/methylation of histone residues 
[23]. In addition to regulation of gene transcription, ING 
proteins can exert their cell growth-regulatory functions 
through binding to and altering the activity of TSG p53 
and nuclear factor-kappa B (NF-κB) proteins [24].

Sequence conservation of PHD zinc finger domains 
have helped identification of various ING genes among 
different organisms via phylogenic analyses [16]. On the 
other side, N-terminal domains of the ING proteins bind 
to histone modification enzymes such as deacetylase 
and acetyltransferase (HDAC, and HAT, respectively) 
proteins, which their balance in adding/removing acetyl 
groups on the histones play role in epigenetic regulation 
[25]. Accordingly, ING proteins were initially identi-
fied as components of HDAC and HAT complexes [26]. 
Today, first two ING proteins (ING1, and 2) are consid-
ered the subunits of HDAC complex and the latter ING3, 
4, and 5 of HAT enzyme. The N-terminal domain is also 
responsible for a shared potential of all ING proteins in 
binding to lamin A located in the nuclear envelope [26]. 
Adjacent to protein-binding domains, ING proteins also 
have a nuclear localization signal (NLS) or more, which 
is responsible for their transport to and localization at 
the nucleus [16]. Additionally, nucleolar translocation 
sequences (NTS) help translocation of ING proteins 
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stimulated by DNA damage and mutated NTS signals 
cause decreased apoptotic levels [27].

In the early years of this century, four other members 
of the ING family (ING2-5) were found using homology-
finding methods on their C-terminal domains [28–30]. 
Their sequences are all very similar to the first member’s, 
which shows that they are all related. Among them, ING1 
and ING2 recruit mSin3A/HDAC1/2, and mSin3A/
HDAC1, respectively while others demonstrate interac-
tion with various HATs [14]. There are more than 15 dif-
ferent splicing isoforms encoded by the five ING genes. 
They are all known to have significance in a variety of bio-
logical processes, including cell proliferation, apoptosis 
and senescence, carcinogenesis, DNA repair, and sper-
matogenesis [31–34]. Accordingly, loss of these genes has 
been associated with a number of human diseases such 
as cancers, inflammation, and aging. Furthermore, they 

have been identified as having dysregulation or inactivat-
ing mutations in a variety of human cancers [24].

ING1
ING1 was the founding member of the family initially 
identified in breast cancer cells as a potential TSG and 
further studied compared to other genes in the past two 
decades. It is located on the long arm of chromosome 13 
near the telomere at 13q34 [35], and its sequence is more 
similar to ING2 than to other isoforms. This suggests that 
ING2 and other isoforms came from the same ancestor 
[16]. Their functions are also more similar [32]. There are 
4 variants that are known to be encoded by ING1, and 
the majority of their expression is found in the p33ING1b 
and p47ING1a variants [33].

Structurally, ING1 possesses 4 exons including 1a, 1b 
(the most common isoform), 1c, and 2 which eventually 

Fig. 1 A schematic diagram of the ING protein family members involved in chromatin remodeling. Chromatin compaction is modulated via 
posttranslational modifications including histone methylation (silent chromatin) as well as histone acetylation (active chromatin). By binding to the 
histone mark H3K4me3, ING1b recruits the HDAC mSin3A/HDAC1/2 complex or Gadd45a, for local histone deacetylation. ING2a, in complex with 
HDAC1/2, SAP30 and mSin3A can bind either H3K4me3 or H3K9me3. ING3 can acetylate the N‑terminal tails of histones H4 and H2A. Moreover, 
ING4 and ING5 are in complex with MYST‑HB01‑JADE‑hEAF6‑HAT. ING5 is also a component of another HAT complex (MOZ/MORF‑MYST‑HAT) [14, 
15]
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4 mRNA variants are developed in transcription via 
alternative splicing and produced from various pro-
moter regions [32]. These isoforms, which were formerly 
known as  p24ING1, p47 ING1, p32 ING1, and p27 ING1 [36], 
differ in their N-terminal sequences [14], and found to 
be widely expressed for ING1a and ING1b [37] particu-
larly in high levels of expression in testes for ING1a, and 
3 others mainly expressed in thymus and other internal 
organs [38]. In addition to common ING domains includ-
ing the PHD, NTS, and NLS, ING1 also possesses a motif 
mediating the damaged DNA to bind to proliferating cell 
nuclear antigen (PCNA) [37].

ING1 was first identified as having tumor suppressor 
acivity by Garkavtsev et al. [13] who also introduced the 
founding member of ING genes family being expressed 
in mammary epithelial cells acting as anti-proliferative 
agents, while not expressed in breast cancer cell lines. 
The authors demonstrated that p32 ING1 suppresses cell 
proliferation, and conversely its inhibition using anti-
sense RNA showed opposite effect on cell growth of 
breast cancer cells [13]. In addition to acting as a TSG 
with growth-suppressive properties, ING1 can also trig-
ger apoptosis and participate in cellular senescence [39, 
40]. In normal neurons, ING1 plays a role in regulating 
activity-dependent gene expression [41]. Furthermore, 
upregulation of ING1 increases Bax activity and modifies 

mitochondrial membrane potential through a process 
that requires p53 in the cell [42].

In addition to its involvement in controlling cell devel-
opment in non-cancerous cells, ING1 regulates a number 
of  pathways in malignant cells. Recent studies showed 
that ING1 gene expression has been found to be lost in a 
variety of human malignancies, either alone or in combi-
nation with protein expression, showing that it is down-
regulated in cancer tissues compared to healthy tissues. 
Some studies even reported that its expression in breast 
cancer cell lines has decreased by 100% [43]. The absence 
of ING1 protein may result from a decrease in either its 
expression or the stability of its mRNA [9]. However, 
ING1 loss of expression without its alterations in human 
malignancies has not been observed [14, 44].

ING1’s role as a tumor suppressor gene (TSG) has been 
demonstrated in a variety of human cancers including 
lung cancer [45], colorectal cancer [46], prostate cancer 
[38], and astrocytoma [47]. Further study has found that 
ING1a regulates cell senescence while ING1b triggers 
apoptosis [48, 49]. In PCa cells, ING1b silencing has also 
increased cellular senescence and induced expression 
of the effective cell cycle inhibitor p16INK4a [50].Con-
versely, upregulation of ING1 has been shown to inhibit 
cell growth and metastasis in breast cancer in vitro and 
in vivo [51].

Fig. 2 Structural features of ING proteins in Homo sapiens. All ING proteins include three conserved regions, a PHD, NLS, and NCR from C‑terminal 
region to N‑terminal region. Moreover, p33ING1b has a PIP, PBD, and LID domains
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Interestingly, ING1 expression is regulated by sev-
eral mechanisms including epigenetic regulation such 
as methylation [38, 52], effect of microRNAs [53], and 
post-translational modifications [54]. Besides that, ING1 
itself plays a role in tumor suppression by affecting sev-
eral cancer hallmarks, such as sustained cell prolifera-
tion, growth and metastasis, evading cell apoptosis, and 
angiogenesis, through epigenetic regulatory mechanisms 
and interactions with other TSGs such as p53 [14]. For 
instance, based on experiments with overexpression, 
ING1 can regulate wild-type p53 but not mutant p53 in 
MDM2-independent. Knocking down endogenous ING1 
lowered p53 levels in a transcription-independent man-
ner [55].

ING2
Similar to ING1, ING2 is also located near the telomeric 
region but on chromosome 4q35.1. As stated for ING1, 
these two have a high level of homology in their amino 
acid composition [28], which suggests that they share a 
common ancestor [16] and have a close evolutionary and 
functional relationship [26].

ING2 protein has two isoforms of ING2a (mainly 
referred as ING2) and ING2b resulted from alternative 
splicing between 2 exons of 1a, and 1b among 3 exons 
of its encoding gene (1a, 1b, and 2). ING2 was initially 
identified in human fetal brain termed ING1 homolo-
gous (INGL) [56]. It has another domain in addition to 
other common ING domains which is reported for other 
isoforms except ING1. This domain is leucine zipper-
like (LZL) which possesses 4–5 conserved leucine/ iso-
leucine amino acids which form a hydrophobic patch at 
the N-terminal end of protein [18]. LZL is specifically 
required for proper functions of ING2 including apop-
tosis, nucleotide excision repair, and chromatic remod-
eling in exposure to UV light [57]. It is thought that the 
p53 tumor suppressor is responsible for these effects. In 
response to DNA damage, ING2 acts as a nuclear phos-
phoinositide receptor [58]. This suggests that ING2 
has a direct role in DNA damage response. Through its 
PHD domain, ING2 interacts with phosphatidylinositol 
5-phosphate, which activates p53 and leads to apoptosis 
[58]. ING2 is a subunit of mSin3A-HDAC corepressor 
complexes and it controls gene expression by binding to 
H3K4me3.

In addition to characteristic growth-inhibitory effects, 
ING2 is known to be involved in several other processes 
like spermatogenesis and muscle differentiation [59, 60]. 
Saito et  al. [59] demonstrated that ING2-deficient male 
mice were infertile and had defect spermatogenesis with 
significantly decreased sperm number and testicular 
structural abnormalities. These results were seen con-
comitant lack of p53, and the authors concluded that 

ING2 in an axis of chromatin regulation via HDAC1/
ING2/H3K4me3 plays role in spermatogenesis. Accord-
ingly, lack of ING2 expression has been reported with 
loss of function in a variety of cancers such as lung can-
cer and head and neck squamous cell carcinoma [61, 62]. 
Same to ING1, ING2 affects cancer development via epi-
genetic mechanisms.

ING3
ING3 possesses the most distinctive sequence compared 
to other ING family members since ING1 and ING2 and 
also ING4 and ING5 demonstrate high similarity, while 
ING3 shows the lowest amount of similarity to other 
[16]. Additionally, unlike others, ING3 gene is not located 
at the telomeric region [63]. It is located at chromosome 
7q31.3, possesses 12 exons encoding a protein with 418 
amino acids [64]. Doyon et  al. [63] reported that ING3 
is an essential subunit of NuA4-Tip60 MYST-HAT pro-
tein complex acting in chromatic regulation. ING3 shows 
extensive expression in a wide variety of mammalian tis-
sues such as human heart, spleen, and muscles and mice 
kidney, cardiomyocyte, and skeletal muscles; however, 
highest levels have been reported in oocytes [64–66]. It is 
found to regulate cell growth, control cell cycle, modulate 
p53 transcription, and induce apoptosis [64].

Accordingly, ING3 loss of expression has been 
reported in a number of human cancers, such as gyneco-
logical malignancies [66], where its high expression at 
the nucleus of cancer cells is reported to be associated 
with good prognosis in breast cancer patients and down-
regulation of its mRNA correlates with poor prognosis in 
head and neck malignancies [67, 68]. Li et al. [69] dem-
onstrated that ING3 overexpression inhibits cell migra-
tion and invasion in breast cancer cells regulating cancer 
behaviors through tumor-associated pathways. Addition-
ally, Melekhova et  al. [69] showed that knocking down 
ING3 in a variant without a PHD domain leads to more 
epithelial-to-mesenchymal transition (EMT) and cellular 
senescence in the LNCaP prostate cancer cell line. This 
means that this TSG decreases the ability of cancer cells 
to spread.

Almost all in  vitro studies show that ING3 is a TSG 
with a growth-inhibiting function. However, in prostate 
cancer, Nabbi et al. found that ING3 works as a co-activa-
tor of androgen receptor (AR) [70]. Thus, ING3 acts also 
as a coactivator being distinct from ING1 and ING2. It 
was reported that each ING1b and ING2a functions as 
corepressor of AR in prostate cancer cells, cross-talk and 
compensate their activity if one is downregulated. Inter-
estingly, each is able to induce cellular senescence in can-
cer cells [71].

Overall, ING1 and 2 are identified as AR-corepressors 
inhibiting androgen signaling, while ING3 is known 
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to act as AR-coactivator playing role in prostate cancer 
pathogenesis [72, 73]. In addition to growth-regulatory 
roles, ING3 is found to play role in embryonic growth 
and its loss associated with disturbance in neural tube 
development, ectodermal differentiation, and death in 
mice embryos [74]. This suggests that it is involved in cell 
migration and differentiation in brain development.

ING4
ING4 was initially reported using homology studies and 
Shiseki et  al. characterized it in human placenta [75]. It 
is located near the telomeric region, on chromosome 
12p13.31, and the gene encoding this protein has 1380 
nucleotides and 8 exons [37]. ING4 protein contains 
249 amino acids forming a 29-KDa protein with several 
domains like PHD, LZL, and NLS and high homology 
in sequence compared to the last family member; ING5 
[76].

ING4 has been found to be expressed in all tissues 
of the mammalian body. It is also a member of HB01-
JADE-hEAF6 MYST-ING HAT protein complex sensing 
histone marks and playing role in chromatin remod-
eling [26]. These effects are exerted through binding to 
H3K4me3 and HBO1-JADE via its PHD domains [77]. 
ING4 also binds to p53 via its NLS domain, thus it is sug-
gested to play role in tumor suppression partly through 
interacting with p53 tumor suppressor [77].

Furthermore, ING4 is known to regulate several other 
processes like apoptosis, autophagy, angiogenesis, DNA 
repair, and malignant phenotype of cancer cells [78]. 
Accordingly, loss of ING4 expression and pathogenic 
mutations have been reported in various types of human 
cancer cells, which support its role as a TSG regulat-
ing cell growth playing role in avoiding cancer develop-
ment [79–82]. Low expression of ING4 in the cancer 
cells is accompanied cycle cell arrest at the G2/M phase 
demonstrating its role in regulation of cell cycle [26]. 
Additionally, Yang et al. [83] reported that ING4 acts as 
an anti-inflammatory factor through affecting NF-κB 
pathway via having interaction with Sirtuin1 (SIRT1) in 
lipopolysaccharide-induced sepsis. Consistent with this 
finding, Qian et  al. [84] demonstrated that ING4 sup-
presses hepatocellular carcinoma (HCC) via repressing 
transcriptional activity of NF-κB, upregulation of miR-
155 targeting FOXO3a in MHCC97H human HCC cells.

ING5
ING5 is located at chromosome 2q37.3 encoding a pro-
tein composed of 240 residues forming a 28-kDa protein 
[85]. ING5 is the last member of ING protein family as 
TSGs with inhibitory roles in tumor development and 
progression. In addition to growth-inhibitory effects, 
ING5 is shown to regulate differentiation of stem cells 

such as epidermal stem cells and cancer stem cells [86, 
87]. ING5 also was initially identified through homol-
ogy searching approaches [26]. In addition to several 
other domains like LZL, and NLS, ING5 possesses a 
PHD domain associates with HAT complexes and dem-
onstrates controversial effects as a TSG or oncogene [14, 
88].

In several cancer tissues acute myeloid leukemia (AML) 
and head and neck cancer, ING5 is reported to be down-
regulated suggesting it with anti-tumor effects. However, 
in a few studies changes of ING5 at mRNA and protein 
levels are reported inconsistently or being upregulated 
in cancer tissues [89–91]. Importantly, ING5 is known 
to affect several cell processes like cell proliferation, 
autophagy, and apoptosis. It also has a negative effect on 
the malignant phenotype of cancer cells [92], which sug-
gests that it controls a lot of different growth-controlling 
pathways within the cells.  In an interesting study,  ING5 
changes the way miRNAs work. Cui et  al. [90] showed 
that miR-24 acts as an upstream oncogenic miRNA that 
suppresses ING5 expression and has the opposite effect 
on cell proliferation, invasion, and apoptosis in breast 
cancer cell lines compared to ING5. ING5 is particularly 
associated with p53 and through activating this tumor 
suppressor can fight against malignancies as a TSG [93]. 
Furthermore, ING5 is known to regulate signaling path-
ways like AKT and inflammatory pathways playing role 
in development and progression of cancers [94, 95].

INGs have interactions with p53. For instance, two p53 
binding sites have been identified in ING2a promoter 
possesses. Moreover, Nutlin-3-mediated activation of 
p53 could suppress ING2a transcription [96]. ING2 has 
also been shown to negatively regulate cell proliferation 
via inducing acetylation of p53 [97]. Another study has 
shown induction of apoptosis in ING2 − / − germinal 
cells and enhancement in their p53 protein levels possibly 
due to induction of testicular degeneration in the absence 
of ING2 or presence of a regulatory interaction between 
ING2 and p53. Further experiments have shown that 
ING2 deficiency in testis stimulates both p53-dependent 
and independent apoptotic pathways [59]. Both ING1b 
and ING2a can regulate acetylation of p53 to control 
cell cycle transition, cell apoptosis, and senescence [32]. 
Figure 3 demonstrates the regulation of p53 function by 
ING family members in inhibition of tumor initiation 
and development.

Concluding remarks
ING family including 5 members (ING1-5) have been 
known as candidate TSGs with growth-inhibitory effects 
in addition to other restrictive influences on malignant 
phenotype of cancer cells. They are also known to act 
in several other cellular processes like spermatogenesis, 



Page 7 of 10Taheri et al. Cancer Cell International          (2022) 22:272  

differentiation of stem cells, and cell senescence. INGs 
are subunits of HAT/HDAC protein complexes involved 
in chromatin regulation through which they are believed 
to exert their regulatory functions. Particularly, they 
are known to be downregulated in human malignan-
cies, while their overexpression can provide therapeutic 
potential for cancer treatment. Based on their sequence 
similarities and protein domains structures it suggests 
ING family members have overlapping and redundant 
activities. The knock-out or knockdown of one mem-
ber might be compensated by another family member. 
Thus, double knock-out or knock-down experiments may 
shed further light into their biological roles in health and 
disease.

In brief, INGs represent a group of proteins with sub-
stantial roles in the carcinogenesis. These proteins can be 
used as potential targets in desing of anticancer modali-
ties. Yet, there is still limited data about application of 

INGs in therapeutic options. Future in vitro and in vivo 
studies are needed to elaborate the exact mechanisms of 
participation of INGs in the carcinogenesis, their inter-
actions with other tumor suppressors or oncogenes and 
functional consequences of their ablation. High through-
put sequencing methods would help in indentification of 
specific targets of INGs and recognition of the underlying 
mechanisms of their participation in the carcinogenesis.
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