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Abstract 

Background: The functional alterations of eRNAs have been reported to be correlated with tumorigenesis. However, 
the roles of eRNAs in thyroid cancer (THCA) remain still unclear. This study aimed to construct an immune-related 
eRNA prognostic signature that could effectively predict the survival and prognosis for THCA.

Methods: The Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify THCA-specific 
immune-related hub genes and immune-related eRNAs were obtained using Pearson correlation analysis. Univari-
ate and least absolute shrinkage and selection operator (LASSO) Cox regression were conducted to construct an 
immune-related eRNA prognostic signature in training cohort, and the predictive capability was verified in test cohort 
and entire cohort. Kaplan–Meier analysis, principal component analysis (PCA), receiver operating characteristic (ROC) 
curves, and nomogram were used to validate the risk signature. Furthermore, CIBERSORT, ESTIMATE and ssGSEA were 
analyzed to explore the tumor immune microenvironment (TIME) of the risk signature, and the response of potential 
immunotherapeutic were also discussed.

Results: A total of 125 immune-related eRNAs were obtained and 16 immune-related eRNAs were significantly cor-
related with overall survival (OS). A 9-immune-related eRNA prognostic signature was constructed, and the risk score 
was identified as an independent predictor. High-risk groups were associated with a poorer OS. Immune microenvi-
ronment analysis indicated that low risk score was correlated with higher immuneScore, high immune cell infiltration, 
and the better response of immunotherapy. Additionally, we also detected 9 immune-related eRNA expression levels 
in sixty-two matched tumorous and non-tumorous tissues using qRT-PCR analysis.

Conclusion: Our immune-related eRNA risk signature that was an independent prognostic factor was strongly corre-
lated with the immune microenvironment and may be promising for the clinical prediction of prognosis and immu-
notherapeutic responses in THCA patients.
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Introduction
The incidence of thyroid cancer (THCA) is increasing 
steadily in the past few decades [1]. THCA is the most 
common malignancy of the endocrine system, it can be 

classified into four main histological types: well-differen-
tiated papillary thyroid carcinoma (PTC), follicular thy-
roid cancer (FTC), medullary thyroid cancer (MTC) and 
undifferentiated or anaplastic thyroid cancer (ATC) [2]. 
PTC is the most predominant subtype and accounts for 
more than 85% among all the THCA cases. Although the 
majority of PTC patients usually have an excellent over-
all prognosis after surgery and radioactive iodine therapy, 
regional neck lymph node metastasis (LNM) in advanced 
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PTC is associated with local recurrence and distant 
metastasis, and this has been reported as an independent 
factor of a poor prognosis [3, 4]. Therefore, it is urgent to 
explore and identify sensitive prognostic biomarkers for 
THCA to facilitate rational individualized treatment.

The tumor microenvironment (TME) consists of the 
stromal and immune cells. The constant interactions 
between tumor cells and the TME play crucial roles 
in tumor initiation, progression, metastasis, as well as 
response to therapies [5]. The TME has attracted con-
siderable attention and interest for their potential to 
consider to be a therapeutic target in various cancers for 
anti-tumorigenesis treatment [6]. The immune system 
plays critical roles in tumor formation and progression. 
A growing body of evidence has indicated that immune-
related genes (IRGs) have increasingly been recognized as 
biomarkers to predict cancer patient prognosis [7]. Pres-
ently, some IRG signatures had been constructed to serve 
as efficiently predictive and prognostic models among 
hepatocellular carcinoma (HCC) [8, 9], cervical cancer 
[10], head and neck squamous cell carcinoma (HNSCC) 
[11, 12], gastric cancer (GC) [13], neuroblastoma (NBL) 
[14], prostatic adenocarcinoma (PRAD) patients [15].

Long non-coding RNAs (lncRNAs) have gained sub-
stantial attention due to their multi-faceted ability to 
regulate gene expression [16]. Recent studies showed 
that enhancers were found to be transcriptionally active 
and generate and transcribe noncoding RNAs, which 
were known as enhancer RNAs (eRNAs). eRNAs played 
a fundamental role in tumor initiation, development, and 
treatment. eRNAs involved in various cancer signaling 
pathways through regulating their target genes. Onco-
gene-induce eRNAs can directly contribute to tumo-
rigenesis. In contrast, tumor suppressors can also induce 
eRNAs to suppress tumors. eRNAs have emerged as 
important regulators of the immune response, and played 
a central role in controlling immune-related functions 
[17]. Furthermore, eRNAs could also regulate clinically 
actionable genes and immune checkpoints, which indi-
cated the potentially clinical utility of eRNAs in cancer 
therapy. Unfortunately, there are limited studies focusing 
on immune-related eRNAs and the potential prognos-
tic value of immune-related eRNAs in THCA remains 
unclear; therefore, effective prognostic biomarkers for 
THCA are urgently needed.

In this study, we aimed to identify immune-related 
eRNAs using Pearson correlation analysis and construct 
immune-related eRNAs prognostic signature to system-
atically explore the prognostic value of the risk signature 
in TCGA patients from TCGA database. We then further 
investigated the associations between prognostic sig-
nature and clinicopathological factors, tumor immune 
microenvironment (TIME), immunotherapy responses. 

Furthermore, a nomogram was established to predict 
the OS of THCA patients. Our study may provide a new 
insight to predict the potential response for immunother-
apy for THCA patients.

Materials and methods
Data extraction
The RNA sequencing transcriptome data (58 normal 
samples and 510 THCA samples) and related clini-
cal information of THCA were downloaded from The 
Cancer Genome Atlas (TCGA) database and Genotype-
Tissue Expression Project (GTEx) database. The clini-
cal characteristics of all THCA patients were listed in 
Table  1. The immune-related genes (IRGs) were down-
loaded from the Immunology Database and Analysis Por-
tal (ImmPort, https:// www. immpo rt. org/) and InnateDB 
(https:// www. innat edb. com/) databases.

Differentially expressed immune‑related genes (DE‑IRGs)
The differentially expressed genes (DEGs) were identified 
using “limma” package in the R software (version 4.0.4) 
between tumor samples and normal specimens and visu-
alized by the heatmap and volcano plot according to the 
screening criterion of |log2 fold change (FC)| > 1.0 and 

Table 1 Patients’ clinical characteristics of training, test and 
entire cohorts

Variables Total cohort 
%

Training 
cohort %

Test cohort 
%

p‑value

Age

  <  = 60 389 (77.49) 190 (75.7) 199 (79.28) 0.3926

  > 60 113 (22.51) 61 (24.3) 52 (20.72)

Gender

 Female 367 (73.11) 188 (74.9) 179 (71.31) 0.4207

 Male 135 (26.89) 63 (25.1) 72 (28.69)

Stage

 Stage I–II 333 (66.33) 158 (62.95) 175 (69.72) 0.1003

 Stage III–IV 167 (33.27) 93 (37.05) 74 (29.48)

 Unknow 2 (0.4) 0 (0) 2 (0.8)

T stage

 T1-2 307 (61.16) 154 (61.35) 153 (60.96) 1

 T3-4 193 (38.45) 96 (38.25) 97 (38.65)

 Unknow 2 (0.4) 1 (0.4) 1 (0.4)

M stage

 M0 282 (56.18) 139 (55.38) 143 (56.97) 1

 M1 9 (1.79) 4 (1.59) 5 (1.99)

 Unknow 211 (42.03) 108 (43.03) 103 (41.04)

N stage

 N0 229 (45.62) 111 (44.22) 118 (47.01) 0.7806

 N1 223 (44.42) 112 (44.62) 111 (44.22)

 Unknow 50 (9.96) 28 (11.16) 22 (8.76)

https://www.immport.org/
https://www.innatedb.com/
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false discovery rate (FDR) value < 0.05 in the TCGA data-
set18. Differentially expressed immune-related genes 
(DE-IRGs) were extracted from DEGs. The visual Venn 
diagram was constructed by the online tool to show the 
intersection of the DEGs and IRGs.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA was performed to identify THCA-specific 
immune genes related to the co-expression modules 
using “WGCNA” R package based on the DE-IRGs [19]. 
The Aij = |Sij|β (Aij: adjacency matrix between gene i and 
gene j, Sij: similarity matrix made by Pearson’s correla-
tion coefficient of all pairs of genes, and β: soft thresh-
olding value) was used to show the weighted adjacency 
matrix with a scale-free co-expression network and then 
transformed into a topological overlap matrix (TOM), 
and gene modules were identified [20]. We calculated 
the module eigengene (ME) of each module to identify 
the most significant module. Finally, the module that was 
highly correlated with THCA was selected for subse-
quently analysis.

Identification of immune‑related eRNAs in THCA
The eRNAs were predicted according to the PreSTIGE 
algorithm as previously descirbed [21, 22]. The expres-
sion of 1565 eRNAs among 1584 eRNAs were retrieved 
from the TCGA-THCA samples. The relationship 
between the eRNAs and IRGs was explored to identify 
immune-related eRNAs using correlation analysis (|R| > 
0.4, P < 0.001).

Construction and validation of the immune‑related eRNAs 
prognostic signature
All patients were randomly divided into a training 
cohort (n=251) and a validation cohort (n=251) at 1:1 
ratio. The training cohort was used for constructing the 
immune-related eRNAs prognostic signature, and the 
predictive performance was verified in the test cohort 
and total cohort. The Univariate Cox proportional haz-
ard regression analysis was conducted to identify the 
immune-related eRNAs with prognostic value in the 
training cohort, and the filter p-value was set at 0.05. The 
prognostic model was subsequently established using 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) penalized Cox proportional hazards regression 
with “glmnet” R package [23]. The model was determined 
by penalty parameter (λ) with ten-fold cross-validation 
following the minimum criteria. The risk score of each 
THCA patient was calculated by the following for-
mula: Risk score = βA* Expression level of Gene A + 
βB* Expression level of Gene B + … + βN* Expression 
level of Gene N, (β: regression coefficient) [24]. Patients 
were separated into high and low-risk group based on 

the median risk score. The principal component analysis 
(PCA) was performed for two risk groups using “scat-
terplot3d” R package [25]. Kaplan–Meier survival curves 
were constructed between two risk groups using “sur-
vival” R package and the time-dependent receiver opera-
tional feature curves (ROC) were carried out with the 
“survival ROC” R package to verify the sensitivity and 
specificity of the signature in all cohorts [26]. Univari-
ate and multivariate cox regression analyses were used to 
determine the independent prognostic factor for OS in 
all cohorts.

Development of prognostic nomogram
The nomogram was constructed based on the risk score 
and clinical features (age, gender, and pathological stage) 
to predict the survival risk of THCA patients using “rms” 
R package. The calibration curves were used for compar-
ing the consistency between the predicted and actual 
survival to evaluate the predictive probability of the 
nomogram.

Functional enrichment analysis
The DEGs between the high- and low-risk groups were 
identified according to the filtering criteria (|log2FC| ≥ 
1 and FDR < 0.05). The Gene Ontology (GO) analysis 
was conducted to explore the potential biological pro-
cesses based on these DEGs using the “clusterProfifiler” R 
package. Gene Set Enrichment Analysis (GSEA) was per-
formed to analyze the difference of the immune response 
between different risk groups using GSEA 4.1.0. A NOM 
p-value < 0.05 was defined as statistically significant.

Assessment of immune cell infiltration in THCA
The infiltration levels of immune cells in THCA were 
estimated based on the gene expression profiles using 
CIBERSORT algorithm [27]. The differential infiltrat-
ing levels of immune cells in high- and low-risk groups 
were evaluated by the Wilcoxon rank-sum test. Further-
more, the tumor microenvironment score (tumor purity, 
immune score, stromal score and estimate score) was cal-
culated using the “ESTIMATE” R package [28].

To determine the association between the risk score 
and immune status, single-sample gene set enrichment 
analysis (ssGSEA) was performed to calculate the infil-
tration abundance of 16 immune cells and the activity of 
13 immune-related pathways by utilizing the “GSVA” R 
package [29].

Immunophenoscore analysis
Immunophenoscore (IPS) was estimated based on the 
expression of the four determining components of 
immunogenicity, including effector cells, immunosup-
pressive cells, major histocompatibility complex (MHC) 
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molecules, and immunomodulators, which can well 
predict the response to immune checkpoint inhibitors 
(ICIs). IPS was calculated with a scale ranging from 0 to 
10 according to representative cell-type gene expression 
Z-scores. The IPS of THCA patients were downloaded 
from The Cancer Immunome Atlas (TCIA) (https:// tcia. 
at/ home) [30].

Quantitative real‑time PCR
Sixty-two pairs of PTC tumorous and adjacent normal 
tissue specimens were collected from the First Affili-
ated Hospital of China Medical University. The clinico-
pathological characteristics of 62 THCA patients from 
our hospital were displayed in Table  2. Total RNA was 
extracted from tissue samples using RNAiso (Takara, 
Dalian, China), then RNA was reverse transcribed into 
cDNA with the QuantiTect Reverse Transcription Kit 
(Takara, Shiga, Japan). Quantitative Real-Time PCR 
(qRT-PCR) analyses were performed with SYBR-Green 
(Takara, Shiga, Japan) to validate mRNA expression level, 
and the level of GAPDH served as an internal control. 
The relative expression level was calculated based on the 
comparative Ct  (2−ΔΔCt) method. The primers’ sequences 
are listed in Additional file 3: Table S1.

Results
Screening of THCA‑specific DE‑IRGs between normal 
and tumor tissues
The framework of the analytical process in our study 
was shown in Fig 1. A total of 3451 DEGs were identified 
based on the screening criteria of |log2(Fold Change) | > 
1 and FDR < 0.05, including of 1699 downregulated genes 
and 1752 upregulated genes (Fig.  2A, C). Additionally, 
362 DE-IRGs were extracted from these DEGs (Fig. 2D). 
Among them, 172 DE-IRGs were downregulated while 
190 genes were upregulated in THCA samples (Fig.  2B, 
E). Subsequently, WGCNA was performed to construct 
a weighted co-expression network based on the DE-IRGs 
expression matrix. We used the soft-thresholding power 
of β = 11 to achieve a scale-free network in the present 
study. Two gene modules (turquoise and grey modules) 
were identified. Among two modules, grey module (r = 
0.62, p = 1e−62) showed the strongest correlation with 
THCA tissues (Fig. 3A). Therefore, we regarded the grey 
module as THCA-specific module and 271 DE-IRGs 
were identified for subsequent analysis.

Construction of immune‑related eRNAs risk signature
The expression matrixes of 1565 eRNAs among 1584 
eRNAs and 271 DE-IRGs in grey module were extracted 
from the TCGA-THCA samples. A total of 125 immune-
related eRNAs were obtained between 1565 eRNAs and 
271 DE-IRGs using Pearson correlation analysis with |R| 
> 0.4, p < 0.001. The Univariate Cox regression analy-
sis was conducted in the training cohort to explore the 
prognostic value of 125 immune-related eRNAs. Six-
teen eRNAs were significantly correlated with OS in the 
training cohort (p < 0.05) (Fig.  3B). The expression lev-
els of 16 prognostic eRNAs were presented in heatmap 
(Fig.  3C). The LASSO Cox regression analysis was per-
formed to build the prognostic signature in the train-
ing set based on the 16 prognostic genes. According to 
the minimum criteria, a 9-gene risk signature consist-
ing of FAAHP1, TP73-AS1, WDFY3-AS2, LINC01184, 
AL365259.1, TMEM184A, AC007255.1, IQANK1 and 
AC084375.1 was constructed (Fig. 3D, E). The immune-
related eRNAs co-expression network was constructed 
based on the 9 genes (Fig.  3F). The risk score was cal-
culated according to the following formula: risk score = 
(0.1087* expression level of FAAHP1) + (0.0749* expres-
sion level of TP73-AS1) + (0.3578* expression level of 
WDFY3-AS2) + (0.3184* expression level of LINC01184) 
+ (− 0.4084* expression level of AL365259.1) + (0.1747* 
expression level of TMEM184A) + (−  0.0476* expres-
sion level of AC007255.1) + (0.3280* expression level of 
IQANK1) + (− 0.1432* expression level of AC084375.1). 
Risk score of each patient in the training cohort was 

Table 2 The clinicopathological factors in 62 PTC patients

Characteristics Samples(N = 62) Percentage (%)

Age

 ≤ 60 54 87.1

 > 60 8 12.9

Gender

 Female 45 72.6

 Male 17 27.4

Tumor size

 < 2 cm 43 69.4

 ≥ 2 cm 19 30.6

Extrathyroidal invasion

 Yes 7 11.3

 No 55 88.7

Multicentricity

 Yes 23 37.1

 No 39 62.9

Stage

 Stage I–II 56 90.3

 Stage III–IV 6 9.7

T

 T1-2 41 66.1

 T3-4 21 33.9

N

 N0 18 29.0

 N1 44 71.0

https://tcia.at/home
https://tcia.at/home
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calculated and then patients were separated into high 
and low-risk subgroups according to the median risk 
score (Fig.  4A). Patients with high-risk group had more 
deaths and a shorter survival time than those in low-
risk group (Fig.  4B). The heatmap revealed the expres-
sion patterns of 9 eRNAs between two different risk 
subgroups (Fig.  4C). The PCA analysis indicated that 
high and low-risk patients were well separated into two 
clusters (Fig. 4F). Kaplan-Meier survival curve indicated 
that high-risk group had a significantly poorer OS than 
low-risk groups (p = 0.013) (Fig. 4D). ROC analysis was 
conducted to evaluate the predictive accuracy of the risk 
score and the areas under the ROC curve (AUC) were 
0.829 for 3  year, 0.716 for 5  year, and 0.721 for 10  year 
(Fig. 4E).

Furthermore, the predictive capability of the risk sig-
nature was validated using test cohort and total cohort. 
The risk score of each patient was calculated accord-
ing to the same formula as the training cohort. Patients 
in test cohort and total cohort were also classified into 
high- and low-risk groups using the same median score 

in the training set. The OS of the patients with high-risk 
score was lower than that of the low-risk groups in the 
test cohort (p = 0.019) (Fig. 5D). The AUC values of the 
ROC curve were 0.764 at 3 year, 0.885 at 5 year, and 0.889 
at 10 year (Fig. 5E). We ranked the risk scores of patients 
in the test set and analyzed their distribution, survival 
status, and the expressions heatmap of nine biomarkers 
between high- and low-risk groups (Fig. 5A–C). The PCA 
plot indicated satisfactory separation in different risk 
subgroups (Fig. 5F).

The risk score distribution, survival status and the 
expression heatmap of nine eRNAs in the total cohort 
were displayed in Fig.  6A–C. The PCA analysis showed 
that risk genes could separate two risk groups (Fig. 6F). 
The result of the OS suggested that high-risk groups 
had a poorer prognosis compared with low-risk groups 
(Fig.  6D). The ROC analysis showed that the risk sig-
nature exhibited a reliable predictive capability (AUC 
= 0.813 in 3 year, 0.819 in 5 year and 0.824 in 10  year) 
(Fig.  6E). These results indicated that the risk signature 
was a reliable index.

Fig. 1 The workflow chart of this study
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Fig. 2 Screening of the differentially expressed immune-related genes in THCA patients. A The heatmap of the DEGs between normal and tumor 
tissues from TCGA database. B Heatmap of the DE-IRGs between normal and tumor samples. C Volcano plot of DEGs from TCGA database. D Venn 
diagram of the interactions between DEGs and IRGs. E Volcano plot of DE-IRGs between normal and tumor tissues

Fig. 3 Construction of the immune-related eRNAs prognostic signature for THCA patients. A Heatmap of the correlation of gene modules with 
normal and THCA samples. B Univariate Cox regression analysis of immune-related eRNAs in OS. C Heatmap of the OS-related genes between 
normal and tumor tissues. D, E Construction LASSO regression model based on OS-related immune-related eRNAs in the training cohort. F The 
immune-related eRNAs co-expression network (red: eRNAs, purple: immune genes)
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Clinical value of risk signature
The possible relationships between risk signature and 
clinicopathological features were explored and the heat-
map showed the distributions of clinical characteristics 
(survival status, age, gender, clinical stage and TNM 
stage) in different risk subgroups. The risk score was sig-
nificantly associated with survival status, age and N stage 
(p < 0.05) (Fig.  7A). In order to examine the predictive 
effects of the risk signature, all patients with THCA were 
separated into different subgroups according to differ-
ent clinical characteristics, including age, gender, patho-
logical tumor stage and TNM stage. The K-M survival 
curve suggested that high risk score predicted poorer 
prognosis in age > 60 (p = 0.002), gender (p = 0.003 in 
female), stage (p = 0.029 in stage I–II and p = 0.002 in 
stage III–IV). Similar results were also observed in T1–2 
(P = 0.013) and T3–4 groups (P = 0.012), stage N0 (P = 
0.034) and stage N1 groups (P = 0.023), and M0 stage (P 
= 0.022) (Fig. 7E). Furthermore, ROC analysis was con-
ducted to evaluate the predictive performance based on 
the risk score and clinicopathological characteristics. 
The AUCs of the risk score (0.813), age (0.941) and stage 

(0.713) at 3 year, risk score (0.820), age (0.896) and stage 
(0.773) at 5  year, and risk score (0.826), age (0.932) and 
stage (0.835) at 10  year, indicating a better predictive 
capability (Fig.  7B–D). More accurate prediction power 
was observed after combining risk score with other clini-
cal features.

Independent prognostic value of the risk signature
Univariate and multivariate Cox proportional hazards 
regression analyses were performed in training cohort, 
test cohort and total cohort to evaluate the independ-
ent prognostic value of risk score with clinical factors, 
including age, gender and pathological stage for THCA 
patients. Univariate Cox regression analysis showed that 
age and risk score were significantly associated with OS 
[training cohort: hazard ratio (HR) = 3.447, 95% confi-
dence interval (CI) = 1.943−6.115, P < 0.001; test cohort: 
HR = 2.957, 95% CI = 1.500−5.828, P = 0.002; total 
cohort: HR = 3.376, 95% CI = 2.237−5.095, P < 0.001] 
(Fig.  8A, C, E). After including other confounding vari-
ables in multivariate Cox regression analysis, the risk 
score was further identified as an independent prognostic 

Fig. 4 Risk score analysis of the prognostic signature in the training cohort. A–C The risk score distribution, survival status, expression heatmap 
of nine immune-related eRNAs between high- and low-risk groups in the training set. D Kaplan–Meier survival curve analysis of OS in high- and 
low-risk groups. E Time-dependent ROC curve analysis of the prognostic signature. F PCA analysis in high- and low-risk groups
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factor [training set: HR (95% CI) = 2.163 (1.266−3.696), 
P = 0.005; test set: HR (95% CI) = 2.749 (1.427−5.295), P 
= 0.003; total set: HR (95% CI) = 2.360 (1.613−3.452), P 
< 0.001] (Fig. 8B, D, F).

Subsequently, we developed a prognostic nomogram to 
provide a quantitative analysis tool for predicting prog-
nosis in patients with THCA based on the risk score 
and clinicopathological features (age, gender and stage) 
(Fig.  8G). The calibration curves of 3  year, 5  year and 
10 year OS demonstrated an ideal consistency in predic-
tive and actual survivals (Fig. 8H–J).

Functional enrichment analysis of DEGs between different 
risk groups
To further investigate the differences in gene functions 
between different risk subgroups, we identified 355 DEGs 
(201 downregulated genes and 154 upregulated genes 
in high-risk group) between high- and low-risk groups 
(Additional file 4: Table S2). The result of GO functional 
analysis suggested that the DEGs were mainly enriched 
in humoral immune response, immunoglobulin com-
plex, and antigen binding (Fig.  9A). Additionally, GSEA 

indicated that humoral immune response, regulation of 
humoral immune response, and positive regulation of 
humoral immune response were significantly involved in 
low-risk group (Fig. 9B).

Comparison of the tumor immune microenvironment 
in different risk subgroups
To explore the association between risk signature and 
tumor immune microenvironment (TIME), we calcu-
lated the relative proportion of each kind of immune cells 
among THCA patients based on the RNA-sequencing 
data using CIBERSORT algorithm. The proportions of 
21 kinds of tumor-infiltrating immune cells in the low- 
and high-risk groups were displayed in Additional file 1: 
Figure S1A. The bar plot indicated that the proportions 
of dendritic cells resting and T cells CD4 memory acti-
vated were significantly higher in low-risk samples com-
pared to high-risk patients (p < 0.05) (Additional file  1: 
Figure S1B). The infiltrating ratios of Plasma cells, T cells 
CD8, NK cells activated, Monocytes, Mast cells resting, 
Macrophages M0, Macrophages M1, Macrophages M2, 
Dendritic cells resting, and Dendritic cells activated were 

Fig. 5 Prognostic assessment of the risk signature in test cohort. A–C The risk score distribution, survival status, expression heatmap of nine 
immune-related eRNAs between high- and low-risk groups in test set. D Kaplan–Meier survival curve analysis for comparison of OS in high- and 
low-risk groups. E Time-dependent ROC curve analysis of the risk signature. F PCA plot of high- and low-risk groups
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Fig. 6 Validation the risk signature in total cohort. A–C The risk score distribution, survival status, expression heatmap of nine immune-related 
eRNAs between high- and low-risk groups in total cohort. D Kaplan–Meier survival curve analysis for high- and low-risk groups. E Time-dependent 
ROC curve analysis of the risk signature. F PCA analysis of high- and low-risk groups in total set

Fig. 7 Correlation of the risk score and clinical characteristics in THCA patients. A Heatmap of the association between risk score and clinical 
clinicopathologic features (*p < 0.05, **p < 0.01, ***p < 0.001). (B-D) ROC curves of the risk score and clinical characteristic for 3 year, 5 year, 10 year. E 
Stratified survival analysis of high- and low-risk groups based on age, gender, clinical stage, TNM stage
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Fig. 8 Independent prognosis analysis and clinical value of the risk signature. A–B The univariate and multivariate Cox regression analysis of the risk 
score and clinical parameters for OS in the training cohort. C–D Univariate and multivariate Cox regression analysis for test cohort. E–F Univariate 
and multivariate Cox regression analysis of OS in total cohort. G Nomogram integrating risk score and clinical features for predicting OS in total set. 
H–J The calibration curve of the nomogram for predicting the probabilities of 3 year, 5 year, and 10 year OS
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significantly associated with OS (p < 0.05) (Fig.  10A). 
The higher infiltrating abundance of Monocytes, Mac-
rophages M0, Macrophages M2, Dendritic cells resting, 
and Dendritic cells activated were tend to have a poorer 
OS, while high levels of Plasma cells, T cells CD8, NK 
cells activated, Mast cells resting, and Macrophages M1 
were correlated with better OS.

We also calculated the immune score, stromal score, 
ESTIMATE score, and tumor purity in each THCA sam-
ple to investigate the differences of the TIME between 
high- and low-risk groups based on ESTIMATE algo-
rithm. We performed ssGSEA to quantify the enrichment 
scores of 16 kinds of immune cells and the activity of 13 
types of immune-related signaling pathways in THCA 
samples. The heatmap showed 29 immune-related gene 
sets for THCA patients and correlation between different 
risk subgroups and immune score, stromal score, ESTI-
MATE score, and tumor purity (Fig.  10B). The immune 
score, stromal score and ESTIMATE score were signifi-
cantly higher in low-risk groups than in high-risk groups 
(p < 001), while the tumor purity was lower in low-risk 

groups (p < 001) (Fig.  10C). Moreover, 29 immune-
related gene sets were all significantly upregulated in 
low-risk groups (p < 0.01) (Fig.  10D). Furthermore, the 
expression levels of the HLA family genes were higher 
in the low-risk groups except for HLA-DMB (p < 0.01) 
(Fig. 10E).

The correlation between IPS and prognostic risk sig-
nature in THCA was explored to predict the patients’ 
response to immune checkpoint inhibitors (ICIs). The 
IPS, IPS-CTLA4, IPS-PD1/PD-L1/PD-L2, and IPS-PD1/
PD-L1/PD-L2 + CTLA4 scores were markedly higher 
in low-risk subgroups (p < 0.001) (Fig. 11A). The expres-
sion levels of PD1, PD-L1, PD-L2, CTLA4, TIGIT, TIM-
3, BTLA, and LAG3 were significantly higher in low-risk 
groups (p < 0.001) (Fig. 11B). Furthermore, we also com-
pared the difference in expression levels of cytokines 
between two different risk subgroups. There were sig-
nificant differences in the expression levels of interleukin 
1 beta (IL-1β), IL-2, IL-6, IL-10, IL-18, tumor necrosis 
factor (TNF), granzyme A (GZMA), and GZMB in high- 
and low-risk groups (p < 0.001) (Fig. 11C). These results 

Fig. 9 Functional enrichment analysis of DEGs between different risk subgroups. A GO enrichment analysis of DEGs between high- and low-risk 
groups. B GSEA using immune gene set revealed that DEGs were mainly enriched in low-risk groups with immune-associated biological processes
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indicated that low-risk groups patients appeared to have 
a better opportunity for ICI treatment.

Validation expression of risk eRNAs in THCA tissues
The expressions of FAAHP1, TP73-AS1, and 
WDFY3-AS2 were significantly down-expressed, 
while LINC01184, AL365259.1, TMEM184A, 

AC007255.1, and AC084375.1 expression were sig-
nificantly increased in THCA tissues compared with 
normal samples in TCGA and GTEx databases (p < 
0.001) (Fig.  12A–B). Nevertheless, IQANK1 expres-
sion showed no statistical difference. The FAAHP1, 
TP73-AS1, WDFY3-AS2, LINC01184, AL365259.1, 
TMEM184A, AC007255.1, and AC084375.1 indicated 

Fig. 10 Analysis of tumor immune microenvironment between different risk groups. A K-M survival analysis of immune cells infiltration. B Heatmap 
of immune cells infiltration and immune function in TCGA. C Comparison of immune score, stromal score, ESTIMATE score, and tumor purity 
between high- and low-risk groups. D The ssGSEA score of 16 kinds of immune cells and 13 immune pathways between high- and low-risk groups. 
E The expression levels of HLA family genes in high- and low-risk groups
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well diagnostic accuracy with the area under the ROC 
curve (AUC) > 0.7 (Additional file  2: Figure S2). To 
further validate the expression level of 9 prognostic 
eRNAs, we analyzed the differential expression levels 

in normal samples and THCA tissues based on TCGA 
database aa well as in 62 pairs of thyroid cancer tissues 
and adjacent normal tissues by qRT-PCR (Fig.  12C). 
The expression levels were consistent with the results 
of bioinformatic analysis.

Fig. 11 Immune checkpoint expression analysis. A The correlation between IPS and risk score in THCA patients. B Comparison of the expression 
levels of immune checkpoint between high- and low-risk groups. C The expression levels of cytokines between high- and low-risk groups



Page 14 of 18Wu et al. Cancer Cell International          (2022) 22:307 

Fig. 12 The expression levels of 9 eRNAs in TCGA database and tumor tissues. A Expression levels of 9 eRNAs in THCA samples from GTEx database. 
B The levels of these nine eRNAs in paired adjacent normal and tumor samples from TCGA database. C The expression levels of these 9 eRNAs in 
clinical tissues
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Discussion
THCA is the most common form of endocrine system 
tumor, and its incidence has rapidly increased over the 
past few decades. PTC is the most predominant patho-
logical subtype among all the THCA cases. Most PTC 
patients usually have a favorable prognosis when surgical 
treatment, radioactive iodine therapy, and thyroid-stimu-
lating hormone (TSH) suppression treatment are imple-
mented. Nonetheless, more than 10% of PTC patients 
may suffer local recurrence and distant metastasis after 
the initial treatment. Therefore, it is essential to explore 
new potential molecular targets for clinical therapy in 
order to improve patient outcomes.

TME consists of immune cells and non-immune stro-
mal cells, and immune system was found to make a cru-
cial contribution to cancer development and progression. 
Cancer immunotherapy has made tremendous  progress 
for some cancer types in recent years.

Predictive or prognostic biomarkers related to the 
TIME have great promise for identifying novel molecular 
therapeutic targets and improving cancer patients clini-
cal management of immunotherapy [31].

Long non-coding RNAs (lncRNAs) have emerged as 
enormous amount and diverse functions in the past 
decade and have been reported to play important roles 
in a variety of biological processes, including cell pro-
liferation, death, and tumor growth [32]. Enhancer was 
described as distal regulatory DNA that regulate the 
transcription of target genes by interacting with promot-
ers of target genes. Studies suggested that enhancers can 
transcribe non-coding RNAs, which was been defined 
as enhancer RNAs (eRNAs) [33]. eRNAs were limited 
to around 500–2000  bp and had shorter half-lives [34]. 
Extensive evidences suggested significant roles of eRNAs 
in tumorigenesis and they involved in various cancer 
signaling pathways through regulating their target genes. 
The activation of oncogenic signaling pathways in human 
cancers often enhanced enhancer activation and pro-
duction of eRNAs. CELF2 is highly expressed in stom-
ach adenocarcinoma [35]. APH1A is highly expressed 
in grade-3 hepatocellular carcinoma (HCC). EN1 is 
highly expressed in breast cancer (BRAC), and ESR1 
can increase eRNA transcription in BRAC [36]. TAOK1 
is associated with overall survival in clear cell renal cell 
carcinoma [22, 37]. SCRIB was differentially expressed 
among lung adenocarcinoma patients [38]. Tumor sup-
pressors-induced eRNAs may implicated in tumor sup-
pression, while oncogene-induced eRNAs can directly 
promote tumorigenesis. Therefore, eRNAs were closely 
correlated to malignancy formation and progression.

In our study, we identified 3451 DEGs from 510 THCA 
samples and 58 normal samples in TCGA cohort, and 
362 DE-IRGs (172 downregulated 190 upregulated 

genes) were extracted. WGCNA was performed to iden-
tify THCA-specific immune-related hub genes based 
on 362 DE-IRGs, and two gene modules (turquoise and 
grey modules) were obtained. Finally, the grey module 
was regarded as THCA-specific module. Pearson cor-
relation analysis was used to evaluate immune-related 
eRNAs. Subsequently, 9-immune-eRNAs prognostic sig-
nature (FAAHP1, TP73-AS1, WDFY3-AS2, LINC01184, 
AL365259.1, TMEM184A, AC007255.1, IQANK1 and 
AC084375.1) was constructed based on univariate Cox 
regression analysis and LASSO Cox regression analy-
sis, which was an independent prognostic factor for 
OS. TP73-AS1, also known as KIAA0495, is abnormally 
expressed in many cancers [39]. Previous studies indi-
cated that TP73-AS1 could be a key role in regulating 
HCC cells proliferation and its expression level was asso-
ciated with poor prognosis of HCC patients [40]. Besides, 
Wang et al. showed TP73-AS1 also interfered the metas-
tasis and proliferation of ovarian cancer [41]. Of note, we 
firstly found the expression level of TP73-AS1 is higher 
in normal thyroid cancer, suggesting that it might have 
different mechanism in regulating tumor progression 
comparing other cancers. Increasingly evidences have 
implicated that lncRNAs participated in the process of 
cell growth, invasion. Studies showed that overexpressed 
WDFY3-AS2 suppressed the proliferation, invasion, and 
epithelial-to-mesenchymal transition (EMT) in ovar-
ian cancer [42]. Furthermore, WDFY3-AS2 also could 
promote cisplatin resistance by the expression of miR-
139-5p/SDC4 in ovarian cancer, which may provide a 
promising drug target to drug resistance [43]. WDFY3-
AS2 participated in the development and progression of 
oesophageal squamous cell carcinoma (ESCC) by regu-
lating miR-2355-5p/SOCS2 axis, which suggested that 
WDFY3-AS2 might be an underlying predictor and novel 
therapeutic target for ESCC patients [44]. Other stud-
ies suggested that the potential value of long noncoding 
RNA WDFY3-AS2 might be novel prognostic biomarker 
for lung adenocarcinoma (LUAD) [45], glioma [46], and 
esophageal cancer (EC) [47]. AC007255.1, an immune-
related prognostic eRNA, was up-regulated in EC tis-
sues and high expression indicated a poorer prognosis. It 
was closely related to immune response and infiltration 
levels of immune cells, such as B cell, dendritic cell and 
neutrophil [48]. Sui et al. demonstrated that LINC01184 
was highly expressed in colorectal cancer, and it could 
affect the the proliferation and invasion of colorectal can-
cer cells through the linc01184-miR-331-HER2-p-Akt/
ERK1/2 pathway [49]. Subsequently, the risk score was 
calculated and separated all patients into high- and low-
risk subgroups based on median risk score, and Kaplan–
Meier survival curves indicated that the high-risk groups 
had poorer clinical results than that of the low-risk 
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groups. Univariate and multivariate Cox regression 
analyses showed the risk score was an independent prog-
nostic factor. Additionally, GO functional analysis sug-
gested that the DEGs between different risk groups were 
mainly enriched in humoral immune response, immu-
noglobulin complex, and antigen binding. GSEA showed 
that humoral immune response, regulation of humoral 
immune response, and positive regulation of humoral 
immune response were significantly enriched in low-risk 
group. To further estimate the TIME of the prognostic 
signature, ESTIMATE and CIBERSORT were performed 
to estimate the immune score, stromal score, and tumor 
purity in THCA sample. More dendritic cells resting and 
T cells CD4 memory activated were significantly infil-
trated in TIME of low-risk group. In addition, patients 
in the low-risk groups had higher immune score, stromal 
score and ESTIMATE score than in high-risk group. We 
applied ssGSEA to assess the immune status of the risk 
signature, the results suggested that 29 immune-related 
cells were significantly up-regulated in low-risk group. 
At the same time, the expression levels of cytokines and 
immunosuppressor molecules (PD1, PD-L1, PD-L2, 
CTLA4, TIGIT, TIM-3, BTLA, and LAG3) were sig-
nificantly higher in low-risk groups, implying more 
tumor immunogenicity in the low-risk group. The good 
response of ICIs might be one of the reasons for the 
good clinical outcome in the low-risk group. Therefore, 
patients with low-risk scores might be more likely to ben-
efit from ICI treatment.

The present study has some limitations. Our data was 
retrieved from TCGA public database instead of our own 
cohort, the predictive power of the prognostic signature 
should be validated using an external validation cohort, 
such as GEO cohort. Nevertheless, information on over-
all survival of THCA patients was unfortunately largely 
lacking in the GEO databases. Moreover, some basic 
experiments should be performed to further validate our 
bioinformatics analysis results in the future. The efficacy 
of immunotherapy in THCA patients was needed to be 
validated in large clinical trials.

Conclusion
Taken together, we are the first to construct an immune-
related eRNAs prognostic signature to efficiently pre-
dict the survival and prognosis with high specificity for 
THCA patients. Significant differences were founded 
between prognostic signature and TIME, all patients 
with different risk levels exhibited different response to 
immunotherapy. This study could provide a novel insight 
into a potentially novel prognostic prediction and offer 
opportunity for individualized immunotherapy of THCA 
patients in future studies.
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