
Qin et al. Cancer Cell International          (2022) 22:369  
https://doi.org/10.1186/s12935-022-02790-w

REVIEW

Molecular mechanism of circRNAs in drug 
resistance in renal cell carcinoma
Shuang Qin, Yuting Wang, Peijun Wang* and Qi Lv* 

Abstract 

Renal cell carcinoma (RCC) is one of the most common malignant tumors with a poor response to radiotherapy and 
chemotherapy. The advent of molecular targeted drugs has initiated great breakthroughs in the treatment of RCC. 
However, drug resistance to targeted drugs has become an urgent problem. Various studies across the decades have 
confirmed the involvement of circular RNAs (circRNAs) in multiple pathophysiological processes and its abnormal 
expression in many malignant tumors. This review speculated that circRNAs can provide a new solution to drug 
resistance in RCC and perhaps be used as essential markers for the early diagnosis and prognosis of RCC. Through the 
analysis and discussion of relevant recent research, this review explored the relationship of circRNAs to and their regu-
latory mechanisms in drug resistance in RCC. The results indicate an association between the expression of circRNAs 
and the development of RCC, as well as the involvement of circRNAs in drug resistance in RCC.
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Background
Renal cell carcinoma (RCC) is one of the most common 
malignant tumors [1, 2] that respond poorly to radio-
therapy and chemotherapy effect [3]. Currently, tyros-
ine kinase inhibitor (TKI) drugs, such as sunitinib and 
sorafenib, are the most commonly used molecular tar-
geted drugs to treat RCC. However, with the massive 
application of targeted drugs in clinical practice, drug 
resistance has gradually become an important concern in 
targeted drug use. Over the years, many researchers have 
explored the mechanisms of targeted drug resistance in 
RCC at the cellular and molecular levels. Studies have 
shown that the development of various tumors, such as 
glioblastoma, hepatocellular carcinoma, lung carcinoma, 
and breast carcinoma, is closely related to the expression 
of circular RNAs (circRNAs) [4–7]. This review explores 
the relationship between the molecular mechanism 
of circRNAs and the mechanism of drug resistance to 

targeted drugs in RCC and describes the association of 
circRNAs with the occurrence of drug resistance in RCC.

Biological characteristics of circRNAs
CircRNAS are formed by the reverse shearing of precur-
sor RNAs from end to end, which creates a very stable 
ring structure [8], 9]. CircRNAs are spatio-temporal 
and are variously expressed in different tissues and cells 
[10], 11].  CircRNAs can be divided into EcRNAs, CiR-
NAs, and EIcRNAs. CircRNAs are involved in cellular 
function, mainly through competitive endogenous RNA 
mechanisms [12–14]. CircRNAs act as the “sponges” of 
miRNAs because circRNAs have abundant miRNA loci 
on the circRNA ring structure, which can bind with vari-
ous miRNAs, thereby influencing the regulation of down-
stream target genes. In addition, circRNAs can also alter 
splicing patterns or mRNA stability by binding RNA-
binding proteins (RBPs) related to mRNA regulation 
[15]. CircRNAs can also interact with RNA polymerase 
and regulate transcription [16, 17].  Although circRNAs 
are noncoding RNAs, some circRNAs can encode regula-
tory peptides [18], 19]. CircRNAs play an essential role in 
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regulating tumor genesis, proliferation, invasion, metas-
tasis, drug resistance, and prognosis [20–22].

Association between circRNA expression and RCC 
Since the discovery of circRNAs, many studies have 
shown their close association with the biological behav-
ior of tumors. The relationship between circRNAs and 
RCC has also been confirmed by several studies involving 
RNA sequencing, which has revealed abnormal circRNA 
expression in many tumor tissues [23]. CircRNAs are 
also involved in the growth, reproduction, invasion, and 
death of tumor cells [24, 25]. The analysis of the abnor-
mal expression of circRNAs in RCC, along with tumor 
stage, histological grade, metastasis, and prognosis, has 
shown that the level of abnormal circRNA expression is 
correlated with tumor development, proliferation, inva-
sion, and apoptosis.

Studies have also demonstrated that the expression 
of circRNAs, such as circ PUM1, circRNA ZNF609, 
circPTCH1, circPCNXL2, circRNA_001287, and cir-
cRNA SCARB1, significantly changes in RCC (Table  1). 
Furthermore, the enhanced expression of these circR-
NAs can promote the development of RCC [25–30]. 
Using data from existing miRNA databases, research-
ers screened out circRNAs differentially expressed in 
tumor and normal cells and subsequently compared 
and analyzed the effects of differentially expressed cir-
cRNAs on RCC at the molecular, cellular, individual, 
and population levels. Li et al. [31] found that circTLK1 
was overexpressed in RCC and that such overexpression 
was related to the clinical manifestations of and poor 

prognosis in malignant tumor progression. Their experi-
ments revealed that circTLK1 functioned as a sponge for 
miR-136-5p and positively regulated CBX4 expression. 
The overexpression of miR-136-5p significantly inhibited 
the mRNA and protein expression of CBX4. Conversely, 
in RCC tissues, miR-136-5p was significantly downregu-
lated, whereas CBX4 was upregulated. The contrasting 
expressions of miR-136-5p and CBX4 were positively 
correlated with tumor size, distant metastasis, and poor 
prognosis. Li et  al. further confirmed that circTLK1 
knockdown inhibited the migration and invasion of RCC 
cells. CBX4 (also called polycomb 2) is a small ubiquitin-
related modifier E3 ligase that facilitates the sumoylation 
of other proteins involved in tumorigenesis [32, 33] and 
increases vascular endothelial growth factor A expres-
sion and angiogenesis in hepatocellular carcinoma cells 
by promoting the sumoylation of HIF-1a [34]. In breast 
cancer [35], CBX4 promotes cell growth and metastasis 
in  vitro and in  vivo by regulating the miR-137/Notch1 
signaling pathway. The CircRNAs cRAPGEF5 [31], hsa-
circ-0072309 [37], circ-AKT3 [38], circUBAP2 [39], and 
circHIPK3 [40] are seldom expressed in RCC tissues. 
The variable expression of circRNA in normal and tumor 
tissues and cells suggests that circRNAs can be used as 
tumor biomarkers [41].

CircRNAs and the mechanisms of drug resistance in RCC 
Drug resistance in tumors is a common cause of thera-
peutic failure. During tumor drug therapy, possible 
mechanisms of drug resistance include the abnormal 
activation of tumor stem cells, increased metabolic rate 

Table 1 Role of circRNAs in regulating renal tumor cells

circRNA Target Function References

circPUM1 miR-340-5p/FABP7 Induced RCC’s progression ZENG et al. [25]

circ‐ZNF609 miR‐138‐5p/FOXP4 Induced RCC’s progression Xiong et al. [26]

circPTCH1 miR-485-5p/MMP14 Induced RCC’s progression Liu et al. [27]

circPCNXL2 miR‐153/ZEB2 Induced RCC’s progression Zhou et al. [28]

circRNA_001287 miR-144/CEP55 Induced RCC’s progression Feng et al. [29]

circRNA SCARB1 miR- 510-5p/SDC3 Induced RCC’s progression Sun et al. [30]

circTLK1 miR-136-5p Induced RCC’s progression Li et al. [31]

cRAPGEF5 miR-27a-3p/TXNIP Suppressed RCC’s progression Chen et al. [36]

hsa-circ-0072309 miR-100/PI3K/AKT and mTOR Suppressed RCC’s progression Tao et al. [37]

circ‐AKT3 miR‐296‐3p/E‐cadherin Suppressed RCC’s progression XUE et al. [38]

circUBAP2 miR-148a-3P/FOXK2 Suppressed RCC’s progression SUN et al. [39]

circHIPK3 miR-637 Suppressed RCC’s progression Li et al. [40]

hsa_circ_0035483 hsa-miR-335/CCNB1 Enhanced RCC’s resistance to gemcitabine Yan et al. [57]

circSNX6 miR-1184/GPCPD1 Enhanced RCC’s resistance to sunitinib Huang et al. [58]

circRNA-001895 miR-296-5P/FOX2 Enhanced RCC’s resistance to sunitinib Tan et al. [59]

circEHD2 miR-4731-5p/ABCF2 Enhanced RCC’s resistance to sunitinib Li et al. [61]

circME1 malic enzyme 1 Enhanced RCC’s resistance to sunitinib Zhang et al. [63]
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of chemotherapeutic drugs, enhanced repair ability after 
DNA damage, loss of activity of apoptotic signaling path-
ways, redistribution of intracellular drug accumulation, 
and increased expression of transporters that recognize 
and exclude drugs [42–44]. Sanger et  al. [45] first dis-
covered circRNAs in  the 1970s, whereas Hsu et  al. [46] 
observed the circular structure of circRNAs in Hela cells 
under electron microscopy.  Studies in recent decades 
have consistently confirmed the relationship between 
circRNAs and tumors. In addition to influencing the 
malignant progression of tumors, circRNAs have been 
associated with tumor drug resistance [47–50]. This sug-
gests that circRNAs may function as regulatory agents of 
drug resistance in human cancers [51].

As competing endogenous RNAs (ceRNAs), circR-
NAs mostly perform their normal biological functions 
through circRNA–miRNA–mRNA regulation networks. 
miRNA are considered essential in a variety of biologi-
cal processes in the body and important factors affecting 
the normal functioning of cells, including participation in 
the generation and progression of diseases [52–54]. Cir-
cRNAs are abundant in miRNA sites, which means that 
they can bind to various miRNAs with various roles in 
cells, promote or inhibit the expression of target genes, 
and thus regulate pathological processes in cells and 
the body [55, 56]. Studies that explored the relationship 
between the expression level of circRNAs and the clinical 
efficacy of RCC have found an association of many circR-
NAs with drug resistance in RCC and have described the 
mechanisms involved.

Yan et  al. [57] analyzed circRNAs variously expressed 
in RCC by high-throughput sequencing and further 
investigated hsa_circ_0035483. The expressions of hsa_
circ_0035483, hsa-miR-335, cyclin B1 (CCNB1), and the 
autophagy-related proteins were detected by RT-PCR 
or Western blot. Yan et  al. further confirmed that hsa_
circ_0035483 promoted autophagy by binding to hsa-
miR-335 and enhanced gemcitabine resistance in RCC by 
promoting CCNB1 expression (Fig.  1).  However, silenc-
ing hsa_circ_0035483 enhanced sensitivity to gemcit-
abine in vivo.

The circSNX6/miR-1184/GPCPD1 axis plays a cru-
cial role in regulating intracellular LPA levels and suni-
tinib resistance in RCC. Specifically, Huang et  al. [58] 
found that circSNX6 promoted sunitinib resistance in 
RCC by suppressing the inhibitory effect of miR-1184 
on its target gene, GPCPD1, and increasing intracellular 
lysophosphatidic acid (LPA) levels. Tan et al. [59] showed 
that circRNA-001895 expression in sunitinib-resistant 
RCC was higher than that in chemotherapy-sensitive 
tissues. Upregulated circRNA-001895 expression in 
tumor cells was related to sunitinib resistance in RCC 
through controlled trials. Chen et  al. [60] revealed that 

circRNA-001895 expression in tumor cells was related 
to sunitinib resistance in RCC and that hsa-circ-001895 
regulated the downstream target gene FOX2 through 
miR-296-5P. Li et  al. [61] reported increased circEHD2 
expression in sunitinib-resistant cell lines and tissues, 
which was linked to sunitinib resistance. Conversely, the 
knockdown of CircEHD2 reduced the progression of 
sunitinib-resistant cancer cells. Li et al. further reported 
that miR-4731-5p has a repressive function in RCC and 
reduces sunitinib resistance by targeting ABCF2, a mem-
ber of the ABCF transporter family, which is a subgroup 
of the ATP-binding cassette transporter superfamily. 
ABCF2 is linked to drug resistance in several cancers 
[62]. The investigation further confirmed that ABCF2 
was upregulated in RCC cells and that it mitigated the 
inhibitory effect of circEHD2 knockdown on suni-
tinib resistance in RCC. Additionally, they found that 
circEHD2 binds with miR-4731-5p in RCC, thereby con-
firming the essential role of circEHD2 in sunitinib resist-
ance in RCC. However, Li et al.’s study could not establish 
a clear relationship between ABCF2 and circEHD2. Cir-
cRNAs indirectly regulate RCC by regulating the expres-
sion and activity of tumor-related target genes through a 
regulatory network mediated by miRNAs. These circR-
NAs maintain intracellular homeostasis in physiological 
states. Once their expression changes in RCC cells, they 
will not only promote tumor development, proliferation, 
invasion, and metastasis but also significantly increase 
the probability of drug resistance in tumor cells.

CircRNAs can regulate cellular physiological and 
pathological processes through ceRNA mechanisms 

Fig. 1 hsa_circ_0035483 and gemcitabine resistance in RCC 
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and by binding to RBPs and RNA polymerase.  Fur-
thermore, ribosomes can translate some circRNAs and 
encode peptides to enable them to perform regula-
tory functions. Zhang et  al. [63] identified a novel cir-
cRNA named circME1, which was highly expressed in 
sunitinib-resistant clear-cell RCC cells, and found that 
circME1 promotes aerobic glycolysis and sunitinib resist-
ance in clear-cell RCC through the cis-regulation of malic 
enzyme 1 (ME1). CircME1 enhanced the expression of its 
parental gene ME1 in cis-regulation by interacting with 
U1 snRNP at the promoter of ME1. Aerobic glycolysis, 
also known as the Warburg effect, is involved in tumor 
progression and the development of sunitinib resistance 
[64–66]. The role of noncoding RNA-mediated overex-
pression of ABC transporters in chemotherapy-resistant 
tumors also cannot be ignored [67].

A potential mechanism of chemoresistance or targeted 
drug resistance in tumor cells may be the cytoprotective 
functions of autophagy. Furthermore, circRNAs are vari-
ously expressed in response to cisplatin, suggesting their 
involvement in the pathophysiology of cisplatin-induced 
nephrotoxicity [68]. A study investigated the potential 
impact of radiation therapy on circRNA expression and 
reported that the irradiation of human embryonic kidney 
cells resulted in a clear variation in circRNA expression 
signatures [69]. These data suggest a possible involve-
ment of circRNAs in treatment resistance in RCC, but 
further studies are needed to clarify these relationships.

The tumor angiogenesis theory proposed by Folkman 
in the twentieth century pointed out that tumor angio-
genesis is an essential process of tumor growth [70, 71]. 
Currently, the most widely used TKI drugs in the treat-
ment of RCC have been developed based on this prin-
ciple. A VEGF/VEGFR-targeted antibody specifically 
binds VEGF/VEGFR to inhibit the downstream signaling 
pathway, thus inhibiting the generation of tumor blood 
vessels and limiting tumor growth. However, with the 
massive application of targeted drugs in clinical prac-
tice, drug resistance has gradually become an important 
concern in targeted drug use. Few literature reviews have 
described the role of circRNAs in the mechanism of suni-
tinib resistance in RCC. This may be a valuable line of 
further research.

Conclusions
The development of molecular targeted drugs has 
dramatically improved the therapeutic outcomes for 
RCC. Still, increasing resistance to targeted drugs has 
become an urgent problem. Drug resistance is a com-
plex process, and the activation of multiple pro-angio-
genic pathways may be associated with TKI resistance. 
This review discussed the role of circRNAs in the 
mechanism of drug resistance in RCC. CircRNAs were 

once thought to be the product of RNA mishearing 
[72]. However, several studies have shown that circRNA 
plays a vital role in both physiological and pathological 
states and is associated with tumorigenesis in various 
cancers, including RCC.

In conclusion, current studies suggest that circRNAs 
play a crucial role in mediating drug resistance in RCC. 
CircRNAs enhance RCC’s resistance to sunitinib and 
gemcitabine primarily through ceRNA mechanisms. Fur-
ther studies are required to elucidate further the involve-
ment and mechanisms of circRNAs in drug resistance in 
RCC. The research and discussion on the involvement of 
circRNAs in the mechanism of anti-tumor drug resist-
ance provides new insights on developing strategies to 
overcome drug resistance in clinical practice, as well as 
on developing more effective treatments for RCC.
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