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Abstract 

Background: Ferroptosis is an iron-dependent mode of cell death that could be induced by erastin and exert antitu-
mor effects. However, the clinical and biological roles of ferroptosis-related gene (FRG) signature and the therapeutic 
value of erastin in multiple myeloma (MM) remained unknown.

Methods: Clinical and gene expression data of MM subjects were extracted from the Gene Expression Omnibus 
(GEO) public database. Univariable cox analysis was applied to determine FRGs related to survival and the least abso-
lute shrinkage and selection operator (LASSO) regression analysis was used to develop a prognostic model. Predic-
tion accuracy of the model was estimated by receiver operating characteristic (ROC) curves. Functional pathway 
enrichments and infiltrating immune status were also analyzed. We conducted in vitro experiments to investigate the 
combination therapy of erastin and doxorubicin.

Results: 17 FRGs were strongly associated with patient survival and 11 genes were identified to construct the prog-
nostic model. ROC curves indicated great predictive sensitivity and specificity of the model in all cohorts. Patients 
were divided into low- and high-risk groups by median risk score in each cohort and the survival of the low-risk group 
was significantly superior than that of the high-risk group. We also observed a close relevance between functional 
pathways and immune infiltration with risk scores. Moreover, we combined erastin and doxorubicin in our in vitro 
experiments and found synergetic antitumor effects of the two agents, and the underlying mechanism is the over-
generation of intracellular Reactive Oxygen Species (ROS).

Conclusions: We demonstrated the important value of ferroptosis in patient prognosis and as a potential antitumor 
target for MM.
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Introduction
Multiple myeloma (MM) is a malignancy derived from 
plasma cells, accounting for roughly 1% of neoplastic 
diseases [1]. The 5-year overall survival (OS) of MM 
is about 50%. However, with the application of novel 
therapies including proteasome inhibitors and immu-
notherapy, the prognosis of MM has greatly improved 
[2]. Several prognostic models incorporated with clini-
cal parameters or cytogenetic aberrations, such as the 
International Staging System (ISS) and the Revised 
International Staging System (R-ISS), were traditionally 
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applied in risk stratification of MM [3, 4]. However, 
there is complex mechanism under the pathogenesis of 
MM, and some molecular changes are closely associ-
ated with the occurrence and clinical outcomes of the 
disease [5, 6]. Identifying novel biomarkers for new 
prognostic models is conductive to better risk strati-
fication and targeted treatment. Recently, more and 
more studies have shown that prognostic models based 
on gene signature exhibited superior survival predic-
tion in various malignancies, including hematological 
neoplasms [7, 8].

Ferroptosis, first proposed in 2012, is an iron-
dependent mode of cell death characterized by the dis-
order of lipid and iron metabolism [9]. The occurrence 
of lipid peroxidation and the accumulation of intracel-
lular iron leads to the excessive production of reactive 
oxygen species (ROS), which induces cell damage and 
inhibits tumor growth [9, 10]. Inducing ferroptosis has 
emerged as a promising therapy for neoplastic diseases, 
especially those resistant to conventional chemother-
apy regimens [11–13]. In addition, numerous genes 
were reported as important regulator of ferroptosis, 
and a large number of data have shown that ferropto-
sis-related gene (FRG) signature could accurately pre-
dict survival outcomes of various malignancies, such as 
hepatocellular carcinoma, breast cancer, bladder cancer 
and glioma [7, 14–16]. However, there were few data 
about the role of ferroptosis in myeloma. To our knowl-
edge, no FRG prognostic model has been developed for 
MM. In this study, we identified FRGs that closely asso-
ciate with prognosis of MM patients and constructed a 
prognostic model with remarkable prediction accuracy. 
We also explored the gene enriched pathways and the 
relevance between the model and tumor immunity. The 
prognostic model provides a promising prospect for 
the diagnosis, survival prediction and novel therapeutic 
strategies of MM.

Methods
Data acquisition
The mRNA expression levels and clinical data of MM 
subjects were retrieved from 3 datasets in the GEO data-
base (http:// www. ncbi. nlm. nih. gov/ geo/). GSE136337 
was retrieved as the training cohort, while GSE24080 
and GSE57317 the external validation cohorts. In addi-
tion, differential gene expression information between 
normal and tumor tissues was obtained from GSE6477 
and GSE118985. Totally, 213 known FRGs through the 
FerrDb database (http:// www. zhoun an. org/ ferrdb/) [17] 
or reported by relevant literatures [18–20] were acquired 
for subsequent analyses. All data were available in public 
database and ethical approval was not required.

Prognostic model construction and validation
Univariable cox regression analysis was performed to 
determine the FRGs significantly related to MM survival 
with P < 0.05. Then, we apply the least absolute shrink-
age and selection operator (LASSO) analysis with “glm-
net” R package to construct a prognostic gene model. 
The quintessential penalty parameter λ of the model were 
determined according to the minimum criterion through 
tenfold cross verification. The risk score of a subject 
was equal to the sum of the expression level of selected 
genes multiplied by the corresponding weighting coef-
ficients. Survival analyses between different risk groups 
were accessed by Kaplan–Meier curves. Receiver oper-
ating characteristic (ROC) curves and areas under ROC 
curves (AUROC) were employed to estimate prediction 
accuracy.

Functional analysis
Functional pathways were explored by the GSEAv4.0.2 
software (http:// softw are. broad insti tute. org/ gsea/ login. 
jsp) using the c2.cp.kegg.v7.0.symbols gene sets. Sta-
tistical significance was defined as NOM P < 0.05. We 
accessed the protein interaction network by Gene cloud 
biotechnology information (GCBI) and used the cBioPor-
tal for Cancer Genomics (http:// www. cbiop ortal. org/) to 
study FRGs mutant profile in the Cancer Cell Line Ency-
clopedia database (CCLE, https:// porta ls. broad insti tute. 
org/ ccle). Infiltration scores of immune cells and molec-
ular pathways were computed by single-sample gene set 
enrichment analysis (ssGSEA) [21].

Cell lines and agents
The well-established MM cell lines H929 and RPMI-8226 
were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA) and cultured at 37 ℃, 
5%  CO2 humid incubator with RPMI1640 medium (ESs-
cience, Shanghai, China) supplemented by 10% FBS, 
penicillin and streptomycin each 100 IU/mL. Erastin and 
doxorubicin were purchased from Selleck. Erastin was 
dissolved in dimethyl sulfoxide (DMSO) to 10  mM and 
doxorubicin was dissolved in culture medium to 1 mM, 
and then both were stored at −80 ℃.

Cell viability and cell death assays
Cells were planted in 96-well plates with 8000 cells per 
well and treated with specified concentration of each 
group of agents for 48  h. Then, the cell counting kit-8 
(CCK8; APExBIO, America) was used to measure cell 
viability. According to the manufacture’s instruction, cells 
were added with 10  μL/well CCK8 reagent. After incu-
bated at 37 ℃ for 2–3 h, values at 450 nm was recorded 
with a microplate reader. Besides, we treated cells with 
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single or combined agents for 48  h and performed 5‐
ethynyl‐2′‐deoxyuridine (EdU) proliferation assay (Beyo-
time, Nanjing, China) following manufacture’s protocol. 
The cell proliferation was visually observed under fluo-
rescence microscopy.

Cell death was detected with Annexin V-FITC/PI assay 
kit (ESscience, Shanghai, China). After 48  h pre-treat-
ment of agents, cells were collected and washed twice in 
pre-chilled PBS. With cells resuspended in 500 μL bind-
ing buffer and stained by Annexin V-FITC/PI in the dark 
for 10–15  min according to directions, detections were 
progressed by flow cytometry.

ROS assay
The intracellular Reactive Oxygen Species (ROS) level 
was tested by DCFH-DA fluorescent probe of ROS assay 
kit (Solarbio, Guangzhou, China). Cells pre-treated with 
specified agents for 48  h were harvested at 1000  rpm, 
5 min and loaded with fluorescent probes. Results were 
measured by fluorescence microscopy and fluorescence 
microplate reader.

Western blot
After incubating with different groups of drugs for 48 h, 
the cells were collected and protein was extracted with 
RIPA lysis buffer supplemented with protease and phos-
phatase inhibitors. Then the protein was separated by 
SDS-PAGE electrophoresis, transferred to polyvinylidene 
fluoride (PVDF) membranes and incubated with the cor-
responding primary antibody (β-actin, GPX4, SLC7A11, 
Keap1, KRAS, ERK, Raf ) and peroxidase-conjugated sec-
ondary antibody.

ATP assay
Cells were collected after pre-treatment and ATP were 
extracted and measured by a firefly luciferase-based ATP 
assay kit (Beyotime, Nanjing, China) according to manu-
facturer’s protocol.

Statistical analysis
The differences of OS between low- and high-risk groups 
were compared by Kaplan–Meier curves and log-rank 
tests with “survival” R package. Univariable and multivar-
iable cox regression was applied to determine independ-
ent prognostic factors with “survminer” R package. All 
statistical analysis was performed using R software (ver-
sion 3.6.1). The combination indexes (CI) were calculated 
by CompuSyn software [22]. CI values < , = , or > 1 repre-
sent synergistic, mean additive or antagonistic effects of 
agents, respectively. Statistical significance was defined 
with a two-sided P < 0.05.

Results
Selection of cohorts and baseline characteristics
1040 patients in 3 cohorts with available gene expression 
and survival information were utilized in the study. The 
training cohort from GSE136337 dataset for develop-
ing the prognostic gene model and one external valida-
tion cohort from GSE24080 dataset had adequate data 
of baseline clinical characteristics, while another valida-
tion cohort from GSE57317 dataset did not. The baseline 
characteristics were shown in Table 1.

Development and validation of the prognostic gene model
17 FRGs closely associated with OS of MM patients in 
the GSE136337 dataset were identified by univariable cox 
analysis (Fig.  1A). Next, the lasso regression analysis was 
applied to choose the 11 optimal genes related to progno-
sis and develop the prognostic model (Additional file  1: 
Table  S1, Fig.  1B and C). Comparisons of the expression 
level of these genes in normal and tumor tissues were dis-
played in Additional file  2: Figure S1. ATG7, AURKA, 
HMOX1 and TF showed a lower expression while VDAC2 
showed a higher expression in MM than normal tissue 
in both GSE6477 and GSE118985 datasets. The proteins 
potentially related with the model and protein interac-
tions were studied by GCBI analysis (Fig. 1D). The expres-
sion and mutation profile of these genes by cBioPortal 
analysis was displayed in Additional file 3: Figure S2. The 
following formula is for calculating the risk scores: risk 
score = (−0.4358 × expression level of ATG7) + (0.3907 × expres-
sion level of AURKA) + (0.1889 × expression level of FH)  
+ (0.3740 × expression level of G6PD) + (−0.0624 × expres-
sion level of HMOX1) + (−0.2988 × expression level of LPIN1) 
 + (−0.4663 × expression level of MAPK8) + (0.1110 × expres 
sion level of NQO1) + (−0.5460 × expression level of TF) +  
(0.0926 × expression level of TXNRD1) + (0.2743 × expression 
level of VDAC2). Higher risk scores were related to worse 
clinical presentations in the training cohort (Additional  
file 4: Figure S3). We applied the median risk scores in the 
training (Fig. 2A) and two validation (Fig. 2B and C) cohorts 
to separate patients into low- and high-risk groups. The 
5-year OS of the low-risk group (86.8%, 95% confidence 
interval CI 82.3–91.3%) was significantly superior than 
that of the high-risk group (58.9%, 95% CI 52.2–65.6%, 
P < 0.0001) in the training cohort (Fig. 2D). Significant dif-
ferences in survival between low- and high-risk groups were 
also observed in two validation cohorts (P < 0.05, Fig. 2E and 
F). Time-dependent ROC analysis showed that AUROCs in 
the training cohort (Fig. 2G) at 1-, 2-, 3-, 5- and 7-year were 
0.703, 0.676, 0.727, 0.747 and 0.754, respectively, which indi-
cated great sensitivity and specificity in survival prediction 
of the gene model. Comparing AUROC results in the valida-
tion cohorts were shown in Fig. 2H and I.
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Table 1 Baseline characteristics of the training and validation cohorts

Characteristics Training cohort GSE136337 (n = 426) Validation cohort GSE24080 (n = 559) Validation cohort 
GSE57317 (n = 55)

Gender

 Male 261 (61%) 337 (60%) –

 Female 165 (39%) 222 (40%) –

Age (years)

  ≤ 65 307 (72%) 432 (77%) –

  > 65 119 (28%) 127 (23%) –

Albumin (g/dL)

  < 3.5 88 (21%) 77 (14%) –

  ≥ 3.5 337 (79%) 482 (86%) –

 NA 2 – –

β2M (mg/L)

  < 3.5 187 (45%) 319 (57%) –

 3.5–5.4 111 (26%) 120 (22%) –

  ≥ 5.5 121 (29%) 119 (21%) –

 NA 7 1 –

LDH (U/L)

  ≤ 250 398 (94%) 509 (91%) –

  > 250 24 (6%) 50 (9%) –

 NA 4 – –

ISS

 I 168 (40%) 294 (53%) –

 II 135 (32%) 144 (26%) –

 III 121 (28%) 120 (21%) –

 NA 2 1 –

RISS

 I 83 (20%) – –

 II 270 (64%) – –

 III 66 (16%) – –

 NA 7 – –

Risk

 Low 213 (50%) 280 (50%) 28 (51%)

 High 213 (50%) 279 (50%) 27 (49%)

Transplant(s)

  < 3 331 (78%) – –

  ≥ 3 95 (22%) – –

Del(13q)

 TRUE 77 (18%) – –

 FALSE 349 (82%) – –

Del(11q)

 TRUE 8 (2%) – –

 FALSE 418 (98%) – –

Del(17p)

 TRUE 15 (4%) – –

 FALSE 411 (96%) – –

Del(16q)

 TRUE 14 (3%) – –

 FALSE 412 (97%) – –

Del(1p32)

 TRUE 85 (20%) – –



Page 5 of 15Fu et al. Cancer Cell International          (2022) 22:326  

Establishment and validation of the predictive nomogram
We included several baseline clinical characteristics and 
risk score into univariable and multivariable cox analy-
ses to identify the independent prognostic factors in 
the training cohort. In the univariable analysis, higher 
age, ISS, RISS and risk score were associated with worse 
OS. Age, ISS and risk score were still independent pre-
dictors of OS in the multivariable analysis (Fig. 3A) and 
were used to establish the nomogram shown in Fig. 3B. 
Calibration plots showed excellent consistency of the 
nomogram-predicted and actual probability of 3-, 5-, 
7-year OS in both training and the GSE24080 validation 
cohorts (Fig.  3C and D). The AUROC of the risk score 
was 0.721 (95% CI 0.673–0.769; Fig.  3E) in the training 
cohort, which was significantly higher than that of age 
(0.586, 95% CI 0.543–0.630; P < 0.001) and ISS (0.608, 
95% CI 0.557–0.660; P < 0.001). In the GSE24080 cohort, 
AUROC of the risk score (0.630, 95% CI 0.579–0.682; 
Fig. 3F) was significantly higher than that of age (0.517, 
95% CI 0.478–0.555; P < 0.001).

Functional analysis in 3 cohorts
We performed GSEA analysis to identify the biologi-
cal functions and signaling pathways related to risk 
score. Several biological processes and pathways that 

associated with ferroptosis such as oxidative phospho-
rylation and RAS signaling pathway were enriched in 3 
cohorts (Fig. 4A, B and C). In addition, some immune-
related cellular functions and molecular signaling were 
identified in the GSE24080 and GSE57317 cohorts, 
which include complement and coagulation cascades, 
cell adhesion molecules, hematopoietic cell lineage, 
cytokine-cytokine receptor interaction and rap1 sign-
aling pathway (Fig.  4B and C). Therefore, ssGSEA was 
conducted to investigate the association of immune 
cell (Fig. 5A, B and C) and immune function (Fig. 5D, 
E and F) enrichment with risk score. In the training 
cohort, the enrichment scores of aDCs, DCs, NK_cells, 
T_helper_cells, Th1_cells and TIL in low-risk group 
were significantly different from that in high-risk 
group. In the GSE57317 validation cohort, the low-risk 
group has higher enrichment scores of DCs, Mast_cells 
and NK_cells than the high-risk group. The scores of 
CCR, Check-point, T_cell_co-stimulation and Type_
II_IFN_Reponse were significantly different between 
the low- and high-risk group from both training and 
GSE57317 validation cohort. However, no difference of 
immune status was observed between the two groups 
in GSE24080 cohort.

Table 1 (continued)

Characteristics Training cohort GSE136337 (n = 426) Validation cohort GSE24080 (n = 559) Validation cohort 
GSE57317 (n = 55)

 FALSE 341 (80%) – –

Myc(8q24)

 TRUE 20 (5%) – –

 FALSE 406 (95%) – –

t (11,14)

 TRUE 22 (5%) – –

 FALSE 404 (95%) – –

t (12,14)

 TRUE 1 (1%) – –

 FALSE 425 (99%) – –

t (14,16)

 TRUE 1 (1%) – –

 FALSE 425 (99%) – –

t (14,20)

 TRUE 1 (1%) – –

 FALSE 425 (99%) – –

Hyperdiploid

 TRUE 85 (20%) – –

 FALSE 341 (80%) – –

Survival status

 Alive 243 (57%) 387 (69%) 43 (78%)

 Dead 183 (43%) 172 (31%) 12 (22%)
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Fig. 1 Development of the prognostic model based on FRGs in the training cohort. A A forest plot showing the FRGs associated with OS according 
to univariable cox analysis. B Variable selection by lasso regression analysis with 1000 bootstrap replicates. C LASSO coefficients of FRGs. D The 
protein–protein interactions among the model related proteins and the other proteins. Green, protein interaction; orange, activation; red, activate 
expression; purple, phosphorylation; grey pink, indirect relation; blue, inhibition. The circle size represents the number of interacting proteins that 
are linked to a specific protein (the bigger the circle size, the more interacted proteins)
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Combination of erastin and doxorubicin synergistically 
inhibited cell proliferation, induced cell death 
and stimulated ROS accumulation
Erastin is a well-studied ferroptosis inducer that works 
by binding to VDAC2 to induce excessive ROS produc-
tion. Co-treatment of erastin and doxorubicin syner-
gized in inhibition of cell proliferation and induction 
in cell death. The  IC50 values of erastin in H929 and 

RPMI-8226 cell lines tested by CCK8 assay were 26.94 
and 9.56 uM, respectively. Corresponding  IC50 values 
of doxorubicin were 0.425 and 0.458 uM. Combination 
of the two drugs synergistically inhibited cell viabil-
ity (Fig.  6A and B) with CI values < 1 (Fig.  6C and D). 
The results were confirmed by EdU assay. As shown 
in Fig.  6E and F, after 48  h of erastin and/or doxoru-
bicin treatment, the number of EdU-positive cells in 

Fig. 2 Validation of the prognostic model based on FRGs. A–C Risk score distribution and survival status; heat maps showing the distribution of 
risk scores under different gene expression in MM. D–F K-M curves indicated a superior survival of the low-risk group than the high-risk group. G–I 
Time-dependent ROC curves used to measure OS prediction accuracy of the prognostic model
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Fig. 3 Establishment and validation of a predictive nomogram. A Univariable and multivariable cox analyses to determine the independent 
predictors for OS. B The nomogram for 3-, 5-, 7-year OS prediction. C–D Calibration plots for 3-, 5-, 7-year OS prediction of the nomogram. E–F ROC 
curves for comparing prediction accuracy among independent predictors of the nomogram
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Fig. 4 A–C The most significant enrichment of KEGG pathways in three cohorts
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co-treatment group was significantly reduced than that 
in erastin or doxorubicin monotherapy group, which 
indicated a significant inhibition of DNA synthesis 
by the combination. Flow cytometry also showed an 
increasing cell death with co-treatment than mono-
therapies (Fig.  7A and B). ROS production is the piv-
otal cytotoxic mechanism of ferroptosis. As the results 
shown by fluorescence microplate reader (Fig.  8A and 
B), either erastin or doxorubicin may promote the gen-
eration of intracellular ROS in MM cell lines. However, 
combination of the two drugs significantly stimulated 
the accumulation of ROS. Similar results were observed 
by fluorescence microscopy (Fig.  8C and D). We 
detected the protein level of several ferroptosis-related 
markers to investigate the potential molecular mecha-
nism between the drug combination, ROS production 
and ferroptosis. The protein level of GPX4 and Keap1 
was significantly decreased while the SLC7A11 protein 
level was increased in MM cell lines after treated with 
erastin and doxorubicin (Fig.  8E and F). Furthermore, 
changes of RAS signaling pathway and intracellular 
ATP levels were detected. An increase of Raf protein 
level while a decrease of ERK and KRAS protein level 
(Additional file  5: Figure S4A and B), and an elevated 

ATP level (Additional file  5: Figure S4C and D) were 
observed after drug(s) administration.

Other small‑molecule gene inhibitors sensitizing MM cell 
lines to doxorubicin
G6PD and NQO1 are ferroptosis-related genes that 
also associate with poor survival in the gene model. 
Polydatin is a small-molecule inhibitor for G6PD, and 
dicoumarol is an inhibitor for NQO1. Both polydatin 
and dicoumarol were observed to sensitize the inhibi-
tory proliferation effect of doxorubicin in MM cell lines 
(Additional file 6: Figure S5).

Discussion
MM is a common hematological malignancy. Various 
factors including patient physical condition, tumor bio-
logical behavior, cytogenetic abnormalities and gene 
expression profile were associated with survival out-
comes of MM patients [23, 24]. The widely recognized 
prognostic models currently ISS and RISS have con-
sidered the relation of many crucial co-variates with 
patient survival. However, there were only few studies 

Fig. 5 Comparison of ssGSEA scores between different risk groups in three cohorts. Boxplots exhibiting the scores of 16 immune cells A–C and 13 
immune-related functions D–F 
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on the prognostic impact of gene expression profiles in 
MM at present.

Ferroptosis is a type of cell death mediated by iron-
dependent peroxidation, which has been demonstrated 
to exert antitumor effect in multiple malignancies [25, 
26]. In this study, we incorporated FRGs that associated 
with MM survival to develop a prognostic model, which 
was more accurate in survival prediction than ISS. Fur-
thermore, the gene expression profile of MM involved 

in this study provided an upfront foundation and prom-
ising targets for the exploration of novel drugs. ATG7, 
HMOX1, LPIN1, MAPK8 and TF were positively while 
AURKA, FH, G6PD, NQO1, TXNRD1, VDAC2 were 
negatively correlated with survival. Particularly, VDAC2 
was highly expressed in tumor tissues relative to normal 
tissues (Additional file  2: Figure S1). VDAC2 is a com-
ponent of voltage-dependent anion channels (VDAC) 
on the outer membrane of mitochondria and plays an 

Fig. 6 Synergistic effects in inhibiting cell proliferation of the agents. Constant ratio analysis indicated that combination treatment synergistically 
inhibited cell viability as measured by CCK8 assay after pre-treating H929 A and RPMI-8226 B cell lines with specified concentration of erastin 
and/or doxorubicin for 48 h. C–D Fraction-affected (Fa) and CI are explored after 48 h pre-treatment with erastin and doxorubicin combination, 
CI < 1 represents synergy. EdU results observed with fluorescence microscopy after E H929 cells were treated with DMSO, erastin (15 μM) and/or 
doxorubicin (0.2 μM) and F RPMI-8226 cells were treated with DMSO, erastin (5 μM) and/or doxorubicin (0.3 μM) for 48 h. scale bar = 100 μm
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important role in cell metabolism and cell death by regu-
lation of the substance exchanges between cytoplasm and 
mitochondria [27]. The ferroptosis inducer erastin works 
by binding to VDAC2, keeping VDAC opening and alter-
ing mitochondrial membrane permeability, resulting in 
the increase of mitochondrial metabolism and ROS pro-
duction [28].

Doxorubicin is a classical chemotherapy agent for 
the treatment of MM. Combination with effective 

small-molecule drugs would help enhance the cyto-
toxic effect of low-dose doxorubicin against tumor cells, 
exerting desirable antitumor effects and alleviating the 
toxic side effects of doxorubicin [29]. Several studies 
have shown that doxorubicin alone or combination with 
other agents was able to induce production of ROS [30, 
31]. Our in vitro experiments have proved the synergistic 
effect of erastin and doxorubicin against MM cell lines. 
The underlying mechanism is the overgeneration of ROS 

Fig. 7 Cell death measured by flow cytometry after A H929 cells were treated with DMSO, erastin (15 μM) and/or doxorubicin (0.2 μM) and B 
RPMI-8226 cells were treated with DMSO, erastin (5 μM) and/or doxorubicin (0.3 μM) for 48 h
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Fig. 8 Intracellular ROS production assessed by fluorescence microplate reader A–B or fluorescence microscopy C–D after H929 cells were treated 
with DMSO, erastin (15 μM) and/or doxorubicin (0.2 μM) and RPMI-8226 cells were treated with DMSO, erastin (5 μM) and/or doxorubicin (0.3 μM) 
for 48 h. The protein level of GPX4, SLC7A11 and Keap1 E–F analyzed by western blot after H929 or RPMI-8226 cells were treated with DMSO, erastin 
and/or doxorubicin
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with much higher intracellular ROS level in the combina-
tion group.

Additionally, the molecular mechanisms have also 
been preliminarily studied. Erastin was shown to inac-
tivate Glutathione peroxidase 4 (GPX4) by inhibit-
ing System Xc- and GSH production [32]. GPX4 was 
identified as a core ferroptosis regulator that main-
tains membrane lipid layer homeostasis by reducing 
lipid peroxide toxicity. Inactivation of GPX4 results in 
the accumulation of intracellular peroxides, produc-
tion of ROS and triggering ferroptosis [12, 32]. The 
significantly decreasing protein level of GPX4 after 
supplement of erastin and doxorubicin may be one of 
the probable molecular mechanisms for ROS accu-
mulation and ferroptosis in this study. Indeed, eras-
tin induced a decrease of Keap1 protein level in our 
experiments, which was consistent with previous study 
[33], and drug combination seemed to exacerbate the 
change. Sun et.al explained an increasing interaction of 
p62 and Keap1 after treating hepatocellular carcinoma 
cells with erastin [33], but the inherent mechanism of 
our study needs further investigation. An increasing 
SLC7A11 protein level after drug treatment could be 
interpreted as an adaptive reaction to the suppression 
of system  Xc− by erastin [34, 35].

It has been reported that erastin keeps the opening of 
VDAC to exacerbate the influx of respiratory subjects 
into the mitochondria, which increases mitochondrial 
metabolism and generates abundant ATP to inhibit 
glycolysis [36]. The elevated intracellular ATP level 
preliminarily indicated an increasing mitochondrial 
metabolism and oxidative phosphorylation (OXPHOS) 
driven by erastin treatment in our study.

There still exist several limitations in our study. First, 
the data for the prognostic model were retrospectively 
retrieved from public databases, which needs to be fur-
ther verified by evidence from real-world and prospective 
studies. Second, there is an inevitable intrinsic disadvan-
tage in predicting survival by only one signature related 
prognostic gene model, and genes involving other char-
acteristics are needed to refined the model. Next, further 
mechanisms such as changes in RAS signaling pathway 
and OXPHOS level caused by erastin still need to be 
studied in the future. Finally, the results of in vitro exper-
iments also need to be confirmed by in vivo experiments.

To sum up, we developed a prognostic model for MM 
including 11 FRGs, which exhibited great prognostic 
accuracy in both training and validation cohorts. Moreo-
ver, a synergistic effect of the ferroptosis inducer erastin 
and the classical chemotherapeutic agent doxorubicin 
was illustrated in vitro. These results indicated ferropto-
sis could serve as a measurement in survival prediction 
and an antitumor target for MM, which would assist in 

patient diagnosis and prognosis, and design of clinical 
trials. Furthermore, the study also provided a preliminary 
foundation for mechanism research on ferroptosis.
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