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Abstract 

Resveratrol (3,5,4′‑trihydroxy‑trans‑stilbene) is a natural phenol that is present in the skin of the grape, blueberry, 
raspberry, mulberry, and peanut. This substance is synthesized in these plants following injury or exposure to patho‑
gens. Resveratrol is used as a dietary supplement for a long time and its effects have been assessed in animal models 
of human disorders. It has potential beneficial effects in diverse pathological conditions such as diabetes mellitus, 
obesity, hypertension, neoplastic conditions, Alzheimer’s disease, and cardiovascular disorders. Notably, resveratrol has 
been found to affect the expression of several genes including cytokine coding genes, caspases, matrix metallopro‑
teinases, adhesion molecules, and growth factors. Moreover, it can modulate the activity of several signaling pathways 
such as PI3K/AKT, Wnt, NF‑κB, and Notch pathways. In the current review, we summarize the results of studies that 
reported modulatory effects of resveratrol on the expression of genes and the activity of signaling pathways. We 
explain these results in two distinct sections of non‑neoplastic and neoplastic conditions.
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Introduction
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natu-
ral phenol that is synthesized by numerous plants fol-
lowing injury or exposure to pathogens [1]. The skin of 
the grape, blueberry, raspberry, mulberry, and peanut is 
regarded as a source of resveratrol [2]. Resveratrol is used 
as a dietary supplement and its effects have been assessed 
in animal models of human disorders (Fig.  1). Resvera-
trol is a pan-assay interference agent that makes positive 
impacts in various laboratory tests [3]. These effects are 
mediated through its interactions with biomolecules on 

cell membranes [4]. In plants, resveratrol is synthesized 
by the enzyme resveratrol synthase [5].

In humans, resveratrol can be administered through 
buccal delivery being absolved via the saliva. Yet, buccal 
delivery is not an efficient route since it has low aqueous 
solubility [6]. Moreover, high amounts of hepatic glucu-
ronidation and sulfonation further limit the bioavailabil-
ity of resveratrol [7]. Resveratrol is glucuronidated and 
sulfonated in the intestinal and hepatic tissues. Its sul-
fonation in the intestine is induced by microbial activity 
[8]. While the half-life of resveratrol is about 8–14 min, 
sulphate and glucuronide resveratrol metabolites have 
half-lives of more than 9 h [9].

This agent has been found to alter the expression of 
several genes in different pathological conditions. In the 
current review, we summarize the results of studies that 
reported modulatory effects of resveratrol on the expres-
sion of genes and the activity of signaling pathways. We 
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explain these results in two distinct sections of non-neo-
plastic and neoplastic conditions. The main focus of this 
manuscript is on studies that reported modulatory effects 
of resveratrol on PI3K/AKT signaling pathway.

Effects of resveratrol on gene expression 
in non‑neoplastic conditions
Cardiac diseases
In order to assess the protective effects of resveratrol 
against cardiac hypertrophy, Guan et  al. have exposed 
male rats to Male rats were exposed to chronic inter-
mittent hypoxia (CIH). CIH has resulted in the eleva-
tion of heart weight/body weight and left ventricle 

weight/body weight ratios as well as left ventricular 
remodeling. Moreover, authors have reported eleva-
tion of the apoptosis index, up-regulation of oxidative 
biomarkers, increase in autophagy marker Beclin-1, 
and down-regulation of p62 in the CIH group. Intragas-
tric administration of resveratrol has enhanced cardiac 
function, amended cardiac hypertrophy, and reversed 
CIH-induced changes in oxidative stress and apoptosis. 
Mechanistically, PI3K/AKT-associated suppression of 
the mTOR pathway has been identified as the mediator 
of effects of resveratrol autophagy activation following 
CIH stimulation [14]. In an experiment in aged rats, Lin 
et al. have shown swimming exercise training, resvera-
trol treatment, or a combination of both can improve 
heart function. Authors have also reported a slight 
increase in the activity of the PI3K/AKT pathway in 
rats subjected to exercise training and resveratrol treat-
ment. Yet, the activity of SIRT1 in the aged rat hearts 
has been only with resveratrol treatment. Besides, rats 
exposed to both interventions exhibited activation of 
both SIRT1 and PI3K/AKT pathways and inhibition 
of FOXO3 accumulation [15]. Table  1 describes the 
impact of resveratrol on the expression of genes in the 
context of cardiovascular disorders.

Based on the anti-thrombotic and anti-inflamma-
tory effects of resveratrol, this agent is also suggested 
to decreases COVID-19-associated mortality, which is 
due to activation of thrombotic and inflammatory cas-
cades [18].

Fig. 1 Chemical structure of resveratrol. It has been reported that 
resveratrol has many therapeutic effects [10–13]

Table 1 Impact of resveratrol on the expression of genes in the context of cardiovascular disorders

Type of disease Dose range Cell line Target Pathway Function Refs.

In vivo studies

Cardiac Hypertrophy 30 mg/kg – Bax, Bcl‑2, Beclin‑1, p62 PI3K/AKT/mTOR RVT by targeting the PI3K/
AKT/mTOR pathway could 
prevent chronic intermittent 
hypoxia‑induced cardiac 
hypertrophy

[14]

Cardiovascular Diseases 15 mg/kg – SIRT1, FOXO3, Fas, FADD, 
Caspase‑3/8, Sirt‑1, BNP, TNF‑
α, PARP

PI3K/AKT RVT via synergetic activation 
of PI3K/AKT and SIRT1sign‑
aling could improve the 
beneficial effects of exercise 
training in aging rat hearts

[15]

Heart Failure (HF) 2.5 mg/kg – Caspase‑3, Serca2a, PLB PI3K/AKT/eNOS RVT via the PI3K/AKT/eNOS 
pathway could decrease 
reduces atrial fibrillation 
susceptibility in HF

[16]

In vitro studies

Acute Myocardial Infarction 
(AMI)

20 μM Cardiomyocyte – P13K/AKT/e‑NOS RVT via blocking the P13K/
AKT/e‑NOS pathway could 
protect cardiomyocyte 
apoptosis induced by I/R 
injury in AMI

[17]



Page 3 of 19Ghafouri‑Fard et al. Cancer Cell International          (2022) 22:298  

Central nervous system (CNS) disorders
Resveratrol has been found to have neuroprotective 
effects against early brain injury (EBI) following suba-
rachnoid hemorrhage (SAH). Experiments in rat mod-
els have shown that intraperitoneal administration of 
this agent decreases mortality and brain edema fol-
lowing SAH. Moreover, resveratrol has enhanced neu-
rological scores in these animals. Histological studies 
have shown the effect of resveratrol in the reduction of 
neuronal pyknosis and swelling. Moreover, resveratrol 
has enhanced expressions of beclin-1, LC3-II, LC3-II/
LC3-I, and Bcl-2, while decreasing p-AKT, p-mTOR, 
p62, cleaved caspase-3, caspase-9, and BAX levels. Fur-
ther studies have verified the effects of resveratrol in 
the induction of autophagy. Therefore, the neuropro-
tective effect of resveratrol is exerted through the regu-
lation of autophagy and apoptosis via modulating the 
AKT/mTOR pathway [19].

Neuroprotective effects of resveratrol have also been 
investigated in a rat model of middle cerebral artery 
occlusion. Resveratrol has remarkably enhanced neu-
rological function, decreased cerebral infarct size, 
reduced neuron injury, and diminished neuron apop-
tosis. Mechanistically, resveratrol up-regulates p-JAK2, 
p-STAT3, p-AKT, p-mTOR, and BCL-2 levels, while 
down-regulating cleaved caspase-3 and BAX levels. 
Taken together, resveratrol protects against cerebral 
ischemia/reperfusion injury through induction of the 
activities of JAK2/STAT3 and PI3K/AKT/mTOR path-
ways [20]. Another experiment has shown that res-
veratrol reduces neurological deficit scores and MPO 
activity and suppresses induction of IL-1β, TNFα, and 
COX2 inflammatory markers. In addition, resvera-
trol attenuates ischemic brain injury following cer-
ebral artery occlusion via modulation of PI3K/AKT 
signaling pathway [21] (Fig.  2). Through upregulat-
ing heme oxygenase-1 (HO-1) via the PI3K/AKT/Nrf2 
axis, resveratrol can attenuate the cytotoxic effects of 
amyloid-β1–42 in PC12 cells [22]. Moreover, through 
activating PP2A and PI3K/AKT induced-inhibition of 
GSK-3β, resveratrol can inhibit Tau phosphorylation 
in the rat brain [23]. Thus, resveratrol may be consid-
ered as an anti-Alzheimer’s disease substance. Table  2 
describes the impact of resveratrol on the expression of 
genes in the context of CNS disorders.

A clinical trial in patients with Alzheimer’s disease 
has shown measurable levels of resveratrol and its 
major metabolites in plasma and cerebrospinal fluid of 
patients following treatment with this substance. How-
ever, brain volume loss has been promoted by treat-
ment with resveratrol [33].

Diabetic complications
The beneficial effects of resveratrol on cardiac function 
have been assessed in an animal model of diabetic car-
diomyopathy. Resveratrol has suppressed high glucose-
associated apoptosis of ventricular myocytes in neonatal 
rats. Moreover, resveratrol has reversed the effects of 
high glucose in reduction of cell viability, inhibition of 
AKT and FoxO3a phosphorylation, and suppression of 
cytoplasmic transfer of FoxO3a. The protective effects of 
resveratrol have been abolished by a PI3K inhibitor, indi-
cating that the therapeutic effect of this agent is medi-
ated through inhibition of apoptosis via the PI3K/AKT/
FoxO3a cascade [36]. Another study has shown that res-
veratrol through up-regulating mmu-miR-363-3p via the 
PI3K/AKT pathway can reverse high-fat diet-induced 
insulin resistance [37]. Resveratrol has also shown pro-
tective effects against high glucose-associated apoptosis 
and senescence of nucleus pulposus cells. Functionally, 
resveratrol inhibits the production of reactive oxygen 
species (ROS) and activates PI3K/AKT pathway under 
the high glucose condition [38]. The protective effects 
of resveratrol against diabetic nephropathy are exerted 
through modulation of PI3K/AKT/FoxO3a pathway, 

Fig. 2 Resveratrol could activate the PI3K/AKT pathway [25]. On 
the other hand, this mentioned pathway could increase the Nrf2 
translocation, finally induce transcription of anti‑oxidative enzymes 
involved in inhibiting apoptosis. Moreover, GSK‑3β could inhibit the 
Nrf2‑ARE, then the transcription of antioxidant enzymes is induced. 
Interestingly, resveratrol by inactivating JAK‑STAT or the NF‑kB 
pathways could decrease ROS production and cell death [34, 35]
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attenuation of the high glucose-induced oxidative stress, 
and reduction of apoptosis [39]. Resveratrol-induced 
suppression of PKC expression has also been shown to 
counteract NOX-associated endothelial to mesenchymal 
transition in endothelial cells of retina following exposure 
to high glucose [40]. Table 3 describes the impact of res-
veratrol on the expression of genes in the context of dia-
betic complications.

Gastrointestinal disorders
Resveratrol has been shown to exert protective effects 
against radiation-induced intestinal damage. This agent 
has amended the intestinal oxidative stress markers, 

malondialdehyde and glutathione levels, and enzy-
matic activity of catalase. Additionally, resveratrol has 
decreased the production of proinflammatory mol-
ecules TNF-α, NF-κB, and IL-1β in the intestine. These 
effects have been accompanied by down-regulation of 
PI3K, AKT, and mTOR in the intestinal tissue of irradi-
ated animals. Therefore, resveratrol can be used as a 
potential adjuvant in radiotherapeutic regimens [43]. 
Moreover, resveratrol via the PI3K/AKT-mediated Nrf2 
pathway could protect intestinal cells against oxidative 
stress [44]. The protective effects of resveratrol against 
liver fibrosis have been verified in different studies. Res-
veratrol can regulate the activity of hepatic stellate cells 

Table 3 Impact of resveratrol on the expression of genes in the context of diabetic complications

Type of disease Dose range Cell line Target Pathway Function Refs.

In vivo studies

Diabetic cardiomyopa‑
thy (DCM)

5–50 mg/kg, 10 μM Ventricular myocytes Bax, Bcl‑2, Histone H3 PI3K/AKT/FoxO3a RVT via the PI3K/AKT/
FoxO3a pathway by 
inhibiting apoptosis 
could ameliorate 
cardiac dysfunction in 
DCM

[36]

Type 1 diabetes (T1D) 40 mg/kg – GSK‑3β, PTEN, Nrf2, 
NQO‑1, HO‑1, p62, Cas‑
pase‑3, LC3II, Keap1

AKT RVT by AKT‑mediated 
Nrf2 activation via 
p62‑dependent Keap1 
degradation could 
reduce testicular apop‑
tosis in T1D mice

[41]

Type 2 diabetes 100 mg/kg, 0–100 μM HepG2 miR‑363‑3p, FOXO1, 
G6PC

PI3K/AKT RVT by upregulating 
mmu‑miR‑363‑3p via 
the PI3K/AKT pathway 
could reverse high‑fat 
diet (HFD)‑induced 
insulin resistance

[37]

Neuropathic pain 40 mg/mL – SIRT1/PGC1α PI3K/AKT RVT via PI3K/AKT and 
SIRT1/PGC1α pathways 
could inhibit paclitaxel‑
induced neuropathic 
pain

[42]

Diabetic nephropathy 
(DN)

10 mg/kg, 25 μM Rat Mesangial Cell 
(RMC)

PAI‑1 AKT/NF‑κB p65 RVT via inhibiting AKT/
NF‑κB pathway could 
prevent mesangial 
cell proliferation and 
diabetes‑induced renal 
inflammation

[35]

In vitro studies

DN 10 μM PC12 Bim, FoxO3a PI3K/AKT RVT via the PI3K/
AKT/FoxO3a pathway 
could attenuate the 
HG‑induced oxidative 
stress and apoptosis in 
PC12 cells

[39]

Diabetes mellitus 100 μM NP Caspase‑3, Bcl‑2, Bax, 
p53

PI3K/AKT RVT via activating 
PI3K/AKT pathway 
could attenuate high 
glucose‑induced NP 
cell senescence and 
apoptosis

[38]
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via modulating NF-κB and PI3K/AKT pathways [45]. 
Moreover, resveratrol via the miR-20a-mediated activa-
tion of the PTEN/PI3K/AKT pathway can inhibit LF [46]. 
Table 4 describes the impact of resveratrol on the expres-
sion of genes in the context of gastrointestinal disorders.

Other disorders
Resveratrol has also been shown to inhibit ox-LDL-
stimulated expression of TLR4 in activated platelets. 
This effect has been similarly seen in LPS-activated and 
puromycin-pretreated platelets. Mechanistically, res-
veratrol attenuates ox-LDL-stimulated phosphorylation 
of NF-κB and STAT3. Moreover, the suppressive impact 
of resveratrol on TLR4 expression has been correlated 
with the inhibition of phosphorylation of AKT. Com-
bined administration of resveratrol and a PI3K inhibi-
tor synergistically inhibits AKT phosphorylation and 
TLR4 expression. Besides, resveratrol has increased the 
expression of sirtuin 1 and phosphorylation of AMPK, 
which was decreased by ox-LDL. Besides, resveratrol 
has been shown to reduce platelet aggregation and adhe-
sion and CD40L expression in ox-LDL-exposed platelets. 
Therefore, resveratrol can inhibit the TLR4-associated 
inflammatory responses in ox-LDL-induced platelets and 
might be used as an option for the treatment of throm-
bosis and atherosclerotic conditions [48]. In addition, a 
certain formulation of resveratrol-loaded nanoparticles 
has been shown to inhibit LPS-induced accumulation 
of leukocytes in the bronchoalveolar fluid. This effect 
has been accompanied by improvement of respiratory 

function, prevention of accumulation of leukocytes and 
neutrophils, and reduction of IL-6, KC, MIP-1α, MIP-2, 
MCP-1, and RANTES levels in lung tissues. Addition-
ally, the mentioned formulation could inhibit MDA 
levels and SOD activity and block ERK and PI3K/AKT 
pathways after LPS stimulation [49]. In addition, res-
veratrol through suppression of PI3K/Nrf2/HO-1 path-
way could inhibit oxidative stress, inflammation, and cell 
apoptosis and alleviate acute lung injury in septic rats 
[50]. The protective effect of resveratrol against sepsis-
induced changes in the myocardium has been shown to 
be exerted through suppression of NF-kB and induction 
of the PI3K/AKT/mTOR pathway [51]. Table 5 describes 
the impact of resveratrol on the expression of genes in 
the context of other disorders.

Effects of resveratrol on gene expression 
in neoplastic conditions
Hematological malignancies
Resveratrol can combat multidrug resistance (MDR) in 
leukemia. This substance has been shown to enhance the 
anti-proliferative effect of bestatin in the K562/ADR leu-
kemia cell line. Concurrent treatment of leukemic cells 
with bestatin and resveratrol has decreased IC50 values 
of bestatin and increased activity of caspase-3 and cas-
pase-8, indicating the potential effect of resveratrol in the 
enhancement of bestatin-induced apoptosis. Resveratrol 
has enhanced intracellular levels of bestatin via suppress-
ing P-gp function and decreasing the expression level of 
P-gp, therefore increasing the anti-proliferative effect of 

Table 4 Impact of resveratrol on the expression of genes in the context of gastrointestinal disorders

Type of disease Dose range Cell line Target Pathway Function Refs.

In vivo studies

Intestinal Injury 20 mg/kg – TNF‑α, NF‑κB, IL‑1β PI3K/AKT/mTOR RVT via modulating PI3K/
AKT/mTOR pathway could 
reduce intestinal inflamma‑
tion in irradiated rats

[43]

Liver Fibrosis (LF) 40–200 mg/kg, 10–50 mg/
mL

HSC‑T6 miR‑20a, α‑SMA, TIMP‑1, 
TGF‑β1, LC3‑II, LC3‑I, Beclin1, 
Atg7

PTEN/PI3K/AKT RVT via the miR‑20a‑medi‑
ated activation of the PTEN/
PI3K/AKT pathway can 
inhibit LF

[46]

LF 20–50 mg/kg, 0–125 μg/mL LX‑2 α‑SMA, Collagen‑I, IκB‑α, P65 AKT, NF‑κB RVT via the AKT/NF‑κB 
pathways could attenuate 
the progression of LF

[47]

In vitro studies

Intestinal Damage 0–50 μM IPEC‑J2, 293 T Claudin‑1, Occludin, ZO‑1, 
Keap1, NFE2L2, SOD‑1, HO‑1, 
CAT, GSX‑1, Nrf2

PI3K/AKT RVT via the PI3K/AKT‑medi‑
ated Nrf2 pathway could 
protect IPEC‑J2 cells against 
oxidative stress

[44]

Hepatic Fibrosis 3.125, 6.25, 12.5 μM T‑HSC/Cl‑6 Collagen‑I, α‑SMA, TLR4, M8, 
LXR‑α, LXR‑β

PI3K/AKT, NF‑κB RVT via modulating NF‑κB 
and the PI3K/AKT pathway 
could regulate activated 
hepatic stellate cells (HSCs)

[45]
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bestatin in K562/ADR cells. Mechanistically, resveratrol 
has been shown to decrease AKT and mTOR phospho-
rylation without affecting the phosphorylation of JNK or 
ERK1/2 [59]. Moreover, resveratrol can regulate apop-
tosis and proliferation of leukemia cells through modu-
lation of PTEN/PI3K/AKT [60]. Table  6 describes the 
impact of resveratrol on the expression of genes in the 
context of hematological malignancies.

Gastrointestinal cancers
Resveratrol has protective effects against bile acid-
induced gastric intestinal metaplasia. Resveratrol has 
been shown to decrease the expression of CDX2 and 
enhance the activity of FoxO4 in gastric cell lines. Based 
on the bioinformatics and chromatin-immunoprecip-
itation analyses, FoxO4 has been shown to bind with 
the promoter region of CDX2. These effects are medi-
ated through the enhancement of nuclear transloca-
tion phospho-FoxO4. In addition, resveratrol enhances 
FoxO4 phosphorylation via modulation of the PI3K/AKT 
pathway. Taken together, resveratrol can decrease bile 
acid-induced gastric intestinal metaplasia via the PI3K/
AKT/p-FoxO4 cascade. Thus, it has a protective effect 
against bile acid-induced gastric intestinal metaplasia 
particularly those associated with bile acid reflux [63]. In 
addition, through regulating the PTEN/ PI3K/AKT path-
way, resveratrol could induce cell cycle arrest in human 
gastric cancer cells [64]. Besides, via MARCH-1-induced 
regulation of the PTEN/AKT pathway, resveratrol can 
inhibit the malignant progression of hepatocellular car-
cinoma [65]. Resveratrol can also up-regulate connexin43 
and inhibit the AKT pathway, therefore sensitizing colo-
rectal cancer cells to cetuximab [66]. Table  7 describes 
the impact of resveratrol on the expression of genes in 
the context of gastrointestinal cancers.

Reproductive system cancers
Resveratrol has been shown to decrease expression lev-
els of MTA1, a constituent of the nucleosome remodeling 
and deacetylating (NuRD) complex which is up-regu-
lated in numerous malignancies [75]. Moreover, resver-
atrol can enhance acetylation and reactivation of PTEN 
through suppression of the MTA1/HDAC complex, lead-
ing to blockage of the AKT pathway. Further experiments 
in the orthotopic model of prostate cancer have verified 
the effects of resveratrol in the enhancement of PTEN 
expression, reduction of p-AKT levels, in suppression 
of proliferation. Therefore, resveratrol can decrease the 
activity of survival pathways of prostate cancer via mod-
ulating the MTA1/HDAC axis [76]. In ovarian cancer 
cells, resveratrol can induce apoptosis and impair glucose 
uptake via AKT/GLUT1 axis [77]. Moreover, resveratrol 
has been shown to induce cell death via ROS-dependent 
inactivation of Notch1/PTEN/AKT cascade [78]. Table 8 
describes the impact of resveratrol on the expression of 
genes in the context of reproductive system cancers.

A phase I clinical study in the prostate cancer patho-
genesis has demonstrated potential use of resveratrol 
could for delaying cancer recurrence. Pulverized musca-
dine grape skin which comprises resveratrol could delay 
recurrence of prostate cancer through increasing the PSA 
doubling time. Yet, the obtained results have not been 
statistically significant [81]..

Lung cancer
Resveratrol has been shown to inhibit the expres-
sion of XRCC1 and increase the etoposide-associated 
apoptosis in non-small cell lung cancer (NSCLC) cells. 
Thus, the inhibitory role of resveratrol on the expres-
sion of XRCC1 improves the sensitivity of these cells 

Table 6 Impact of resveratrol on the expression of genes in the context of hematological malignancies

Type of cancer Samples Dose range Cell line Target Pathway Function Refs.

Leukemia In vitro 10 mM K562/ADR, K562 P‑gp, Cas‑
pase‑3/8, 
ERK1/2, JNK

PI3K/AKT/mTOR RVT via suppressing the PI3K/
AKT/mTOR pathway could 
increase the anti‑proliferative 
activity of bestatin

[59]

Leukemia In vitro 0–20 μM PBMCs, HL‑60, NB‑4 – PTEN/PI3K/AKT RVT via regulating the PTEN/
PI3K/AKT pathway could 
affect apoptosis and prolifera‑
tion of leukemia cells

[60]

Acute Myeloid Leukemia 
(AML)

In vitro 25–200 lmol/L HL‑60, HL‑60/ADR MRP1 PI3K/AKT/Nrf2 RVT via the PI3K/AKT/Nrf2 
Pathway could reverse the 
drug resistance of AML HL‑60/
ADR cells

[61]

Chronic Myeloid Leukemia 
(CML)

In vitro 60 μM K562 p70S6K, 
4EBP1, 
Cyclin‑D1, 
Caspase‑3,

PI3K/AKT/mTOR RVT via downregulating the 
PI3K/AKT/mTOR pathway 
could play a role in the apop‑
tosis of K562 cells

[62]
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to etoposide [82]. Moreover, through suppressing the 
PI3K/AKT-HK2 pathway, resveratrol can play a role in 
the clinical prevention and treatment of NSCLC [47]. 
Resveratrol also activates SIRT1 and stimulates protec-
tive autophagy in NSCLC cells through suppression of 
AKT/mTOR and induction of p38-MAPK [83]. Finally, 
resveratrol can sensitize lung cancer cells to TRAIL 
via suppressing the AKT/NF-κB pathway [84]. Table  9 
describes the impact of resveratrol on the expression of 
genes in the context of lung cancer.

Other cancers
Resveratrol has been shown to suppress the prolif-
eration of both parental and vemurafenib-resistant 
melanoma cell lines. Moreover, it can reduce AKT 
phosphorylation in these cells. Therefore, it can reverse 
vemurafenib resistance in patients receiving BRAF 
inhibitors [86]. Moreover, by inhibiting the PI3K/AKT/
mTOR pathway, it could promote autophagy and sup-
press the growth of melanoma cells [87]. Resveratrol 
has also been shown to sensitize breast cancer cells 
to docetaxel-induced cytotoxicity via inhibiting doc-
etaxel-mediated activation of the HER-2/AKT axis 
[88]. In addition, resveratrol can promote the anti-
tumor effects of rapamycin in papillary thyroid cancer 

via modulation of the PI3K/AKT/mTOR pathway [89]. 
Table  10 describes the impact of resveratrol on the 
expression of genes in the context of cancers (Fig. 3).

A clinical study in women with high risk of breast 
cancer development has shown that serum levels of 
total trans-resveratrol and glucuronide metabolite are 
enhanced following consumption of both 5 and 50 mg 
trans-resveratrol twice daily for 12  weeks. Moreover, 
this treatment has led to reduction of RASSF-1α meth-
ylation parallel with increasing concentrations of serum 
trans-resveratrol [99].

Discussion
Several clinical trials have assessed the efficacy, safety, 
and pharmacokinetics of resveratrol [101]. It has poten-
tial beneficial effects in diverse pathological conditions 
such as diabetes mellitus, obesity, hypertension, neoplas-
tic conditions, Alzheimer’s disease, and cardiovascular 
disorders [101]. However, the therapeutic efficacy of res-
veratrol seems to be dependent on several factors [102]. 
For instance, the efficacy of resveratrol has been higher in 
certain types of cancer compared with others. Moreover, 
additional clinical trials should be conducted to assess 
the effects of resveratrol in the treatment of Alzheimer’s 
disease and stroke. Studies in the context of cardiovascu-
lar disorders have shown beneficial effects of resveratrol. 

Table 8 Impact of resveratrol on the expression of genes in the context of cancers of the reproductive system

Type of cancer Dose range Cell line Target Pathway Function Refs.

In vivo studies

Prostate Cancer (PCa) 50 mg/kg 5–100 μM, DU145, PC3M, 293 T MTA1, HDAC, ERK1/2, 
HDAC1, HDAC2, Lamin‑
A, myc, Flag

PTEN, AKT RVT by regulating the 
PTEN/AKT pathway via 
inhibiting the MTA1/
HDA unit could affect 
the progression and 
survival pathways of 
prostate cancer

[76]

In vitro studies

PCa 25–200 μM LNCaP, RWPE‑1, LNCaP‑B ARV7, Bax, Bcl‑2, AR PI3K/AKT RVT via PI3K/AKT path‑
way and ARV7 could 
promote apoptosis in 
LNCaP prostate cancer 
cells

[79]

PCa 0–50 μM PC‑3 E‑cadherin, Vimentin, 
Bax, Bcl‑2, Caspase‑3/9

PI3K/AKT RVT via downregulating 
the PI3K/AKT pathway 
could suppress the EMT 
in PC‑3 cells

[80]

Ovarian Cancer 50 mM PA‑1, OVCAR3, 
MDAH2774, SKOV3, 
PBMC, RBC, OSE1, OSE2

P70s6K, mTOR, 4EBP1, 
GLUT2, GLUT3, GLUT4, 
GLUT1

AKT RVT via AKT/GLUT1 axis 
could induce apoptosis 
in ovarian cancer cells 
by impairing glucose 
uptake

[77]

Ovarian Cancer 0‑200 μM A2780, SKOV3 Caspase‑3 Notch1/PTEN/AKT RVT via notch1/PTEN/
AKT signaling could 
induce cell death in 
ovarian cancer cells

[78]
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However, these effects depend on demographics features, 
since it has not been effective in extremely overweight 
persons, even has been harmful in schizophrenic patients 
[103].

Another important note is that the optimal dosage of 
resveratrol which can induce the maximum beneficial 
effects without raising toxic effects remains to be identi-
fied. A number of studies have reported toxic and adverse 
effects after consumption of resveratrol [104]. Thus, 
widespread investigations on the long-term effects of 
resveratrol in human subjects are needed. Moreover, the 
interactions between resveratrol and other therapeutic 
agents should be assessed [104]. A possible adverse effect 
of resveratrol might be mediated by down-regulation of 
Akt which induces ROS generation and endothelial cell 
injury in a dose-dependent manner [105]. Moreover, res-
veratrol has been shown to alter redox state of human 
endothelial cells and cause cellular death through a mito-
chondrial-dependent route [106].

Notably, resveratrol has been found to affect the 
expression of several genes including cytokine coding 
genes, caspases, matrix metalloproteinases, adhesion 
molecules, and growth factors [101]. In addition to the 
mentioned protein coding genes, evidence from in vitro 

and in  vivo assays has shown the direct effects of res-
veratrol on several non-coding genes and possible impli-
cation of these transcripts in the therapeutic effects of 
resveratrol [107]. Moreover, it can modulate the activity 
of several signaling pathways such as PI3K/AKT, Wnt, 
NF-κB, and Notch pathways [101]. Among the men-
tioned pathways, the regulatory effects of resveratrol on 
the activity of the PI3K/AKT pathway have been better 
appraised in different contexts. In the context of neoplas-
tic conditions, resveratrol not only inhibits malignant 
behavior of cells and epithelial-mesenchymal transition 
but also sensitizes neoplastic cells to anti-cancer drugs 
such as rapamycin [89], doxorubicin [67], vemurafenib 
[86], cetuximab [66], etoposide [82] and docetaxel [88]. 
Therefore, it can be used as an adjuvant to enhance the 
efficacy of several types of anti-cancer modalities ranging 
from conventional chemotherapeutic agents to targeted 
therapies. The effects of resveratrol in the suppression 
of growth of cancer stem cells have been validated in 
some types of cancers particularly glioblastoma [91]. This 
property of resveratrol should be appraised in other can-
cers to find whether it can be used as a drug to combat 
tumor metastasis and recurrence.

Table 9 Impact of resveratrol on the expression of genes in the context of lung cancer

Type of cancer Dose range Cell line Target Pathway Function Refs.

In vivo studies

Non‑Small Cell Lung 
Cancer (NSCLC)

30 mg/kg 0–100 μM H460, H1650, HCC827 HK2, Caspase‑3, PARP, AKT, ERK1/2, EGFR RVT via suppressing 
the PI3K/AKT‑HK2 
pathway could play a 
role in the clinical pre‑
vention and treatment 
of NSCLC

[47]

In vitro studies

NSCLC 25–200 μM H1703, H1975 XRCC1 AKT, ERK1/2 RVT via downregu‑
lating ERK1/2 and 
AKT‑mediated XRCC1 
could enhance the 
chemosensitivity to 
etoposide in NSCLC 
cells

[82]

NSCLC 200 μM A549, H1299 Beclin‑1, LC3 II/I, SIRT1, 
P62, p70S6K

AKT/mTOR, p38‑MAPK RVT by activating 
p38‑MAPK and inhibit‑
ing the AKT/mTOR 
pathway could induce 
protective autophagy 
in NSCLC

[83]

NSCLC 0–50 μM A549, HCC‑15 LC3‑II, P62, p53, 
Bax, Bcl‑2, Bcl‑xl, 
Caspase‑3/8, PUMA, 
Cytochrome‑c

AKT, NF‑κB RVT via suppressing 
the AKT/NF‑κB path‑
way could sensitize 
lung cancer cells to 
TRAIL

[84]

Small Cell Lung Cancer 
(SCLC)

40 μg/mL H446 c‑Myc, AIF, Bcl‑2, Bax, 
Bcl‑xL, Cytochrome‑c

PI3K/AKT RVT via the PI3K/AKT/
c‑Myc pathway could 
inhibit viability in SCLC 
H446 cells

[85]
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An important issue in the clinical application of res-
veratrol is the identification of the best route and for-
mulations of this agent. A certain nanoformulation of 
resveratrol has been proved to be an effective approach 
for improving the protective effects of resveratrol against 
lung injury, proposing that the modified-release prepa-
ration of this substance can be effective in this situation 
[49]. Further studies are needed to appraise the efficacy 
of this formulation in other conditions.

Conclusion
Taken together, resveratrol has several therapeutic effects 
including modulation of immune responses and ROS 
formation, suppression of malignant behavior of cancer 
cells, and sensitization of these cells to anti-cancer drugs. 
Increasing the bioavailability of this agent and identi-
fication of the most appropriate route of administra-
tion of this agent are important changes that should be 
addressed before the extensive application of resveratrol 
in clinical settings.
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