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Abstract 

Background: Hepatocellular carcinoma (HCC) is one of the deadliest cancers and is mainly developed from chronic 
liver diseases such as hepatitis-B infection-associated liver cirrhosis (LC). The progression from LC to HCC makes the 
detection of diagnostic biomarkers to be challenging. Hence, there have been constant efforts to improve on identify-
ing the critical and predictive changes accompanying the disease progression.

Methods: In this study, we looked to using the mass spectrometry mediated spatial metabolomics technique to 
simultaneous examine hundreds of metabolites in an untargeted fashion. Additionally, metabolic profiles were com-
pared between six subregions within the HCC tissue to collect spatial information.

Results: Through those metabolites, altered metabolic pathways in LC and HCC were identified. Specifically, the 
amino acid metabolisms and the glycerophospholipid metabolisms experienced the most changes. Many of the 
altered metabolites and metabolic pathways were able to be connected through the urea cycle.

Conclusions: The identification of the key metabolites and pathways can expand our knowledge on HCC metabolic 
reprogramming and help us exam potential biomarkers for earlier detection of the malignant disease progression.

Keywords: Spatial metabolomics, Liver cirrhosis, Hepatocellular carcinoma, Disease progression, Amino acid 
metabolism
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Background
Liver cancer is currently one of the most fatal malignan-
cies worldwide and poses great challenges to early diag-
nosis and prognosis due to its heterogeneity. The most 
common form of liver cancer is hepatocellular carcinoma 
(HCC), which accounts for greater than 75% of the cases 

[21]. HCC usually arises from chronic liver inflamma-
tion that can be caused by a variety of risk factors such 
as hepatitis B and/or C infections, alcohol abuse, obesity, 
diabetes mellitus, etc. [1, 15, 18, 29]. Particularly, the pro-
gression from chronic hepatitis B infection to liver cir-
rhosis then to HCC is one of the most common ways of 
disease occurrence.

Hepatitis B is a life-threatening liver infection caused 
by the hepatitis B virus (HBV) and is transmittable 
through body fluid. The infection causes alterations of 
many cellular processes and leads to scarring of the liver, 
both of which greatly increase the chance of liver cirrho-
sis and liver cancer. Such liver injury can lead to changes 
in cell signing, DNA repair, apoptosis, etc., and results 
in the accumulation of reactive oxygen species, and/or 
oncogene activation [29]. These cellular level changes 
often time worsen into loss of cell cycle and senescence 
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control, dysregulations of apoptosis and NF-κB pathway, 
etc. that reflect HCC progression [11, 13, 16, 29, 37]. 
Thus, researchers have been trying to map out the cel-
lular causes of the progression from hepatitis B infection 
to liver cancer. However, the progression of the disease 
usually takes various pathways and different paces in 
individual patients and can be affected by genetic suscep-
tibilities. Therefore, the inter-and intra-personal hetero-
geneity of the disease has made the identification of the 
exact mechanisms very challenging.

Recently, with the advancement of new technologies, 
the identification of HCC-related biomarkers has become 
a promising way to decode the disease progression mech-
anisms. Specifically, there has been increasing interest 
in metabolomics, or the study of metabolites. Global 
metabolomics with liquid or gas chromatography has 
revealed alteration in various metabolic pathways such as 
the TCA cycle, glycolysis, lipid synthesis, etc. [9]. Notice-
ably, metabolites such as Glypican-3 [3], monounsatu-
rated fatty acids, and the ratio between polyunsaturated 
fatty acids omega-3 and omega-6 [10] were found to be 
important biomarkers for the progression of liver cancer. 
However, global metabolomics only looks at the average 
of the tissues. Furthermore, most of the previous studies 
regarding liver cancer look at blood samples for finding 
key metabolites. These methods have limitations as they 
may omit important regional variations of the metabo-
lites that mark liver disease progression or the bounda-
ries of diseased tissues.

Now, with the development of the mass spectrometry 
imaging (MSI) technique, spatial metabolomics emerges 
as a promising direction of study. Such a study takes into 
account the spatial variation of metabolites in the tumor 
microenvironment and therefore can be useful in detect-
ing the metabolic biomarkers of liver cancer. As spa-
tial metabolomics is still a relatively new field of study, 
there has not been any systematic study that analyzes the 
alterations of metabolites distribution and abundance in 
liver diseases tissues. Hence, in this study, we used the 
air flow-assisted desorption electrospray ionization mass 
spectrometry imaging (AFADESI-MSI) technique to 
examine altered metabolites and metabolic pathways in 
liver cirrhosis and HCC tissues compared to the healthy 
control. AFADESI-MSI was able to simultaneously detect 
hundreds of metabolites in  situ with high sensitivity. 
Therefore, through this experiment, we were able to iden-
tify key metabolites that change continuously as the dis-
ease progress.

Methods
Tissue collection and preparation
All the sample tissues were surgery remnants acquired 
at Shenzhen People’s Hospital in 2021. This study was 

approved by the ethics committees of the Shenzhen Peo-
ple’s Hospital (LL-KY-2021723). Informed consent about 
the study was collected from all participants. The flow 
chart of the experiment can be found in Fig.  1. Clinical 
data of the liver cirrhosis (LC) and HCC patients listed 
in Table  1 were collected one day before the operation. 
Sample tissues from the three different conditions of liv-
ers were collected, frozen, and sectioned to prepare for 
Mass Spectrometry Imaging (MSI). The three samples 
were cancerous tissue, liver cirrhosis, and healthy liver 
tissue. Following the acquisition of the samples, tissues 
were flash-frozen in liquid nitrogen and stored at − 80 °C 
until sectioning. The day prior to sectioning, samples 
were moved from − 80 to − 20 °C to de-freeze overnight. 
Then, sectioning was carried out using the Leica CM1950 
cryostats. The sample slices were thaw-mounted to 
superfrost plus positively charged slides (Thermo Fisher) 
and stored at − 80 °C until the MSI experiment. One of 
the tissue sections from each sample was stained with 
hematoxylin and eosin (HE) staining solution for histo-
logical analysis.

AFADESI‑MSI
Both positive- and negative-ion mode Air Flow-Assisted 
Desorption Electrospray Ionization Mass Spectrom-
etry Imaging (AFADESI-MSI) were performed using the 
AFADESI platform (Tscience, China) coupled with the 
Q-Orbitrap mass spectrometer (Thermo Fisher). The 
AFADESI platform replaces the original ion source and 
provides a high-rate airflow that assists the electrospray 
for improved ionization and ion collection. The propelled 
secondary ions were then collected and transferred to 
the Q-Orbitrap mass spectrometer. Based on the specific 
properties of the compounds, different metabolites may 
have higher chance of being detected in different ioniza-
tion modes. In the case of most DESI-MSI, positive ioni-
zation mode is generally shown to have higher sensitivity 
and stability as the negative mode is prone to corona dis-
charge [4, 26].

The spray solutions for both the positive- and the neg-
ative-ion mode were prepared by mixing acetonitrile and 
water (4:1, V/V). In addition, the solution for the positive-
ion mode contained 0.1% formic acid. Prior to running 
through the mass spectrometer, the frozen samples were 
taken out of − 80 °C and were dried at room temperature 
inside the vacuum dryer for 30 min. Samples were then 
placed on an XY translation stage to enable continuously 
scanning of the sample line by line at a constant rate of 
Vx = 0.2 mm/s. The distance between each scanning line 
(Dy) was set to be 0.1 mm. The entire scanning area was 
10 mm by 10 mm. The spray gas press was set at 0.6 MPa, 
the capillary temperature was at 350  °C, the spray gas 
flow rate was at 5  μL/min, and the extracting gas flow 
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rate was at 45 L/min. Additional parameters of the MSI 
experiment can be found in Additional file 2: Table S1.

Data analysis
Ion intensity across each position was outputted as raw 
data. All raw data files were converted into “.cdf” for-
mat, and data analysis was conducted using the cus-
tom-developed imaging software, MassImager [12], for 
image reconstruction. Spatial shrunken centroid cluster-
ing (based on K-Means clustering) was then performed 
to generate K-Means plot. These plots were compared 
to H&E staining images to extract the region of interest 
(ROI) and construct the MS profiles. Ions were com-
pared to the online database HMDB (https:// hmdb. ca/) 
and SMPD (https:// www. smpdb. ca/) for metabolites 

identification (ppm < 5). Differential metabolites were 
identified based on Student’s t test and fold change 
analysis.

Results
Clinical characteristics of the participants
Clinical data of the LC and HCC patients were collected 
for comparison, and significant differences were shown 
between many of the patients’ measurements and the 
reference levels. Relevant clinical data for the patients 
are summarized in Table  1. Particularly, bilirubin and 
total bile acid levels were greatly increased, reflecting 
the patients’ compromised ability to break down bile. In 
addition, prothrombin time and INR also increased in 
both LC and HCC patients, suggesting a reduced pro-
duction of blood-clotting proteins. Generally, there was a 
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decrease in protein levels for both patients. Furthermore, 
almost all the observed changes were more severe in the 
HCC patient than the LC patient, showing a progres-
sion in liver disease severity. The Child-Pugh and MELD 

scores reflected such disease progression. Lastly, both the 
LC and HCC patients were tested for HBV infection, and 
both patients either had past or active infection shown by 
their positive antibody tests.

Table 1 The clinical data for liver cirrhosis and HCC participates

Averages are expressed as mean ± SEM

TP, total protein; ALB, albumin; GLO, globulin; A/G, albumin/globulin ratio; PA, prealbumin; TB, total bilirubin; GLD, glutamate dehydrogenase; DB, direct bilirubin; 
ID, indirect bilirubin; TBA, total bile acid; ALT, alanine transaminase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; ALP, alkaline phosphatase; CHE, 
cholinesterase; LDH, lactate dehydrogenase; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, 
thrombin time; AT III, antithrombin III; D-DIC, D-dimer; AMON, ammonia; HBsAg, hepatitis B virus surface antigen; HBsAb, hepatitis B virus surface antibody; HBeAg, 
hepatitis B virus e antigen; HBeAb, hepatitis B virus e antibody; HBcAb, hepatitis B virus core antibody; MELD, model of end stage liver disease
a Reference ranges may vary with patient’s sex, age, pregnancy, etc., and may be different depending on materials and methods used

Measurements LC HCC Average Referencea Change

TP (g/L) 52.70 58.10 55.40 ± 2.70 63.00–79.00 ↓
ALB (g/L) 34.80 39.80 37.30 ± 2.50 35.00–50.00 –

GLO (g/L) 17.90 18.30 18.10 ± 0.20 20.00–35.00 ↓
A/G 1.94 2.17 2.06 ± 0.12 1.10–2.50 –

PA (mg/L) 83.00 152.00 117.50 ± 34.50 150.00–350.00 ↓
TB (μmol/L) 41.30 194.80 118.10 ± 76.75 1.71–20.50 ↑
GLD (U/L) 9.32 7.00 8.16 ± 1.16  < 7.00 ↑
DB (μmol/L) 11.00 70.00 40.50 ± 29.50  < 5.10 ↑
ID (μmol/L) 30.30 124.80 77.55 ± 47.25 3.40–12.00 ↑
TBA (μmol/L) 140.00 136.60 138.30 ± 1.70  < 10.00 ↑
ALT (U/L) 31.00 37.00 34.00 ± 3.00 7.00–55.00 –

AST (U/L) 36.00 52.00 44.00 ± 8.00 8.00–48.00 –

GGT (U/L) 20.00 33.00 26.50 ± 6.50 8.00–61.00 –

ALP (U/L) 71.00 52.00 61.50 ± 9.50 40.00–129.00 –

CHE (U/L) 3704.00 2987.00 3346.00 ± 358.50 8k–18k ↓
LDH (U/L) 216.00 933.00 574.50 ± 358.50 140.00–280.00 ↑
PT (S) 18.70 23.60 21.15 ± 2.45 11.00–13.50 ↑
PT% (%) 51.00 36.00 43.50 ± 7.50 100.00 ↓
PT INR 1.58 2.15 1.87 ± 0.29 0.80–1.10 ↑
APTT (S) 55.00 40.80 47.90 ± 7.10 21.00–35.00 ↑
FIB (g/L) 1.53 1.54 1.54 ± 0.01 2.00–4.00 ↓
TT (s) 18.10 21.70 19.90 ± 1.80 14.00–19.00 ↑
AT III (%) 39.00 41.00 40.00 ± 1.00 80.00–130.00 ↓
D-DIC (μg/mL) 0.22  > 20 10.11 ± 9.89 0.10–0.25 ↑
AMON (μmol/L) 133.00 101.00 117.00 ± 16.00 11.00–32.00 ↑
HBsAg 20.91 (+) 31.93 (+) 26.42 ± 5.51 N/A N/A

HBsAb 0 (−) 0.99 (−) 0.50 ± 0.50 N/A N/A

HBeAg 0.377 (+) 0.04 (−) 0.21 ± 0.17 N/A N/A

HBeAb 1.54 (−) 0.01 (+) 0.78 ± 0.77 N/A N/A

HBcAb 5.37 (+) 0.21 (−) 2.79 ± 2.58 N/A N/A

Child–Pugh 9 13 11.00 ± 2.00 N/A N/A

MELD 32 44 38.00 ± 6.00 N/A N/A

(See figure on next page.)
Fig. 2 Total metabolites detected by AFADESI-MSI method in HC, LC and HCC tissue samples under positive ionization mode. a HE and MSI 
diagrams of HC, LC and HCC whole samples. b PLS-DA comparison of the AFADESI-MSI data. c, e, g Total metabolites detected by AFADESI-MSI 
method in HC, LC and HCC samples, respectively. d, f, h Differences between the detected metabolites under positive and negative ionization 
mode in HC, LC and HCC samples, respectively
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Overall metabolic profiles of the tissue samples
AFADESI-MSI was performed on the sample tissues and 
the MSI profiles were constructed to analyze the global 
metabolic profiles. Under the positive ion mode, AFADESI-
MSI was able to detect ions ranging from m/z 70–800. 
Both the H&E stain images and the example MSI diagrams 
revealed that all three liver tissues have considerable intra- 
and inter-sample heterogeneity. Figure 2a shows the over-
lay MS images of all the detected metabolites. Based on the 
differential regional intensities of the ions, all three samples 
have considerable intra-sample variations in terms of the 
spatial metabolic profiles. There appeared to be meaning-
ful patterns in the overall distributions of metabolites that 
invited us to cluster the profiles. The k-mean diagrams in 
Additional file 1: Fig. S1e&f then display clustering results 
of the metabolites and reveal that the sample tissues can be 
separated into different regions, possibly representing dif-
ferent tissue types. From the MS images, it appeared that 
the three samples differed between each other, too. The 
partial least squares-determinant analysis (Fig. 2b) was able 
to separate the three tissue types (HC, LC, HCC) based on 
their differential metabolites. To make sense of the sepa-
ration, the relative abundances of the different classes of 
metabolites were first examined. Overall, the compositions 
of the metabolites being detected in HC, LC, and HCC 
samples were similar, with lipids and lipid-like molecules, 
organic acids and derivatives, and organoheterocyclic com-
pounds being the three most abundant types of metabolites 
(Fig. 2c, e, g). However, compared to the other two samples, 
lipid and lipid-like molecules had larger percentage among 
total metabolites in the LC sample (Fig. 2e) while organic 
acids and derivatives were found to have a larger abun-
dance in the HCC sample (Fig.  2g). Therefore, the global 
metabolic profiles of the three samples suggest not only the 
regional diversity of liver tissues but also the metabolic dif-
ferences between the three liver conditions.

To check the consistency of the results, negative ion 
mode data was compared. Generally, the relative abun-
dance of each class of metabolite was consistent (Fig.  2d, 
f, h). Yet, it was also noticeable that the negative ion mode 
resulted in a lower sensitivity compared to the positive ion 
mode for all classes of molecules other than lipid and lipid-
like molecule. Hence, positive ion mode data were used in 
later analyses.

Identification of ROIs and differential metabolites 
within sub‑regions
A total of six regions of interest (ROI) were identified by 
overlaying the H&E and the MSI images of the HCC sam-
ple. Their region-specific metabolic profiles were analyzed 
to reveal any key differential metabolites. Figure 3a displays 
the H&E stain and MSI images for the entire HCC sam-
ple and the zoomed-in images for the six ROIs: cancerous 
region, pseudo lobule (PL), necrotic tissue (NT), fibro-
sis, pre-cancer region (PC), and fatty tissue (FT). Particu-
larly, the cancerous region and the necrotic tissue had the 
most distinct MSI profiles whereas the other regions had 
more comparable ion intensity patterns. The cancer region 
contained an overall abundance of metabolites while the 
necrotic region showed a lack of metabolites. The results 
for negative-ion mode MSI are shown in Additional file 1: 
Fig. S2. Under this imaging mode, the heterogeneity within 
the sub-regions is less visible, but there are still detect-
able variabilities of the metabolite distribution patterns. 
Here, the pseudo lobule and the necrotic tissue appear to 
have the most distinct profiles. The PLS-DA result shows a 
similar trend, with the NT, PL, and cancer being the three 
most separable sub-regions within the sample (Fig.  3b). 
However, as seen in Fig. 3c and Additional file 1: Fig. S2c, 
the NT region possessed a distinct property compared to 
the PL and cancerous regions as having much less metabo-
lites overall. Its separability seems to result from a simple 
absence of metabolites (Fig.  3d). The PL and cancerous 
regions, on the other hand, differed primarily in their 
metabolite distributions. The heatmap in Fig.  3d shows 
the overall trend of the metabolite distributions where that 
of the PL region and of the cancerous region seems to be 
complementary. Specifically, the metabolites that were 
more abundant in the cancer region, such as D-alanine 
were among the least abundant in the PL region. Metabo-
lites such as L-carnitine, which were more abundant in 
the PL region, were much less abundant in the cancer 
region. The PL and cancer regions also shared some simi-
larities as they both had an increase in some of the lipids 
and phospholipids compared to other regions. Particularly, 
the PL regions showed the highest abundance of phos-
phocholine molecules such as PC (14:0/20:2(11Z, 14Z)) 
and PC (22:5(3Z, 7Z, 10Z, 13Z, 16Z)/16:1(9Z)). The fibro-
sis region shared a similar profile as the PL region, both 

Fig. 3 The alterations of metabolites’ spatial distributions in sub-regions of HCC sample under positive ionization mode. a HE and MSI images 
of different sub-regions in HCC including cancer, pseudo lobule (PL), pre-cancer (PC), fibrosis, necrotic tissue (NT), and fatty tissue (FT). b PLS-DA 
analysis for HCC sub-regions. c Number of metabolites detected from different HCC sub-regions. d Heatmap of significantly differentiated 
metabolites based on variable importance of projection > 1 (VIP > 1). e KEGG analysis of key altered metabolic pathways between the sub-regions of 
HCC. f Sample time series analyses of key metabolite expressions in all sub-regions of HCC

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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demonstrated the same trends of change compared to the 
normal tissues. However, the PL regions showed a progres-
sion of such changes. Compared to all the diseased tissues, 
subregions PC and FT showed highly similar overall meta-
bolic profiles, with PC tissues having higher abundance of a 
few amino acids, phospholipids, and carboxylic acids.

Having found out all the differential metabolites in 
each sub-region, a KEGG pathway enrichment plot was 
constructed to categorize the metabolites in terms of the 
pathways they are part of. Under the positive ion mode, 
the most significantly altered pathways as identified by 
the differential metabolites were the amino acid metabo-
lism pathways such as the beta-alanine metabolism and 
the arginine and proline metabolism pathways (Fig.  3e). 
In addition, the choline metabolism in cancer pathway 
was also significantly altered. Under the negative ion 
mode, almost all the pathways identified were fatty acid 
biosynthesis and metabolism pathways (Additional file 1: 
Fig. S2e).

Lastly, time series analysis was performed on metabolites 
from all the sub-regions of the HCC sample. The changes 
in the key metabolites along disease progression were 
reflected by examining the changes in their distributions in 
the fibrosis, PL, PC, and cancer regions. Here, differential 
metabolites with similar trend of changes were grouped 
into one cluster (Fig.  3f). Certain metabolites, such as 
d-proline and creatine, showed a general decrease from 
fibrosis to cancer regions but were particularly high in the 
PL region. Metabolites such as spermidine, isoleucylpro-
line, deoxyuridine showed continuous decrease from fibro-
sis to cancer regions.

Metabolic alterations of non‑cancerous regions
The central vein regions of all three samples were ana-
lyzed separately to see any trend of metabolic alterations 
within the non-cancerous regions during the disease 
progression. The H&E and the MSI images reveal the 
zoomed-in morphology around the central vein region 
(Fig.  4a). The CV regions of all three tissues appeared 
to have comparable histology in the H&E stain images. 
Yet, MS images revealed their different metabolic pro-
files. PLS-DA analysis and heatmap of metabolites dis-
tributions confirmed that the central vein regions in the 
three samples can be clearly separated (Fig.  4b and c) 
based on their differential metabolic profiles. The heat-
map in Fig.  3c reveals some overall trends of change in 

metabolite distributions. Many metabolites showed a 
continuous increase or decrease in abundances from 
the HC to the LC to the cancer central veins. How-
ever, some of the phospholipids and fatty acids were 
most abundant in the LC central vein and subsequently 
decreased in intensities in both the cancer and the HC 
central vein regions. When looking into the specific 
altered pathways, amino acid and fatty acid biosynthesis 
and metabolic pathways appeared to be the most altered 
pathways under positive and negative ion mode, respec-
tively (Fig. 4c and Additional file 1: Fig. S3d). Time series 
analysis then display some of the characteristic trends 
of changes in distribution of key metabolites around the 
central vein region during disease progression. These 
trends match the ones shown in the heatmap. Numerous 
metabolites, including spermidine, taurine, histamine, 
ferulic acid, benzoic acid, and deoxyuridine experienced 
an overall continuous increase in concentration from the 
HC central vein to the HCC central vein. Other metabo-
lites, such as isopropylmaleic acid, palmitic acid, and ana-
basine, showed a reverse trend of continuous decrease in 
concentration from the HC to HCC central vein (Fig. 4d 
and e). In Fig.  4e, three typical metabolites were cho-
sen to represent their clusters. The MS images and the 
quantification plots demonstrate that spermidine (m/z 
146.165) and ferulic acid (m/z 233.0602) increased in 
intensities in the central vein regions as the disease pro-
gress. On the other hand, anabasine (m/z 163.1127) con-
tinuously decreased in the central vein region. Therefore, 
non-cancerous regions experience changes in metabo-
lites distribution during pathological changes of the liver.

Metabolic alterations of cancer‑related regions
All the lesion regions in LC and HCC as well as a 
healthy control region were examined to show trends of 
metabolic changes within the diseased areas. First, the 
H&E and MSI images, heatmap of differential metabo-
lites, along with the PLS-DA confirm the separability 
of the diseased sub-regions within the three samples 
based on metabolic profiles and morphologies (Fig. 5a, 
b). According to the PLS-DA analysis, while the most 
significant differences existed between the three sam-
ples, the sub-regions within the samples also remain 
separable. Particularly, the fibrosis, PL, PC, and can-
cer regions of the HCC sample showed variations 

(See figure on next page.)
Fig. 4 Metabolites’ spatial distributions in the non-cancer regions (CV) of the HC, LC and HCC samples under positive ionization mode. a HE 
and MSI images of the CV regions in the HC, LC and HCC samples. b PLS-DA analysis of the CV regions. c KEGG analysis of key altered metabolic 
pathways in the CV non-cancer regions. d Sample time series analysis of key metabolite expressions of the non-cancer regions. e Examples of key 
metabolites’ spatial expressions in the CV regions
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progressively in one dimension (Fig. 5b). In Fig. 5c, the 
key metabolic pathways identified from the differential 
metabolites between the different lesion regions remain 
largely conserved from previous analysis of the whole 
tissues. Choline metabolism in cancer, beta-alanine 
metabolism, arginine and proline metabolism, argi-
nine biosynthesis, and glycerophospholipid metabolism 
pathways experienced the most alterations. Time series 
analysis was then conducted following disease progres-
sion in such order: HL of HC, PL of LC, PL of HCC, 
PC of HCC and the cancer region of HCC. Representa-
tive metabolite clusters with continuous upward and 
downward trends are displayed in Fig.  5d. For exam-
ple, molecules such as taurine (m/z 148.0035) has clear 
continuous increase in concentration from healthy to 
cancer regions (Fig.  5e). In contrast, metabolites like 
2-furanmethanol (m/z 116.0707) were found most 
abundant in healthy lobule of the HC and least abun-
dant in cancer region of the HCC sample. Interestingly, 
metabolites that showed an upward trend in abundance 
along disease progression such as the ones in cluster 2 
and 33 seemed to experience the sharpest changes from 
HCC PL to PC areas. On the other hand, cluster 28 
represents a downward trend in abundance where the 
greatest drop occurs between HC and LC tissues.

ROC analyses of predictive abilities of differential 
metabolites
Receiver Operative Characteristic (ROC) analyses were 
performed to determine if the metabolites described 
here can help differentiate between HC, LC, and HCC 
tissues and even between different subregions of the 
lesion. According to the plots, the identified differential 
metabolites under the positive ion mode tend to distin-
guish healthy from diseased tissues with high accuracy 
(AUC ~ 0.9) (Fig.  6a; Additional file  1: Fig.S5c). How-
ever, the predictive power of the differential metabolites 
decreases when differentiating between LC and HCC 
(AUC ~ 0.7). Such decrease in accuracy is probably due to 
the similar metabolic changes occurring within the LC and 
HCC tissues. Looking at the subregions, again, the differ-
ential metabolites predict HL from cancer region and HL 
from PL accurately (AUC > 0.97). On the other hand, the 
differentiation between PL and cancer regions with any 
single detected metabolite appeared to be challenging as 
the AUCs are generally around 0.5–0.6 (Fig. 6b).

Reconstruction of altered metabolic network
Network maps of upregulated metabolites in both the non-
cancerous and cancer-related regions were constructed to 
investigate the key metabolites and metabolic pathways 
altered in liver cirrhosis to liver cancer progression. For 
both the non-cancerous and cancer-related regions, amino 
acid metabolism pathways, especially the arginine and pro-
line metabolism and the alanine, aspartate, and glutamate 
metabolism, locate in the center of the altered metabolic 
networks (Fig.  6c and d). Through these pathways, most 
of the upregulated metabolites were connected. In addi-
tion to amino acid metabolism, the glycerophospholipid 
metabolism pathways connected most of the other upregu-
lated metabolites, particularly in the non-cancerous region. 
Lastly, taking the key metabolites and metabolic pathways, 
a schematic of an altered networks in diseased liver tissues 
was reconstructed (Fig.  6e), which connects amino acid 
synthesis and metabolism through urea cycle. The changes 
in intensity are marked for the key altered metabolites 
along this network. For example, spermidine concentration 
experienced a continuous decrease from HCC PL to cancer 
regions. Carbamoyl-P and 3-aminopropanol, on the other 
hand, showed a continuous increase from the healthy tis-
sues to PL to cancer.

Discussion
In this study, we conducted ADFADESI-MSI mediated 
spatial metabolomics to understand the metabolic repro-
gramming associated with the liver cirrhosis to HCC pro-
gression. The use of AFADESI-MSI enabled us to explore 
the regional heterogeneity of metabolite distributions. 
With the wide coverage and sensitivity of this MSI tech-
nique [12], we were able to detect the spatial distributions 
of hundreds of metabolites. Then, times series analysis 
and KEGG pathway enrichment analysis were conducted 
to identify key altered metabolites and the pathways they 
are involved in. We discovered that many of the amino acid 
metabolism and biosynthesis pathways are among the most 
altered processes in both the cancerous and non-cancerous 
regions of the diseased liver. Moreover, many of the signifi-
cantly altered metabolites were also discovered to be asso-
ciated with the glycerophospholipid metabolism pathways 
specifically in the diseased tissues.

Before focusing on the diseased tissues of the samples, we 
examined the surrounding non-cancerous areas to under-
stand the roles of the stromal cells in tumor metabolism. 

Fig. 5 Metabolites’ spatial distributions in the cancer-related regions of the HC, LC and HCC samples under positive ionization mode. a HE and MSI 
images of the cancer-related regions in HC, LC and HCC samples. b PLS-DA analysis of the cancer-related regions. c KEGG analysis of key altered 
metabolic pathways in the cancer-related regions. d Sample time series analysis of key metabolite expressions in the cancer-related regions. e 
Examples of key metabolites’ spatial expressions in cancer-related regions

(See figure on next page.)
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First, some of the well-studied hallmarks of cancer were 
identified as significantly altered metabolites in our experi-
ment. For example, histamine was found to have a continu-
ous increase in concentrations in the central vein regions as 
the disease progress. Histamine has previously been iden-
tified as one of the factors of tumorigenesis across many 
types of cancers because of its roles in immune responses, 
cell proliferations, angiogenesis, etc. [8, 17, 22, 24]. There-
fore, the matching results reinforce the validity of our 
experiment. Furthermore, the transport of the amino acids 
have been identified as one of the major trades in metabo-
lites between the cancer cells and the surrounding micro-
environment [32]. Here, we found that most of the altered 
metabolites can be associated with amino acid metabolism 
or biosynthesis. The most altered amino acid metabolism 
pathways include the beta-alanine metabolism, arginine 
and proline metabolism, alanine, aspartate and glutamate 
metabolism, and arginine biosynthesis pathways. Most of 
these metabolic pathways have been identified as altered 
pathways in HCC in previous LC-MS/MS studies [2, 6, 
14]. However, as most of these studies used LC-MS/MS 
and looked at serum metabolomics, our results offer addi-
tional spatial information regarding the changes of those 
metabolic processes. The increases in amino acid biosyn-
thesis and metabolism around the cancerous region can be 
explained by the increased energy-consumption needs of 
cancer cells. Some amino acids such as glutamate are also 
important for DNA synthesis. Therefore, their metabolisms 
in the non-cancerous regions would change to provide 
additional supply for the cancer cells through bidirectional 
trades [32]. Other than through the amino acid metabo-
lism pathways, the upregulated metabolites, spermidine, 
spermine, and 3-aminopropanal, can be linked through a 
polyamine catabolic enzymatic reaction. In this reaction, 
spermine can be oxidized into spermidine, and 3-ami-
nopropanal would be converted into hydrogen peroxide 
 (H2O2), leading to oxidative stress. Therefore, the increase 
in the spermine oxidase enzyme level has been associated 
with cancer [5, 23]. The detected changes of the associated 
metabolite levels may be an indication of the change in 
spermine oxidase enzyme level. Overall, our results show 
that the surrounding stroma cells of diseased livers engage 
in various levels of metabolic reprogramming as the lesion 
progresses.

More importantly, the areas of cirrhosis and tumor 
undergo more complete metabolic changes as reflected 
by their altered metabolites. The pathways that con-
tain the most differential metabolites are still the amino 
acid metabolism and biosynthesis pathways. A lot of the 
metabolite changes in the lesion regions are the same as 
in the non-cancerous regions. For example, both pro-
teinogenic and non-proteinogenic amino acids experi-
enced continuous changes in abundance going from liver 
cirrhosis to liver cancer. These upregulated amino acids 
serve to promote protein synthesis, DNA and RNA syn-
thesis, and the conversion into other key metabolites in 
cancer cells [19, 35]. Therefore, the amino acid metabo-
lisms act as a connection between numerous other 
metabolic processes, such as the purine and pyrimi-
dine metabolisms and the amnioacyl-tRNA biosynthe-
sis pathways, to fulfill the energy and growth needs for 
the tumor. In addition, we discovered that the pyrimi-
dine metabolism is also altered through the increase in 
carbamoyl-phosphate during cancer progression. Car-
bamoyl-phosphate is derived from ammonia during the 
first step of the urea cycle. However, the overexpression 
of the converting enzyme, carbamoyl-phosphate syn-
thetase 1(CPS1), has been found to encourage pyrimidine 
biosynthesis, which is then connected to tumor prolifera-
tion [30]. Since there has been study suggesting the use 
of CPS1 inhibitor to treat cancer [38], detecting the level 
of carbamoyl-phosphate, especially with spatial infor-
mation, could be helpful in finding potential biomark-
ers or in future drug testing. Another major aspect of 
metabolic reprogramming is the alteration of the glycer-
ophospholipid metabolism. The changes in this pathway 
in the cancer-related regions are more significant than 
that in the non-cancerous regions. Specifically, there are 
significant increases in some of the phosphatidylcholine 
(PC), lysophosphatidylcholine (LPC) and glycerophos-
phocholine levels as the lesion develops. Glycerophos-
pholipid is important in cell membrane formation and 
thus is commonly upregulated for cell proliferation dur-
ing cancer development [20, 27]. In addition, multiple 
studies have associated upregulation of LPC to PC con-
version enzyme with various cancers [7, 28, 31]. Further-
more, it is not entirely clear why both the cancer-related 

(See figure on next page.)
Fig. 6 Reconstruction of the key altered metabolic network in the HBV-related liver cirrhosis to liver cancer progression. a, b ROC analyses of key 
metabolites at distinguishing between diseased tissues (a) and between different subregions (b) under positive ionization mode. c The network 
map of key metabolic pathways in the non-cancer regions. d The network map of key metabolic pathways in the cancer-related regions. e 
Schematics of the related and altered metabolic pathways in the HBV infection liver disease progression



Page 13 of 16He et al. Cancer Cell International          (2022) 22:366  

R08745

R03720

R04354

R04764

R00259

R01398
R00149

R02748

R01126

R01560

R01132R01769

R01863 R01768

R00575

R01397

R02397R03283
R01920

R02869

R09076

R02894

R01167

R02150

R02155
R00526

R03139
R00904

R01682

R01687

R01318R01315

R02114

R01030

R02747

R02746

R07388

R02745

R01709

R01794

R08208

R07211 R07212

R07213

R01813

R11765

R11764

R03222

R00310

4−Trimethylammoniobutanoic acid
3−Aminopropionaldehyde

Carbamoyl phosphate

Histamine

LysoPA(P−16:0/0:0)
Spermidine

N−Acetyl−L−glutamic acid

4−Pyridoxic acid

Tetrahydrobiopterin

Inosine

5−L−Glutamyl−taurine

Spermine

D−Proline

Taurine

Protoporphyrin IX

LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
N−Formyl−L−aspartate

Glycerophosphocholine

2−Methoxyestradiol

Hypoxanthine

Alanine, aspartate and glutamate metabolism

D−Amino acid metabolism

Nitrogen metabolism

Pyrimidine metabolism

Arginine and proline metabolism

Histidine metabolism

Folate biosynthesis

Arginine biosynthesis

beta−Alanine metabolism

Pantothenate and CoA biosynthesis

Purine metabolism

Glutathione metabolism

Porphyrin metabolism

Lysine degradation

Taurine and hypotaurine metabolism

Ether lipid metabolism

Glycerophospholipid metabolism

Primary bile acid biosynthesis

Steroid hormone biosynthesis

Vitamin B6 metabolism

Degree

5

10

15

20

Type
compound

pathway

reaction

c

Glutamine

NH3

Glutamate

Carbamoyl-P

Nitrogen metabolism

N-Acetylglutamate N-Acetylglutamate
semialdehyde

Pyrimidine metabolism

Omithine

Citruline Arginine

Urea Cycle

Omithine Proline

D-prolinePutrescine

Spemidine

Spermine3-Aminopropanol 

3-Aminopropanol

Arginine and proline
metabolism

β-Alanine 
metabolism

Glutathione
metabolism

Pantothenate and 
CoA biosynthesis

3.5.1.2

6.3.4.16

2.1.3.3

L-Arginosuccinate

6.3.4.5 4.3.2.1

3.5.3.1

1.14.1339

2.3.1.1

5.1.1.4

2.5.1.16

2.5.1.22

1.5.3.17

1.5.3.17

Arginine biosynthesis 

Arginine biosynthesis
Arginine and proline metabolism

β-Alanine metabolism
Pantothenate and CoA biosynthesis

Pathway
Enzyme

Expression

0.5 1.0 1.5 2.0

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC -PL

HCC
PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

HC-H
L

HCC-PL

HCC-PC

HCC-C
an

cer

D−Proline

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1 − Specificity

S
en

si
tiv

ity
AUC=0.976

Arginine and proline metabolism

AUC=0.754

Spermidine

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1 − Specificity

S
en

si
tiv

ity

HC/HCC
HC/LC
LC/HCC

AUC=0.879
AUC=0.935

AUC=0.678

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1 − Specificity

S
en

si
tiv

ity

HL/PL
HL/Cancer

PL/Cancer

AUC=0.941
AUC=0.974

AUC=0.565

Spermidine

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1 − Specificity

S
en

si
tiv

ity

AUC=0.968
AUC=0.987

AUC=0.619

D−Prolinea b

R07494

R07509

R08745

R03720

R00259

R01398

R00149

R02748

R01126

R01560

R01132

R01769

R01863

R01768

R00575

R01397

R02397

R03283

R01920

R02869

R09076

R02894

R01168

R01166

R01164

R01167

R04674

R02150

R02155

R03139
R00904

R01682

R01687

R02923

R02250

R02251

R01350

R08107

R12351

R12702

R07376

R07377 R01318

R01321 R01316

R01315

R01310

R02051 R02053

R02114

R01030

R02057

R04480

R02747

R02055

R01320

R02746

R02056

R07388

R02745

R01317
R07064

R07859

R07860

R01709

R03655

R08293

R08294

4−Trimethylammoniobutanoic acid

Histamine

LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

3−Aminopropionaldehyde

Spermidine

Carbamoyl phosphate

Spermine

LysoPA(P−16:0/0:0)

D−Proline

TG(16:0/18:0/18:2(9Z,12Z))

D−Arginine

N−Acetyl−L−glutamic acid

Taurine

PC(22:5/16:1(9Z))

4−Pyridoxic acid

4a−Carboxy−4b−methyl−5a−cholesta−8,24−dien−3b−ol

5−L−Glutamyl−taurine

Lidocaine

L−Histidine

1−Methylhistamine

Hypoxanthine

Glycerophosphocholine

Inosine

Primary bile acid biosynthesis
Steroid biosynthesis

Alanine, aspartate and glutamate metabolism

D−Amino acid metabolism

Nitrogen metabolism

Pyrimidine metabolism

Arginine and proline metabolism

Histidine metabolism

Arginine biosynthesis

beta−Alanine metabolism

Pantothenate and CoA biosynthesis

Purine metabolism

Glutathione metabolism

Lysine degradation

Taurine and hypotaurine metabolism

Glycerophospholipid metabolism

Ether lipid metabolism

GPI−anchor biosynthesis

Glycerolipid metabolism

Linoleic acid metabolism

Arachidonic acid metabolism

Aminoacyl−tRNA biosynthesis

alpha−Linolenic acid metabolism
Vitamin B6 metabolism

Drug metabolism − cytochrome P450

d

e

Fig. 6 (See legend on previous page.)



Page 14 of 16He et al. Cancer Cell International          (2022) 22:366 

and non-cancerous regions saw a continuous increase in 
some of the antioxidant levels as the disease progress. 
Particularly, both taurine and ferulic acid are upregu-
lated. Ferulic acid has been shown to be an effective 
antioxidant and anti-inflammatory compound whose 
anti-tumor effects have been investigated [33, 34, 36]. 
Taurine has also been found to have anti-tumor effect 
by inducing apoptosis [25, 33, 34, 39]. Therefore, it is 
unlikely that these metabolites are direct metabolites of 
cancer cells. Rather, the increase of ferulic acid and tau-
rine levels may be an attempt of compensation from the 
surrounding regions in response to the liver damages. 
Lastly, our ROC analyses results validate the power of the 
detected metabolites in differentiating the healthy from 
diseased tissues. Although using any single metabolite 
to distinguish liver cirrhosis apart from HCC remains 
challenging, our results demonstrate the general progres-
sive trends in metabolic changes along disease advance-
ment. Hence, during future studies, it may be possible to 
explore the combinations of multiple key metabolites in 
predicting disease progression.

There are still many aspects of metabolic reprogramming 
to be explored. For example, future studies can work on 
improving the spatial resolution of the MSI technique so 
that finer metabolite distribution trends can be analyzed. 
In addition to the separation of different types of tissues, 
metabolic changes within each type of tissue can also be 
examined to help us better understand the sources of meta-
bolic dysregulations. Furthermore, to better understand 
the causes and effects of the altered metabolic pathways, 
future studies can conduct multi-omics comparisons. For 
example, combining spatial metabolomics data with spatial 
transcriptome data may be able to reveal the relationships 
between altered gene expressions of relevant enzymes and 
the metabolomic phenotypes. Another potentially reward-
ing study is to compare samples that have undergone differ-
ent therapeutics or diets to understand the suitability and 
effectiveness of various treatment plans. Overall, though, 
our study was able to detect many key metabolites that may 
be able to serve as HCC biomarkers for early detection. 
Moreover, the time-series analysis and the spatial infor-
mation provide us a better sense of the metabolic changes 
along disease progression and across different regions of 
the liver.
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Additional file 1: Figure S1. Total metabolite distributions in the HC, LC 
and HCC tissue samples. a HE and MSI diagrams of HC, LC and HCC whole 
samples under the negative ionization mode. b PLS-DA comparison of 
AFADESI-MSI data under the negative ionization mode. c, d Alterations 
of metabolites detected by AFADESI-MSI method in the HC, LC and 
HCC samples based on positive (c) and negative (d) ionization modes. 
e, f K-means diagrams of the HC, LC and HCC tissue samples based on 
positive (e) and negative (f) ionization modes. Figure S2. The alterations 
of metabolites’ spatial distributions in HCC sub-regions under negative 
ionization mode. a HE and MSI images of different sub-regions of HCC. b 
PLS-DA analysis of different HCC sub-regions. c Number of metabolites 
detected from different HCC sub-regions. d Heatmap of significantly 
differentiated metabolites based on VIP > 1. e KEGG analysis of key altered 
metabolic pathways in the sub-regions of HCC. Figure S3. Metabolites’ 
spatial distributions in the non-cancerous regions (CV) in the HC, LC and 
HCC samples under negative ionization mode. a HE and MSI images of 
the CV regions in the HC, LC and HCC samples. b PLS-DA analysis for the 
CV regions. c Heatmap of significantly differentiated metabolites under 
positive ionization mode in the CV regions based on VIP > 1. d KEGG 
analysis of key altered metabolic pathways in the CV regions. e Heatmap 
of significantly differentiated metabolites based on VIP > 1 under nega-
tive ionization mode. f Sample time series analysis of the key metabolite 
expressions in the CV regions. Figure S4. Metabolites’ spatial distributions 
of the cancer-related regions in the HC, LC and HCC samples under nega-
tive ionization mode. a HE and MSI images (negative mode) of the cancer-
related regions in the HC, LC and HCC samples. b PLS-DA analysis of the 
cancer-related regions. c Heatmap of significantly differentiated metabo-
lites in the cancer-related regions based on variable VIP > 1 under positive 
ionization mode. d Heatmap of significantly differentiated metabolites in 
the cancer-related regions based on variable VIP > 1 under negative ioniza-
tion mode. e KEGG analysis of key altered metabolic pathways in cancer-
related regions. Figure S5. Metabolic changes in different tissues and its 
predictability of disease progression. a Sample time series analysis of key 
metabolite expressions (negative mode) in the cancer-related regions. b 
Examples of key metabolites’ spatial expressions in cancer-related regions 
under negative ion mode. c ROC analyses of key metabolites at distin-
guishing between diseased tissues and between different subregions 
(anabasine was detected under positive ionization mode, docosahexae-
noic acid was detected under negative ionization mode).

Additional file 2: Table S1. Key parameters of the AFADESI-MSI setting.
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