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      Background
Human oncogenic viruses, known as oncoviruses, poten-
tially contribute to an estimated 12–20% of human can-
cers, accounting for a large fraction of the global cancer 
burden [1]. Recently, several oncoviruses with DNA or 
RNA genomes such as human papillomavirus (HPV), 
Epstein-Barr virus (EBV), hepatitis B virus (HBV), 
hepatitis C virus (HCV), human herpesvirus-8 (HHV-
8), human T-cell lymphotropic virus-1 (HTLV-1), and 
Merkel cell polyomavirus (MCV) have been recognized 
as the primary contributors to cancer development [2]. 
Viral carcinogenesis is a complex process associated with 
viral factors and immune escape mechanisms. There is 
interesting crosstalk between different viral and host 
factors which mediate the signaling pathways and cel-
lular process. In general, oncoviruses can inhibit the 
tumor suppressor pathway p53, which supports primary 
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Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor 
suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to 
the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant 
tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived 
suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert 
different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-
tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory 
cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, 
tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against 
cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the 
promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
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tumor growth and progression [3]. It has also been dem-
onstrated that viral factors potentially activate PI3K-
Akt-mTOR, Notch, and Wnt pathways leading to cell 
overgrowth, tumor invasion, and angiogenesis [4]. On the 
other hand, oncoviruses establish an infection-associated 
chronic inflammation that could mediate cancer devel-
opment through different mechanisms including tissue 
remodeling, angiogenesis, and production of growth fac-
tors [5]. The tumor microenvironment (TME) consists 
of different immune cells which play a prominent role in 
the tumor progression. Myeloid cells are the heteroge-
neous population of the innate immune system, which 
is considered the first line of defense. These cells include 
tumor-associated macrophages (TAMs), myeloid-derived 
suppressor cells (MDSCs), tumor-associated dendritic 
cells (TADCs), and tumor-associated neutrophils (TANs) 
that predominantly infiltrate the TME [6]. Despite the 
central role of myeloid cells in regulating anti-tumor 
immune responses, tumor-associated myeloid cells 
(TAMCs) can promote tumorigenesis mechanisms [7]. 
It is noteworthy that TAMCs exert crucial pro-tumor-
igenic functions in regulating cancer-related inflam-
mation, expression of pro-angiogenic factors, tumor 
angiogenesis, tumor progression, and promotion of 
immune evasion [8]. The pro-tumorigenic functions of 
TAMCs, including anti-inflammatory cytokine secre-
tion and chronic ROS production, have been considered 
significant obstacles to developing effective cancer treat-
ments. Therefore, TAMCs are considered a double-edged 
sword of immune effectors in cancer progression. Given 
the dual role of TAMCs in cancer development and their 
therapeutic potential, this review highlights the role of 
tumor-promoting myeloid cells in the pathogenesis of 
human oncoviruses and provides new insights into can-
cer immunotherapy.

Anti- and pro-tumorigenic function of myeloid cells 
in cancer pathogenesis
Myeloid cells exert an immunosuppressive activity to 
combat the proliferating tumor cells; however, it has been 
demonstrated that they represent opposing functions 
from anti-tumorigenic to pro-tumorigenic phenotypes in 
the TME. Hence, we briefly describe the mechanism of 
the anti- and pro-tumorigenic function of TAMCs in the 
immune escape and cancer pathogenesis.

Tumor-associated regulatory dendritic cells (TAR-DCs)
Dendritic cells (DCs) are a double-edged sword popu-
lation in the TME. Plasmacytoid (pDC), conventional 
(cDC1 or cDC2), and inflammatory DC (moDC) are 
three phenotypically and functionally distinct subsets of 
DCs [9]. These immune cells play a crucial role in various 
cancer types, including breast, lung, colorectal, ovarian, 
head and neck, bladder, gastric, and renal cancer [10]. 

Although, DCs mediate antigen trafficking and stimula-
tion of CD8+ T-cell responses, however, TAR-DCs exhib-
ited immunosuppressive properties by low expression of 
costimulatory molecules and high expression of regula-
tory molecules. Stromal-cell derived factor-1 (SDF-1) 
which is also known as CXCL12, in the TME of malig-
nant tumors and high expression of CXCL4 ligand results 
in the accumulation of DCs in TME. Immunoglobulin-
like transcript 7 (ILT7) recognizes bone marrow stro-
mal cell antigen 2 (BST2), which is highly expressed on 
tumor cells, resulting in negative regulation of the inter-
feron responses [11]. It has been demonstrated that IL-10 
produced by TAMs potentially suppresses the secretion 
of IL-12, which mediates immune escape and metastatic 
progression. The inhibition of IL-10 could restore the 
functionality and cytokine production of DCs [12].

Tumor-associated macrophages (TAMs)
Tumor-associated macrophages (TAMs) are abun-
dant myeloid cells in the TMEwith anti-tumorigenic 
or strongly pro-tumorigenic phenotypes. Macrophage 
colony-stimulating factor (M-CSF) is highly expressed 
in the TME, which recruits the macrophages from the 
bone marrow or spleen [13]. TAMs are classified as clas-
sically activated-M1 and alternatively activated-M2 mac-
rophages which induce anti-tumorigenic Th1 immune 
responses and pro-tumorigenic functions such as tumor 
growth and invasion, immune suppression, and, angio-
genesis which is mediated by cytokine and chemokine 
production respectively [14]. M1 macrophages exert 
anti-tumor activity by direct cytotoxic effects mediated 
by ROS production, and antibody-dependent cell-medi-
ated cytotoxicity (ADCC) to eliminate tumor cells [15]. 
M2 macrophages are predominantly the vast majority 
of non-malignant TAMs associated with the production 
of immunosuppressive chemokines and factors includ-
ing TGF-β and IL-10. Furthermore, TAMs are related 
to angiogenesis by producing pro-angiogenic factors, 
including vascular endothelial growth factor (VEGF), 
fibroblast growth factor (FGF), platelet-derived growth 
factor (PDGF), and matrix metalloproteinase (MMP) 
[13]. TAM can enhance tumor proliferation and invasion 
mediated by activation of NF-κB and STAT3 and expres-
sion of pro-inflammatory cytokines [16]. Elevated levels 
of TAMs are correlated with poor prognosis of diverse 
types of cancers [17, 18].

Myeloid-derived suppressor cells (MDSCs)
MDSCs are developmentally immature non-macrophage 
cells with an immunosuppressive function. These cells 
potentially prevent the activation of CD4+ and CD8+ 
T-cells. Also, it has been suggested that MDSCs sup-
press NK cells, which may disturb anti-tumor immunity 
[19]. Therefore, MDSCs are considered a serious hurdle 
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against cancer immunotherapy. There are distinct subsets 
of MDSCs that express heterogeneous markers, includ-
ing Siglec-3/CD33, CD14, CD15, and CD66b. How-
ever, CD11b is expressed by all types of human MDSCs. 
MDSCs exert immunosuppressive function through the 
production of IL-10, TGF-β, ARG1, IDO, and CD40 [12]. 
MDSCs inhibit T lymphocytes via the ROS or the deple-
tion of L-arginine (L-arg) [20]. MDSCs suppress NK cells 
by expressing transforming growth factor β (TGF-β) and 
decreasing the expression of the NK-cell activating recep-
tor NKp30 [21]. MDSCs also inhibit myeloid cell differ-
entiation via a ROS-dependent mechanism [22].

Tumor-associated neutrophils (TANs)
As the first line of immune defense, neutrophils are a 
substantial population that infiltrates the TME. TANs 
have a dual function of anti- and pro-tumor activities, 
modulating anti-tumor immunity [23]. Interestingly, 
TANs are classified as two major types, N1 and N2, 
with anti-tumor and pro-tumor functions, respectively 
[23]. N1 mediates direct and indirect anti-tumor activ-
ity by ROS production and H2O2 and ADCC that could 
effectively kill tumor cells [24]. TANs actively contrib-
ute to tumor proliferation, angiogenesis, tumor progres-
sion, and metastasis through the high-level expression 
of neutrophil elastase and matrix metalloproteinase 9 
(MMP9) [25]. Moreover, upregulation of TANs in the 
TME strongly predicts the poor survival rate in patients 
with cancer [26]. TANs could modulate innate and adap-
tive immune responses by different mechanisms. As an 
instance, they decrease the CTL response by upregu-
lation of arginase-1. Furthermore, the production of 

neutrophil-secreted neutrophil elastase (NE) leads to 
tumor cellular proliferation. TANs mediate angiogen-
esis by secretion of VEGF and hepatocyte growth factor 
(HGF) [23].

Tumor-promoting myeloid cells and human oncoviral 
infection
Here we highlight the mechanistic strategies by oncoviral 
infection in immune disturbances (Table 1).

Epstein-Barr virus (EBV)
Epstein-Barr virus (EBV), first identified in the tumor 
cells of Burkitt lymphoma, is now associated with a strik-
ingly diverse variety of lymphoproliferative lesions and 
malignant lymphomas of B, T, and NK cell origin [27]. 
Here, we highlight the association between EBV and 
tumor-promoting myeloid cells such as MDSCs and 
TAMs.

MDSCs
The latent membrane protein-1 (LMP1) is the primary 
oncogene of EBV that plays a critical role in the MDSCs 
proliferation and tumor immunosuppression. A large 
fraction of MDSCs is found in patients with EBV-asso-
ciated T/NK cell lymphoproliferative diseases, which 
may dampen the antiviral T-cell responses [28]. LMP1-
mediated glycolysis enhances the production of IL-1β, 
IL-6, and GM-CSF, the proliferation of tumor-associated 
MDSCs, and the inhibition of T-cells and NK cells, which 
lead to tumor immunosuppression [29, 30]. The accumu-
lation of PMN-MDSCs in nasopharyngeal cancer sur-
vivors with persistent hepatitis B may suppress the host 
immune response [31] to the Epstein-Barr virus and be 
linked to tumor recurrence via ER stress/ROS pathway.

TAMs
In gastric cancer, the EBV-encoded miR-BART11 targets 
FOXP1 to enhance the tumor-associated macrophage-
induced epithelial-mesenchymal transition [32]. Zhang 
et al. revealed that in nasopharyngeal carcinoma (NPC) 
cells, EBV induced M2 phenotype in TAMs and elevated 
the p-ATR expression. These two inductions were highly 
connected and linked to higher tumor staging, lymph 
node metastases, and poor patient prognosis [33]. Acti-
vation of ATR triggered by EBV increased subcutaneous 
tumor development, elevated Ki67 production, and lung 
metastasis in nude mice through the M2-type TAMs 
recruitment [33]. CD68 as a TAMs marker was higher in 
EBV-positive NPC. However, between EBV-positive and 
EBV-negative NPC, there was no variation in M2 mac-
rophage number [34]. The survival of EBV+ tumor cells is 
dependent on TAMs in the EBV-positive TME [35]. The 
EBV status of lymphoma cells affected TAMs by up-reg-
ulation of CXCR10 and VEGF, causing angiogenesis and 

Table 1  Key mechanisms employed by oncoviruses
Virus Oncogene/

Oncoprotein
Signaling 
pathway

Downstream consequence

Epstein-Barr 
virus (EBV)

LMP1 Upregulation of IL-1, IL-6, and GM-CSF
MDSC proliferation
Increased M2 macrophages
Inhibition of NK cell and T-cell

Hepatitis B 
virus (HBV)

HBx Increased M2 macrophages
Activation of NKG2D in NK cells
T cell senescence

Hepatitis C 
virus (HCV)

Core protein Activation of TLR2/PI3K/AKT/STAT3 
signaling cascade
Inhibition of CD4 + T cells
MDSC proliferation
Downregulation of IFN-γ

Human 
herpesvirus 8 
(HHV-8)

vFLIP Induction of CD11b + Gr1 + cells
MDSC proliferation

Human pap-
illomavirus 
(HPV)

E6, E7 Inhibition of p53,
MDSC proliferation
Increased Treg cell
Downregulation of IFN-γ
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tumor survival. The in vivo reduction of macrophages 
revealed that they are required to survive EBV-positive 
tumor cells [35].

EBV expression has been identified in lesional macro-
phages of different cancers, ranging from thyroid to uter-
ine carcinoma and some types of lymphoma that possibly 
elicit EBV lytic infection of macrophages in many tumor-
associated macrophages in EBV-related malignancies 
[36].

In classical Hodgkin’s lymphoma, tumor-infiltrating 
macrophages are linked to a poor prognosis and the 
presence of EBV [37]. Increasing the number of TAMs 
is related to a reduction in overall survival, while greater 
levels of markers are statistically substantially associated 
with the presence of EBV infection [38].

Hepatitis B virus (HBV)
The most frequent kind of liver cancer is hepatocellular 
carcinoma (HCC). HBV is a chronic infection that affects 
over 350million individuals worldwide. At least half of 
all HCC cases globally are caused by chronic hepatitis B 
virus (HBV) infection [39]. Here, we highlight evidence 
of the association between HBV and tumor-promoting 
myeloid cells.

MDSCs
HCC patients had considerably greater percentages of 
MDSCs and PMN-MDSCs than chronic hepatitis B 
patients and healthy controls [40]. Pal et al. have dem-
onstrated that the induction of regulatory T-cells (Tregs) 
by myeloid-derived suppressor cells in persistent HBV 
infections featuring high viral surface antigen is long-
lasting and persists following antiviral treatment [41]. In 
the chronic liver failure posed by HBV, the proliferation 
of myeloid-derived suppressor cells was strongly associ-
ated with the severity and course of the disease [42].

Macrophages
Macrophages are monocytic phagocytes with antigen-
presentation and cytokine-producing capabilities. The 
tissue-specific liver macrophages are Kupffer cells domi-
nating other innate immune cells in the organ [43]. From 
the onset of HBV infection through the beginning and 
development of HCC, macrophages act as the key media-
tor of the pathogenic process. Kupffer cells have a role in 
inflammatory responses and tolerance generation in the 
early stages of infection [44]. In a specifically modified 
murine model of HBV infection, liver dysfunction was 
linked to an enormous frequency of human M2 macro-
phages [45]. Kupffer cells may impede the progression 
of HBV-associated HCC by inhibiting T-cell-mediated 
anti-tumor activity, limiting T-cell activation with PD-L1 
expression on monocytes, and causing Tim3+/CD4+ and 
Tim3+/CD8+ cells to senescence [46, 47].

NK cells
The lymphocytes in the human liver tissue are predomi-
nantly natural killer cells (NK cells). Patients with per-
sistent HBV and HCV infection have more NK cells in 
their liver [44]. A ligand of the NKG2D receptor, MICA, 
is upregulated in HBV infection, and soluble MICA lev-
els have been linked to modulating responses directed by 
NK cells, which are essential in developing HCC in HBV-
associated HCC patients [44, 48]. Several mechanisms 
have been shown to selectively impair NK cell function 
after chronic HBV infection. These include TGF-β and 
IL-10 stimulation of NK cells and their increased expres-
sion of Tim-3 triggered by HBV, hindering their activity 
[49, 50].

Hepatitis C virus (HCV)
HCV infection affects more than 270million individuals 
globally. HCV produces a chronic and lifelong infection 
in most infected individuals. This persistent inflamma-
tion in the liver leads to macronodular cirrhosis in 20% of 
people who contract it. A 4 to 7% yearly risk of progress-
ing to HCC is associated with these individuals [51].

Through the TLR2/PI3K/AKT/STAT3 signaling cas-
cade, HCV induced MDSC-like suppressive monocytes 
that activated CD4+Foxp3+ Tregs and inhibited the 
autologous CD4+ T-cell activation [52]. HCV stimu-
lates the accumulation of CD33+ MDSCs, which reduces 
T-cell responsiveness via the production of ROS [53]. 
IFN-γ production by natural killer cells is suppressed by 
MDSCs induced by HCV, which alter cellular metabo-
lism by inhibiting arginase-1 [54]. MDSCs triggered by 
HCV promote the development of Tregs while inhibiting 
the activity of effector T-cells [55]. Hepatitis C core pro-
tein polarizes granulocytic myeloid-derived suppressor 
cells via the IL-10/STAT3 signaling [56].

A long non-coding RNA (lncRNA) named HOXA tran-
script antisense RNA myeloid-specific 1 (HOTAIRM1) 
targets HOXA1 gene expression to regulate myeloid cell 
development. HOTAIRM1 enhances MDSCs growth and 
suppressive activities during HCV infection through the 
HOXA1-miR124 axis [57]. Exosomes associated with 
HCV suppress miR-124, which promotes the growth of 
myeloid-derived suppressor cells [58]. RUNX1 overlap-
ping RNA (RUNXOR) is another lncRNA that targets 
runt-related transcription factor 1 (RUNX1) and is cru-
cial for myeloid cell development. Exosomes associated 
with HCV through the STAT3-miR124 axis upregulate 
RUNXOR and RUNX1, increasing the MDSCs popula-
tion and suppressive capabilities [59].

Human herpesvirus 8 (HHV-8)
The causative agent of Kaposi’s sarcoma (KS) is Kaposi’s 
sarcoma herpesvirus (KSHV; also known as human her-
pesvirus 8 (HHV-8)). KS is the most prevalent neoplasm 
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among untreated HIV patients, although it may also 
happen in immunosuppressive conditions after organ 
transplantation [60]. KSHV vFLIP is a latent infection-
associated viral oncoprotein. CD11b+Gr1+ cells with sup-
pressor immune phenotype are induced by vFLIP, which 
remodels myeloid differentiation and causes their prolif-
eration [61]. Based on the evidence, DC exerts decreased 
antiviral immune responses and altered cytokine produc-
tion during the HHV-8 infection [62]. It has also been 
demonstrated that HHV-8 infection is associated with 
prostate cancer [63]. Moreover, the study on the Iranian 
population has indicated the high prevalent rate of the 
HHV-8 genome among patients with cervical cancer [64]. 
Therefore, it can be perceived that HHV-8 infection may 
be associated with an increased risk of cervical cancer.

Human papillomavirus (HPV)
Cervical cancer is caused by certain HPV (human papil-
lomavirus) genotypes. Other anogenital cancers and a 
subset of head and neck cancers seem to be caused by 
the same genotypes. It is necessary to sustain the malig-
nant development of cervical cancer cells by inducing 
the expression of particular viral oncoproteins, E6 and 

E7, which specifically inhibit the tumor suppressors p53 
and RB [65]. In malignancies pertaining to HPV, MDSCs 
are related to both poor clinical outcomes and resistance 
to treatment. They inhibit the activity of CTLs, down-
regulate IFN-γ, and increase the frequency of Tregs, all 
of which contribute to carcinogenesis. Furthermore, 
compared to normal controls, their levels were elevated, 
indicating a clear relationship between pathological 
grade and their levels [66–68]. Activating CD8+ effector 
memory T-cells and controlling MDSCs together allowed 
protection against cancers caused by the HPV-16 sero-
type [69].

The oncogenic mechanisms of tumor-promoting 
myeloid cells in reviewed human oncoviral infections 
have been depicted in Fig.1.

Tumor-promoting myeloid cells and potential targets for 
immunotherapy of human oncoviruses
Due to the immunosuppressive nature of MDSCs and 
TAMs, these cells have been considered two main 
potential targets for cancer immunotherapy. Although, 
different therapeutic approaches to target these immuno-
suppressive myeloid cells are being investigated. Here, we 

Fig. 1  Tumor promoting myeloid cells and their role in pathogenesis of human oncoviruses. Here, five human oncoviruses (Epstein-Barr virus, Hepatitis 
B and C viruses, Human herpesvirus 8, and human papillomavirus) have been illustrated with their related myeloid cells mostly tumor-associated mac-
rophages (TAMs) and myeloid-derived suppressor cells (MDSCs). These cells along with immune mediators in tumor microenvirnment promote tumor 
progression, angiogenesis, and migration and suppress anti-tumor effector cells including T and NK cells

 



Page 6 of 12Aghamajidi et al. Cancer Cell International          (2022) 22:327 

will provide the strategies for repolarization and revival 
of tumor-promoting myeloid cells (Table 2).

Blocking recruitment
Blocking the recruitment of MDSCs and TAMs may 
be a beneficial strategy for reducing tumorigenesis and 
immunosuppression. CCR2+ TAMs and MDSCs in TME 
are recruited by the CCL2 chemokine [70–72]. Block-
ing CCL2/CCR2 axis reverses MDSCs infiltration into 
the tumor, augmenting the effectiveness of the cancer 
immunotherapy [73]. In breast cancer models, removing 
CCR2 blockade induces tumor progression, migration, 
and angiogenesis [74]. Clinical studies are now underway 
for anti-CCR2 agents, including carlumab (CNTO 888), 

PF-04136309, MLN1202, BMS-813,160, and CCX872-B 
[75, 76].

The CXCL12/CXCR4 axis governs TAMs’ migration 
into hypoxic tumor areas through the endothelial barrier 
[77]. Targeting the CXCL12/CXCR4 axis in multiple can-
cer models, including prostate and breast cancer, reduces 
tumor burden and metastatic susceptibility by preventing 
TAM infiltration [78, 79].

Depleting macrophage populations in the TME
TAMs are among the most common and important non-
neoplastic cell groups in the established TME. The dif-
ferentiation of macrophages into tumor-suppressive M1 
or tumor-promoting M2 types is an important stage in 
the formation of the TME. Implementing three strate-
gies through this pivotal axis could pave for novel can-
cer treatment strategies. These strategies could alter M2 
TAM survival and apoptotic mechanisms or disrupt 
their signaling pathways, suppress chemotactic potential 
toward the tumor, and reprogram M2 TAMs to produce 
M1 phenotype macrophages [80].

Bisphosphonates elicit myeloid cell cytotoxicity by 
preferentially targeting phagocytic cells, including TAMs 
[81]. Zoledronate, a third-generation bisphosphonate, is 
cytotoxic to TAMs that express matrix metalloprotein-
ase-9 (MMP9) and improves macrophage anti-tumor 
activity by polarizing monocytes toward pro-inflamma-
tory phenotype [76, 82]. Trabectedin, a drug mainly used 
for soft tissue malignancies, inhibits TAMs, enhanc-
ing anti-cancer adaptive immunity in response to anti-
programmed cell death protein 1 (PD-1) treatment [83]. 
Trabectedin causes mononuclear phagocytes to undergo 
accelerated apoptosis. In animal tumor models, trabect-
edin reduced angiogenesis by selectively depleting mono-
cytes/macrophages in the blood, spleens, and tumors 
[84].

Reprogramming metabolism
Several agents, including growth factors, could modify 
macrophages’ immune and metabolic responses in their 
residing microenvironment. This mechanism is reflected 
in the tricarboxylic acid (TCA) cycle disruption in M1 
macrophages with the stimulation of inflammatory 
mediators resulting in IL-1 and Fatty acid synthesis and 
switching to pro-inflammatory phenotype [76, 85–88]. 
M2 macrophages, on the other hand, have an intact TCA 
cycle by external anti-inflammatory stimulation, which 
promotes mitochondrial oxidative phosphorylation 
(OXPHOS), yielding a higher ATP production [76, 89]. 
Inhibiting ATP production in M2 macrophages with an 
ATP synthase or a hexokinase inhibitor decreases anti-
inflammatory characteristics and suppresses pro-tumor-
igenic function [90, 91].

Table 2  The strategies of repolarization and revival of tumor-
promoting myeloid cells
Mechanism Molecular 

and/or Cellular 
Target

Agent(s) Ref-
er-
ence

Blocking 
recruitment

CXCR4/CXCL12 
axis

AMD3100 [125]

PI3Kγ IPI-549 [126]

mTORC Rapalogs [127]

BTK Ibrutinib [128]

CCR2/CCL2 Carlumab, C1142, 
Bindarit

[129–
132]

Inhibiting 
differentiation

CSF1R/CSF1 axis Emactuzumab (RG7155), 
Cabiralizumab (FPA008), 
Pexidartinib, ARRY-382, 
SNFX-6352, BLZ945, 
AMG820, IMC-CS4, 
LY3022855

[93, 
[133–
140]

CD40 activation CD40 Selicrelumab, APX005M, 
SEA-CD40, CP-870-893

[141–
[144]

TLR activation TLR1 Pam3 [145]

TLR2 Pam3-CSK4, SMU-Z1, 
LTA

[145–
147]

TLR3 Poly:IC [148]

TLR4 GSK1795091 [149]

TLR6 LTA [150]

TLR7/8 NKTR262, Resiquimod, 
Imiquimod, SM-052

[151–
153]

TLR9 IMO-2125, CMP-001, 
SD-101 CpG

[154–
156]

Immune check-
point blockade

SIRPα/CD47 axis CV1, TTI-621, Hu5F9-G4 [157–
159]

MARCO mAbs (Unknown) [160]

PI3K inhibition PI3K SF1126, SRX3207, 
Clotrimazole

[111–
113]

HDAC inhibition HDAC TMP195 [116]

Angiogenesis 
inhibition

VEGF/VEGFR 
axis

mAb [161]

Apoptosis TAM Zoledronate, 
Trabectedin

[82], 
[84]

Inhibition of ATP 
synthesis

ATP synthase Oligomycin, 
2-Deoxyglucose

[162], 
[163] 
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Reprogramming cellular signaling
To induce tumoricidal potential in MDSCs and TAMs, 
several factors could be used to reprogram their signaling 
pathways, including colony-stimulating factor 1/colony-
stimulating factor 1 receptor (CSF1/CSF1R) blockade, 
TLR agonists, PI3K inhibitors, CD40 agonists [64], and 
Class IIa histone deacetylase inhibitors (HDACis) [76, 
92, 93]. Promising targets are the macrophage surface 
receptors that aid antibody-dependent cellular cytotox-
icity/phagocytosis (ADCC/ADCP). Macrophages har-
bor a membrane protein called signal regulatory protein 
alpha (SIRP-α) binding to CD47 molecules expressed on 
tumoral cells, which help them evade tumor immuno-
surveillance [94]. However, anti-SIRPα antibodies cause 
tumor cell phagocytosis while preserving T-cells [95].

TLRs agonists could induce pro-inflammatory and 
anti-tumor phenotypes in TAMs. Feng et al. developed 
a glucomannan polysaccharide with acetyl modification 
to the degree of 1.8 (acGM-1.8), which stimulates TLR2 
signaling and promotes macrophages toward becoming 
anti-tumor [96]. TLR7/8 agonist-loaded nanoparticles 
augment cancer immunotherapy via polarizing TAMs 
[97]. TLR-3 stimulation via modulating IFN-αβ signaling 
restricts tumor progression by skewing M2 macrophages 
to the M1 phenotype [98]. TLR 7/8 agonists also stimu-
late human MDSCs to differentiate toward anti-tumor 
M1-like macrophages, which may reverse the suppressive 
action of MDSCs [99].

CSF1/CSF1R blockade in pancreatic cancer models 
could enhance immune checkpoint T-cell therapy out-
comes while reprogramming TAMs [100]. Moreover, 
blocking the CSF1/CSF1R axis reduces mesothelioma 
growth and improves anti-PDL1 immunotherapy effi-
cacy [101], and CSF1R inhibition minimizes the devel-
opment of cervical and mammary tumors in mice by 
lowering TAMs turnover and increasing the CD8+ 
T-cell infiltration [102]. Inappropriate response to 
immunotherapy in indoleamine 2,3-dioxygenase-
expressing malignancies may be overcome by targeting 
MDSCs with CSF1R inhibition [103]. Pro-tumorigenic 
TAMs are reduced, and pro-tumorigenic PMN-MDSCs 
are recruited when CSF1R is inhibited [104]. Indeed, 
CSF1R suppression enabled tumor-infiltrating PMN-
MDSCs to be recruited by carcinoma-associated 
fibroblasts. Thus, CXCR2 inhibitors may augment the 
anti-cancer effects of CSF1R inhibition by preventing 
PMN-MDSCs recruitment [104].

TAMs are sensitive to profound and abrupt repro-
gramming in the presence of a CD40 agonist when 
CSF-1R signaling is inhibited. Despite the short window 
of macrophage hyperactivation, simultaneous CSF-1R 
inhibition plus CD40 stimulation is adequate to estab-
lish a pro-inflammatory TME that revives an efficient 
immune response for T-cell immune checkpoint therapy 

[105]. Likewise, CD40 agonist, combined with CSF-
1R, blockades reconditions TAMs and promotes potent 
anti-tumor immunity [106]. Activated macrophages 
with CD40 agonist invaded tumors immediately, were 
tumoricidal, and aided tumor stroma elimination [107]. 
In a pancreatic cancer mouse model, dendritic cell vac-
cination and CD40-agonist combined treatment enable 
T-cell-dependent anti-tumor immunotherapy [108].

A first in vivo evidence revealed that pharmacologi-
cal suppression of the PI3K p110δ subunit inhibits the 
growth of breast cancer by specifically targeting can-
cer cells and macrophages [109]. Li et al. indicated that 
TAM accumulation in the glioblastoma microenviron-
ment is suppressed by PI3K inhibition, which results in 
an extraordinary temozolomide response [110]. A pan-
PI3K inhibitor (SF1126) reduced VEGF and other pro-
angiogenic factors released by macrophages, blocking 
tumor-induced angiogenesis [111]. Joshi et al. demon-
strated anti-tumor immunity by macrophage Syk-PI3Kγ 
axis [112]. Additionally, tumor immunosuppression is 
relieved by SRX3207, a novel dual Syk-PI3K inhibitor 
[112]. Clotrimazole has anti-cancer characteristics in a 
mouse melanoma model, functioning as a PI3K inhibitor 
and causing TAMs to repolarize [113].

HDAC inhibition with trichostatin-A increases anti-
PD-L1-mediated tumor suppression and potentiates 
macrophage anti-tumor activity [114]. TMP195, an 
HDAC Class IIa inhibitor, may transform tumor-infiltrat-
ing monocytes and macrophages into cells able to sus-
tain a robust CD8+ T-cell-mediated anti-tumor immune 
response in breast cancer and reduce metastasis [115, 
116].

Immune checkpoint blockade (ICB)
The PD-1 and cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4) immune checkpoints are predominantly 
produced by effector immune cells, including T and NK 
cells. Targeting these molecules have exciting therapeutic 
potential by affecting myeloid biology [117, 118]. Because 
PD-L1 is expressed on MDSCs and TAMs, ICB using 
anti-PD-L1 may directly impact myeloid cell activities in 
TME [119]. There is a difference in response to PD-1 and 
PD-L1 inhibition in myeloid cells, with the latter leading 
to more potent immune responses by activating inflam-
masomes and expressing IL-18 [120]. The protective 
immune response to tumor cells requires inflammasome 
activation [121].

CD47SIRPα axis has been identified as a critical 
macrophage immune checkpoint. CD47 is a “don’t eat 
me” signal that is overexpressed in myeloid malignan-
cies and causes tumors to evade macrophage phago-
cytosis. CD47 blockade causes leukemic cells to be 
engulfed and therapeutically eliminated [122]. CD47 
blockade combined with trastuzumab eradicates 
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HER2-positive breast cancer cells while also overcom-
ing trastuzumab resistance [123]. Radioresistant breast 
cancer cells are eliminated when CD47 and HER2 are 
blocked [124].

Conclusion
According to the clinical and pre-clinical evidence, 
TAMCs play a dual role in cancer via anti-tumorigenic 
and pro-tumorigenic effects. TAMCs have pro-tumor-
igenic and immunosuppressive functions by different 
mechanisms including TGF-β and IL-10 anti-inflamma-
tory cytokine secretion, ROS production, and mediation 
of angiogenesis through VEGF and HGF production. 
Hence, TAMCs could be actively involved in cancer pro-
gression, and immune escape results in poor prognosis, 
adverse clinical outcomes, and a low response rate to can-
cer treatment. Although diverse cancer-related immuno-
therapies such as ICBs have been investigated, targeting 
promoting pathways orchestrated by myeloid cells could 
shed a light on a new therapeutic approach and may 
improve cancer immunotherapy. Blocking myeloid cells’ 
recruitment, macrophage population depletion, repro-
gramming of metabolism, and cellular signaling might 
be considered helpful strategies for repolarization and 
revival of tumor-promoting myeloid cells.
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