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Introduction
Long non-coding RNAs (lncRNAs) comprise different 
species of RNA which exceed 200 nucleotides that are 
not usually translated into proteins (limited protein-
coding capacity) [1]. They modulate the gene expression 
at various levels, including transcriptional, post-tran-
scriptional, and epigenetic processing [2, 3]. Addition-
ally, growing evidence has revealed that lncRNAs could 
play an important role in various cancers by regulat-
ing oncogenes or tumor-suppressors, or even harboring 
oncogenic and tumor-suppressing effects, representing 
a new class of cancer biomarkers and therapeutic targets 
[4–8]. Dysregulation of lncRNAs normally affects cellular 
functions such as apoptosis resistance, cell proliferation, 
tumor suppressor evasion, metastasis promotion, and 
angiogenesis activation in tumorigenesis [9–11], reported 
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Abstract
Background Long non-coding RNAs (lncRNAs) are involved in a variety of mechanisms related to tumorigenesis 
by functioning as oncogenes or tumor-suppressors or even harboring oncogenic and tumor-suppressing effects; 
representing a new class of cancer biomarkers and therapeutic targets. It is predicted that more than 35,000 ncRNA 
especially lncRNA are positioned at the intergenic regions of the human genome. Emerging research indicates that 
one of the key pathways controlling lncRNA expression and tissue specificity is epigenetic regulation.

Methods In the current article, a novel approach for lncRNA discovery based on the intergenic position of most 
lncRNAs and a single CpG site methylation level representing epigenetic characteristics has been suggested.

Results Using this method, a novel antisense lncRNA named LINC02892 presenting three transcripts without the 
capacity of coding a protein was found exhibiting nuclear, cytoplasmic, and exosome distributions.

Conclusion The current discovery strategy could be applied to identify novel non-coding RNAs influenced by 
methylation aberrations.
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in breast cancer [12], glioblastoma [13], liver cancer [14], 
leukemia [15], colorectal cancer (CRC) [6] and several 
other cancers [16]. Their expression and function can 
be influenced by mutation [17] or epigenetic changes, 
including DNA methylation [8]. Epigenetic modifications 
have key roles in cancer biology and cell growth [18–20]. 
Recent studies of DNA methylation analysis in tumor 
cells have identified several thousand differential methyl-
ated regions (DMRs) [21] with less than 3% mapped to 
promoters. The majority of DMRs are found in introns 
or intergenic regions [22]. It is widely known that tumor 
cells display global demethylation of intergenic regions 
expressing large hypomethylation across different types 
of tumors [21, 23–25]. Of note, one potential function 
of intergenic DMRs is to regulate the non-coding RNA 
(ncRNA) expression [22]. It is predicted that more than 
35,000 ncRNA especially lncRNA are positioned at the 
intergenic regions [26]. Emerging research indicates that 
one of the key pathways controlling lncRNA expression 
and tissue specificity is epigenetic regulation [27, 28]. 
Similar to germline genetic mutations, constitutive aber-
rant methylation may serve as the first hit (according to 
Knudson’s model of tumor development) in patients with 
cancer [29] especially at the intergenic regions. Changes 
in methylation could be due to single CpG methylation 
errors at different positions [30].

We have previously suggested an algorithm to identify 
methylated CpG sites (accessible in GitHub through the 
following link: https://github.com/Genetics-Research-
Laboratory-RROC/Candidate_Primer_Region_Finder) 
using methylation-sensitive high resolution melting 
(MS-HRM), on data from methylation next-genera-
tion sequencing (mNGS). It is feasible that methylation 
aberrations in crucial single CpG sites could impact 
the function of the lncRNA similar to single nucleotide 
polymorphisms (SNPs) of lncRNAs, leading to different 
impacts on its expression and function [31–33]. There-
fore, in this article based on the intergenic position of 
lncRNAs and single CpG site methylation, an approach 
for novel lncRNA discovery linked to tumorigenesis 
is suggested. The newly discovered lncRNA would be 
attributed to the analyzed cancer type. Furthermore, we 
used bioinformatics tools and laboratory experiments to 
identify and validate the novel lncRNAs.

Materials and methods
Identification and validation of single CpG epimutation
Single CpG epimutations were identified by mNGS [34] 
and verified by MS-HRM assay. Briefly, a CpG site dis-
covery step was performed based on unbiased methy-
lome sequencing using SureSelectXT Methyl-Seq in 
CRC and control groups (six individuals each) using an 
algorithm to identify methylated CpG sites accessible in 
GitHub through the following link: https://github.com/

Genetics-Research-Laboratory-RROC/Candidate_Primer_
Region_Finder. Then, specific primers for bisulfite-con-
verted sequences were designed (MethPrime 2.0 software 
package) and synthesized (Metabion, Germany). Prior to 
use, MS-HRM assays were evaluated on methylated and 
unmethylated bisulfite converted control DNA and the opti-
mal annealing temperatures were determined empirically.

For biological validation of the identified CpG sites, 
genomic DNA were isolated from formalin-fixed paraf-
fin-embedded )FFPE( (40 cancerous and 40 normal colon 
tissues) and fresh (28 cancerous and 28 normal colon tis-
sues) samples using QIAamp DNA FFPE Tissue Kit and 
QIAamp Fast DNA Tissue kit, respectively (Qiagen, Ger-
many). All patients gave written informed permission 
to retain and analyze their samples for purposes of this 
study. The procedures and protocols in the present study 
were approved by the regional ethics committee. Subse-
quently, DNA was bisulfite-converted using EpiTect Fast 
Bisulfite Conversion Kit (Qiagen, Germany) according to 
the manufacturer’s instructions and amplified using the 
LightCycler 96 (Roche, Mannheim, Germany).

Identification of novel long non-coding RNA
RNA-Seq data analysis
RNA-Seq dataset for normal and colon cancer was obtained 
from the NCBI Sequence Read Archive (SRA) database 
(http://www.ncbi.nlm.nih.gov/sra), using the accession 
number SRR2089755 [35]. The raw reads were processed 
by removing the low-quality sequences (< 10% ‘N’ bases and 
> 85% QA > 20 bases) and ribosomal sequences with Tophat 
[36]. All subsequent analyses were performed using clean 
reads. Clean reads were aligned to the GRCh38 reference 
genome using Tophat [36], during which only 2 mismatches 
and 2 gaps were allowed for each reading. The mapped 
reads were then assembled using Cufflinks [37] to identify 
the known and novel transcripts.

In-silico discovery of novel lncRNA
We screened for potential lncRNAs on genome confined 
to the discovery CpG sites, based on the following filter 
criteria: (1) length > 200 nucleotides (nt); (2) open reading 
frame (ORF) length < 400 nt; (3) no match to PFAM pro-
tein families database [38] (E value > 1e-5); (4) iSeeRNA 
[39] non-coding scoreL > 0.5; and (5) the Coding Potential 
Assessment Tool (CPAT) [40] coding probability > 0.375; 
(6) removal of the transcripts mapped within the 1  kb 
flanking regions of an annotated gene. Gene expression 
level was measured by the number of uniquely mapped 
reads per kilobase of exon region in a gene per million 
mappable reads (RPKM) [41].

For annotation of the novel lncRNA, the ncRNA 
sequence database (RNAcentral) [42] was used to align 
the lncRNA to screen for any sequence homology.

https://github.com/Genetics-Research-Laboratory-RROC/Candidate_Primer_Region_Finder
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http://www.ncbi.nlm.nih.gov/sra
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In-silico evaluating the coding potentiality of lncRNA
Among the tools for evaluating coding potential, CPAT 
[40], CPC (Cording-Potential Calculator) [43], and RNA-
code [44] were used for the evaluation of the coding 
potentiality of the novel lncRNAs.

In-silico subcellular localization
Subcellular localization of lncRNAs was predicted using 
iLoc-LncRNA [45] and lncLocator [46].

Experimentally validation of the novel lncRNA
Tissue expression of novel lncRNA
For experimental validation of the RNA-Seq results, 
a total RNA from 40 to 40 FFPE cases (cancerous) and 
control (normal) tissues, CRC cell lines (Caco-2, HCT 
116, HT-29, SW480, and SW48) purchased from Pasteur 
Institute of Iran, were isolated using RNeasy FFPE kit 
(Qiagen, Germany) and AcuZol (Bioneer, South Korea), 
respectively. cDNA was synthesized using the Rock-
etScript RT premix (Bioneer, Korea). The gene-specific 
primer targeting the novel lncRNA and GAPDH (as a 
reference gene) were designed (by primer premier 6.0 
software) and synthesized (Eurofins, Germany). Reverse 
Transcription Quantitative PCR (RT-qPCR) reaction 
was carried out using HOT FIREPol qPCR mix with 
EvaGreen (Solis BioDyne- Estonia) on the LightCycler 96 
(Roche, Mannheim, Germany) and all experiments were 
conducted in duplicate for each sample and performed 
according to the digital MIQE guidelines [47].

Sequencing of the novel lncRNA
The full-length lncRNA was obtained using the 5’- and 
3’-RACE System for Rapid Amplification of cDNA Ends 
(RACE) standard method [48]. PCR products were sepa-
rated on a 3% agarose gel. Gel products were extracted 
with a Gel Extraction kit (Bioneer, South Korea), cloned 
into pTZ57R/T vector, and sequenced by directionally 
using M13 forward and reverse primers.

Protein coding potentiality
The novel lncRNA named “Long intergenic non-protein 
coding RNA 2892 (LINC02892)” cDNA was synthesized 
from HT29 cells by RT-PCR. For the test of the protein-
coding potentiality of LINC02892, the enhanced green 
fluorescent protein (EGFP) coding sequence was inserted 
into the 3’ end of the putative LINC02892 open reading 
frame (ORF), and the fusion gene LINC02892-EGFP was 
cloned into the restriction sites; Nhe I and Xho I of plas-
mid pcDNA3.1 (Invitrogen, California, USA). Then, plas-
mid transfections were performed using Lipofectamine 
2000 (Invitrogen, California, USA) and GFP expression 
was measured by fluorescence microscopy images.

Cellular fractionation and organelle isolation
A total of 1 × 106 cells were washed twice in cold phos-
phate buffered saline (PBS) and then incubated in 
hypotonic buffer (50 mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES), pH 7.5, 10 mM KCl, 
350 mM sucrose, 1 mM ethylenediaminetetraacetic acid 
(EDTA), 1 mM dithiothreitol (DTT), and 0.1% Triton 
X-100) on ice for 10 min. After 5 min of centrifugation at 
2,000 g, the supernatant was collected as the cytoplasmic 
fraction, and after additional washing, the remainder was 
considered as nuclear pellets, which was resuspended 
in lysis buffer (10 mM HEPES, pH 7.0, 100 mM KCl, 5 
mM MgCl2, 0.5% NP-40, 10 µM DTT and 1mM phenyl-
methanesulfonyl fluoride (PMSF)) to prepare the nuclear 
lysate. Cytoplasmic fraction was then centrifuged in an 
ultracentrifuge at 100,000 g at 4 °C for 40 min to pellet the 
exosomes. The supernatant was carefully removed, and 
the crude exosome-containing pellets were resuspended 
in 1 mL of ice-cold PBS. The second round of ultracen-
trifugation (100,000 g at 4 °C for 40 min) was carried out, 
and the resulting exosome pellet was resuspended in 500 
µL of PBS. In addition, transmission electron microscope 
(TEM) study was performed according to standard tech-
niques [49] to corroborate the presence of exosomes.

Results
The current study was inspired and extended by our pre-
vious work, in which SureSelectXT assay and methyla-
tion array observations revealed two-track methylation 
shifts for ‘potentially functioning’ sites like CpG islands 
(CGIs), CPG shores, promoters, 5’- from other ‘relatively 
non-functioning intergenic sites [34]. As results, the algo-
rithm found 194 regions and the two best locations with 
the highest differential methyaltion rates between case 
and control groups were subjected for lncRNA discovery.

In this study, we discovered a novel lncRNA termed 
“LINC02892”. In order to characterize and verify the 
newly discovered lncRNAs, we used bioinformatics 
instruments and laboratory experiments to offer a path to 
discover lncRNA based on a single epimutation. Our path 
would be different with the general RNA-Seq searching 
publishes every day for lncRNA discovery (Fig. 1, Road-
map to detect lncRNA).

Validation of single CpG epimutation
In our previous study, single CpG epimutations were 
identified by mNGS assay [50]. In order to biologically 
validate the mNGS results, primer sets were used to tar-
get the different regions on the bisulfite-modified DNA. 
Methylation-sensitive high-resolution melting assay 
results were in accordance with the mNGS. The real-time 
PCR was conducted with the LightCycler® 96 and their 
results were demonstrated in Supplementary Fig. 1.
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Fig. 1 Roadmap for discovering novel lncRNA based on single epimutation
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RNA-Seq data analysis and annotation of novel lncRNA
Based on a single CpG epimutation position, high-
throughput RNA sequence analysis was used to identify 
the novel lncRNAs on genome in colon tissues (cancer-
ous and normal). The RNA-Seq dataset for normal and 
colon cancer was obtained from the NCBI Sequence 
Read Archive database. The RNA-Seq reads were suc-
cessfully mapped onto one of the CpG epimutation 
positions and there was no expression statement for the 
second CpG site.

Our analysis with short-read mapping along with 
approximately 250 reads were successfully mapped onto a 
single CpG epimutation position on chromosome 21. The 
novel lncRNA, identified on chromosome 21 was further 
classified by comparison with the known gene annota-
tions using RNAcentral sequence search tool. The simi-
larity searches against a comprehensive set of ncRNAs 
showed that the LINC02892 sequence is similar to a long 
ncRNA in Pan troglodytes (Orangutan) with identity and 
query coverage of 70% and 79.9%, respectively (Fig. 2 A 
and 2B).

5’- and 3’-rapid amplification of cDNA ends (RACE) assay
Based on the sequence of LINC02892, the experiments 
of 5’- and 3’-RACE assay were initiated with total RNA 
from HT29 cells and resulted in three 888, 603, and 
382-nucleotide (nt) antisense transcripts (Fig. 2 C), which 
the transcript #1 is the same as the transcript annotated 
with RNA-Seq data. In the current study, the three novel 
transcripts were identified with seven, five, and three 
exons, respectively (Fig.  2D). LINC02892 transcripts 
were submitted to NCBI under the accession numbers: 
Banklt2400105, LINC02892, MW248922; Banklt2400122, 
LINC02892, MW248923; Banklt2400131, LINC02892, 
MW248924; Banklt2400132, LINC02892, MW248925.

Subcellular localization
In-silico subcellular localization revealed cytoplasmic, 
dual nuclear/cytoplasmic, and exosomal distributions for 
transcript #1, #2, and #3, respectively (Fig. 3 A).

Moreover, to determine the cellular localization of the 
LINC02892 transcripts, the nuclear, cytoplasm, and exo-
some RNAs from the HT29 and SW48 cell lines were 
isolated, and the expression of lncRNA- LINC02892 
transcripts in all subcellular locations were measured. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
small nuclear RNA U1 (U1), and BCAR4 lncRNA were 
utilized as controls for cytoplasm, nucleus, and exosome, 
respectively. The RT-qPCR data of cellular fractionation 
assay in both cell lines demonstrated that the distribution 
of LINC02892 transcripts were clearly similar to that of 
the nuclear-localized U1 snRNA, the exosomal retained 
BCAR4 mRNA, and the protein-coding GAPDH mRNA 
(Fig. 3B).

To characterize the lncRNA that is enriched in the exo-
somes from the cell line, the extracted exosomes were 
examined and confirmed by TEM (data not shown).

Protein coding potentiality
The coding potential calculator tools predicted that 
LINC02892 displayed no protein-coding potentiality. A 
protein’s potential score of transcripts was less than zero, 
which meant that the transcript has no capacity for cod-
ing a protein. Furthermore, the coding potential analysis 
revealed that LINC02892 sequence could not code any 
proteins. Although UniProt showed a putative peptide 
prediction of 28 amino acids for LINC02892 transcript 
#1, the putative ORF of LINC02892 transcript #1 was not 
expressed as an N-terminal enhanced green fluorescent 
protein fusion protein (Fig. 3 C and 3D).

LINC02892 is upregulated in colorectal cancer tissue and 
cell lines
RNA-Seq data analysis indicated that the LINC02892 
expression level was significantly high in tumorous tis-
sues compared with adjacent normal tissues. To further 
confirm this observation, we obtained 40 FFPE CRC 
tumors and their adjacent normal FFPE tissues from 
CRC patients. LINC02892 expression was examined by 
RT-qPCR and its upregulation was observed in tumoral 
samples. The RT-qPCR results demonstrated that in 
FFPE samples, CRC tissues indicated a significant 5.11-
fold overexpression of the LINC02892 as compared to 
the corresponding normal tissues (p-value < 0.005) (Sup-
plementary Fig.  2). Moreover, we profiled LINC02892 
expression in CRC cell lines (Caco-2, HCT 116, HT-29, 
SW480, and SW48) and found that the recent lncRNA 
ubiquitously was overexpressed in all tested CRC cell 
lines with higher levels compared to the normal cell line. 
These findings confirmed the RNA-Seq results derived 
from the NCBI SRA database.

Discussion
Over the past decade, lncRNAs have been identified 
as significant players in gene regulation. They are often 
differentially expressed and widely associated with a 
majority of cancer types [51]. In a wide number of bio-
logical functions such as apoptosis, lncRNAs have been 
involved, and their roles are strongly associated with the 
cellular compartments where they are located [52]. Pre-
vious studies have shown that by acting as tumor sup-
pressors or oncogenes, lncRNAs have significant roles 
in cancer [53]. Emerging research has indicated that 
DNA methylation is a significant epigenetic regula-
tor of lncRNA expression, and the expression pattern of 
lncRNAs can be affected by epigenetic changes in DNA 
methylation which could lead to carcinogenesis [54–58].
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The most abundant RNA modification in eukaryotic 
cells is N6-methyladenosine (m6A) [59]. RNA methyla-
tion usually occurs at the RRm6ACH consensus motif 
([G/A/U][G/A]m6AC[U/A/C]) [60, 61] and is abundant 
in 3’ untranslated regions (3’UTRs), between stop codons 
and within long internal exons [62, 63]. In addition, in 

precursor mRNAs (pre-RNAs) and lncRNAs, m6A modi-
fication occurs [64, 65]. Proteins that can add, remove, 
or recognize m6A-modified sites and change substan-
tial biological processes are m6A “writers,” “erasers” and 
“readers”, respectively [61]. Moreover, DNA methylation 
depends upon DNA methyltransferases (DNMTs) [66].

Fig. 2 (A) Alignment of the LINC02892 sequence from humans and other organisms. (B) Pairwise comparison among complete sequences of LINC02892. 
The upper comparison gradient indicated the percentage identity between two sequences, and the lower comparison gradient indicated the distance 
between two sequences. (C) The length of LINC02892 transcripts determined by RACE PCR assays. (D) Schematic intron-exon diagram of the LINC02892 
transcripts. The exons and introns are marked as boxes and lines, respectively
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For DNA methylated in CpG islands, there are proteins 
called “Methyl-CpG-binding domains (MBDs)” which are 
required for binding to methylated DNA [67]. MBD can 
also bind up with RNA and influence the methylation of 
DNA [68]. Hence, some RNAs could direct DNA meth-
ylation. MiRNA could also influence the methylation of 
mRNA [69] and thus, RNA directing RNA methylation 
also exists. However, DNA causing RNA methylation has 
not been explored yet.

In the current study, an integrated methylation and 
transcriptome analysis was conducted to identify the 
crosstalk between DNA methylation and lncRNA. We 
identified an intergenic lncRNA based on methylation 
characteristics. During the past decade, due to the devel-
opment of relevant biotechnology and computational 
methods, a growing number of newly detected lncRNAs 
have been reported [70]. To discover lncRNAs, there 
are two common methods: (1) RNA sequencing (RNA-
Seq) using next-generation sequencers and (2) microar-
rays [71]. Owing to the development of NGS technology, 
lncRNA identification is now more easily achievable 
and several assay-based sequencing protocols have been 
developed to predict lncRNAs [72]. However, the identi-
fication of lncRNA relying only on RNA-Seq or microar-
ray has some limitations. Firstly, their data are predictive 
and secondly, since the expression of lncRNAs are mostly 
low, they could be lost during normalization and trim-
ming of the data or become absent in RNA sequencing of 

numerous samples. Furthermore, more complementary 
techniques are needed to identify the potential lncRNAs.

Since intergenic hypomethylation is crucial in tumori-
genesis, aberration methylation of single nucleotide 
CpG sites could act as a landmark to discover long inter-
genic non-protein coding RNAs. It has been reported 
that lncRNAs are often located at crucial sites including 
regions of SNPs, amplifications, or common breakpoints 
[73], and intergenic regions [74]. Several studies have 
indicated that lncRNAs SNPs can prone the patients to 
CRC via deregulation of downstream pathways, propos-
ing polymorphisms as CRC risk factors [8].

The DMR of DNA in intergenic regions could be 
related to the expression of intergenic ncRNAs [75]. Once 
the methylation statuses of single nucleotide CpG sites 
throughout the DNA genome are determined, they could 
be easily validated by MS-HRM. Then, the existence of a 
potential ncRNA could be investigated in RNA-Seq data-
sets as well as in-silico studies. Unlike other ncRNAs, 
lncRNAs are not quite conserved between species [76], 
causing annotation less informative in lncRNA discovery. 
To further confirm, gene expression should be conducted 
on cancer and normal tissues.

Fig. 3 (A) In silico subcellular localization of LINC02892 transcripts. (B) qRT-PCR assay following nuclear, cytoplasmic and exosome fractionation detecting 
the distribution of the indicated LINC02892 transcripts in HT29 and SW48 cell lines. The qRT-PCR data, represented as a percentage of the total amount 
of detected transcripts, are presented as means ± SD from three independent experiments performed in triplicate. (C and D) Fluorescence microscopy of 
HT29 cells that had been transfected with the indicated plasmid (scale bars, 100 μm)
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Conclusion
In summary, based on our discovery platform, we found a 
novel antisense lncRNA named “LINC02892”, which has 
three transcripts with no capacity of coding a protein that 
exhibits nuclear, cytoplasmic, or exosome distributions.

Our study characterized the crosstalk between DNA 
methylation and lncRNA, providing a novel pipeline to 
identify intergenic lncRNAs like LINC02892 which could 
be important in tumorigenesis of CRC. Further stud-
ies are necessary to validate the efficiency of this new 
method.
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Supplementary Figure 1. Methyl Specific High Resolution Melting peaks 
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Supplementary Figure 2. Real time-PCR analysis of LINC02892 gene 
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