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Abstract 

Cancer is a heterogeneous disease with multifaceted drug resistance mechanisms (e.g., tumour microenviron-
ment [TME], tumour heterogeneity, and immune evasion). Natural products are interesting repository of bioactive 
molecules, especially those with anticancer activities. Prodigiosin, a red pigment produced by Serratia marcescens, 
possesses inherent anticancer characteristics, showing interesting antitumour activities in different cancers (e.g., 
breast, gastric) with low or without harmful effects on normal cells. The present review discusses the potential role of 
prodigiosin in modulating and reprogramming the metabolism of the various immune cells in the TME, such as T and 
B lymphocytes, tumour-associated macrophages (TAMs), natural killer (NK) cells, and tumour-associated dendritic cells 
(TADCs), and myeloid-derived suppressor cells (MDSCs) which in turn might introduce as an immunomodulator in 
cancer therapy.
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Introduction
Cancer is the leading cause of death in 135 countries 
according to the World Health Organisation (WHO) 
global health estimates in 2019 [1]. The Global Burden 
of Cancer (GLOBOCAN) also reported ~ 19 million new 
cancer cases in 2020 that are anticipated to increase by 
47% (~ 28 million) in 2040 [2]. Understanding tumour 
biology has facilitated the development of targeted ther-
apies; however, tumours display multidrug resistance 
(MDR) as a significant clinical burden due to heteroge-
neity [3–6]. Natural bioactive compounds from various 
sources (e.g., plants, microbes) have emerged as immu-
nomodulators in diseases, such as diabetes, cardiovascu-
lar diseases (CVDs), inflammation, and cancer [7–9].

Research deems the use of natural compounds as 
‘immunomodulators’ alongside the advanced under-
standing of the complex interactions between cancer 

and the immune system [10]. Immunomodulators boost 
the immune defences against threats (e.g., infections) 
or quench the abnormal immune response in immune-
related disorders [11]. Natural compounds are proven to 
affect immune cells and to enhance anticancer immune 
responses in  vitro and in patients. For example, ber-
ries—which contain multiple chemopreventive com-
pounds—enhance the function of natural killer (NK) cells 
and decrease the number of infiltrating neutrophils in 
colorectal cancer (CRC) [12–14]. Epigallocatechin gal-
late (EGCG), resveratrol, all-trans retinoic acid (ATRA), 
curcumin, polysaccharide K (PSK), β-glucans, and carot-
enoids are also immunomodulators (e.g., elevate NK cells 
and inhibit myeloid-derived suppressor cells [MDSCs]) 
[15–19]. Notably, bacteria-based cancer immunotherapy 
has lured attention thanks to its distinctive and ample 
components, mechanisms, and benefits to stimulate the 
host immunity against cancer [20].

Prodigiosin is a secondary metabolite anticancer red 
pigment that belongs to the “prodiginines” family, and is 
produced by the Gram-negative bacteria Serratia marc-
escens (Fig.  1) [21]. It inhibits the mammalian target 
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of rapamycin (mTOR) pathway and angiogenesis, and 
induces cycle arrest and apoptosis in cancer cells with 
minimal or without observed cytotoxicity on healthy 
cells [22]. Inherent toxicity is one of the major issues with 
immunosuppressants that prompted researchers to use 
combined regimens, especially in oncology. Prodigiosin 
offers interesting possibilities for a combinatorial applica-
tions, acting synergistically with cyclosporin A and addi-
tively with rapamycin, confirming its distinctiveness and 
the potential for further development as immunosup-
pressants [23–25]. Of note, prodigiosin analogues have 
demonstrated a good safety profile without genotoxicity 
in clinical trials for the treatment of chronic lympho-
cytic leukaemia (CLL) [26]. Although prodigiosin is a 
well-established anticancer molecule (Table 1), its immu-
nomodulating and metabolic reprogramming activities 
were not studied─data are only available for a related 
compound, prodigiosin 25-C [27–29]. Therefore, the cur-
rent review discusses a compendium of possible immu-
nomodulating and metabolic reprogramming activities of 
prodigiosin on specific immune cells and their cytokines 
in cancer. The present review also provides a compre-
hensive list of target biomarkers for prodigiosin in the 
tumour microenvironment (TME) (Fig. 2) [30–39].

The possible role of prodigiosin 
as an ‘immunomodulator’ in cancer
Prodigiosin might improve the efficacy of immunother-
apy by regulating multiple immune cells (e.g., T cells) 
and other proteins in the TME (e.g., programmed death 
ligand-1 [PD-L1]) [83–87]. Genetic mutations that occur 
during DNA replication and increased genetic instabil-
ity in tumours, create neoantigens that evoke an immune 
response [88]. Failure of immune surveillance facilitates 
tumour growth and progression despite the expression of 
immunogenic target expression [89].

The role of prodigiosin on immune‑associated molecules
PD‑L1
Immune checkpoint inhibitors provide durable clinical 
response and have become an important anticancer strat-
egy versus standard-of-care (SOC) [90]. Targeting PD-1/
PD-L1 by antibodies is minimally effective in several can-
cers, including renal cell carcinoma (RCC) and non-small 
cell lung cancer (NSCLC) [90, 91]. However, research has 
reported that failure of immune checkpoint inhibition 
is attributed to an increased mTOR activity [92]. Inhibi-
tion of mTORC1 decreased PD-L1 levels in NSCLC cell 
lines [93]; although, such inhibition increased PD-L1 
levels in other tumour models. For example, everolimus 
upregulated PD-L1 expression in RCC cell lines and in 
xenografted tumour tissues [94]. These results indicate 
that PD-L1 expression levels following mTOR inhibition 
vary based on tumour types. Hence, using prodigiosin 
as an effective mTOR inhibitor in different cancer types 
in vitro and in vivo might explain why mTOR inhibition 
effects PD-L1 expression levels differently.

Heat shock protein 90 (HSP90)
Heat shock proteins are stress hallmarks that are abnor-
mally regulated in cancer to prevent cell degradation 
and death and preserve the protein structure in a stress-
ful environment [86]. They are essential for the immune 
system regulatory function in healthy cells; although, 
cancer cells are drug-resistant due to elevated expres-
sion levels of HSP90 [95]. For example, combining bort-
ezomib with HSP90 inhibition improved survival and 
delayed disease progression in mouse models, and sup-
pressed tumour growth in multiple myeloma (MM) 
cell culture [96, 97]. Moreover, anti-HSP90 treatment 
improved T-cell killing in melanoma cell lines, and sig-
nificantly sustained responses with a better safety pro-
file in relapsed/refractory MM (RRMM) patients [96, 
98–101]. Recently, a combination of prodigiosin and the 
HSP inhibitor, PU-H71, decreased the levels of HSP90α 
in MDA-MB-231 cells [102]. Among other HSPs, HSP90 
stimulates Tregs and T helper 1 (Th1) and Th2 cells that 
support other cells in the immune system. Inhibition of 
HSP90 using prodigiosin may have the potential to mod-
ify Tregs and enhance tumour therapy [59].

The godfather of tumour suppressors, p53, as a hallmark 
of inflammation and the immune system function
The P53 protein regulates the immune system and cel-
lular processes, and it is one of the most frequently 
altered genes that drive malignancy, chemo and radi-
oresistance, and disease progression [103–108]. Wild 
type P53 is involved in inflammatory and autoimmune 
disorders by inducing Tregs differentiation. For exam-
ple, systemic lupus erythematosus (SLE) patients have 

Fig. 1  Structure of prodigiosin (2-methyl-3-pentyl-6-methoxyprodi
ginine)



Page 3 of 20Anwar et al. Cancer Cell International          (2022) 22:419 	

Table 1  Evidence-based anticancer effects of prodigiosin

Cancer(s) type Study model(s) Anticancer effect(s) Reference(s)

Ovarian A2780RCIS (MRP1, 2 overexpressing cell line) ↓ Cell viability
Acts regardless of the BCRP, MDR1, or MRP trans-
porter

[40]

Gastric EPG85-257RNOV
EPG85-257RDB

HGT-1 cell line ↑ Apoptosis
↓ Cell viability
Cell shrinkage
Cell detachment from the culture substrate

[41]

Glioblastoma U87MG cell line
GBM8401 cell line

Stimulates stress markers of ER (e.g., BiP/GRP78, 
CHOP, and sXBP1)
↑ Autophagic cell death
Activates the JNK pathway
↓ Decreasing the AKT/mTOR pathway
↑ Caspase 3 levels
↑ PARP cleavage
↑ LC3-II/LC3-I
↑ Bax/β-Actin ratio
↓ p62

[42]

Neuroblastoma LAN-1
IMR-2
SK-N-AS
SH-SY5Y

Uncouples the protons of the ETC to mitochondrial 
ATP synthase
↓ ATP production

[43]

Colorectal cancer (CRC) HT-29 cell line ↓ G2/M
↑ Blockage in the G1 phase
↓ Number of viable cells
↓ Survivin mRNA levels
↑ Caspase 3 levels
↑ Bax mRNA levels
↑ Bad mRNA levels
↑ P53 protein levels
↓ Bcl-2 mRNA levels

[44–46]

DLD-1 cells
SW-620 cells

↑ Apoptosis
↑ Caspases levels
Acts irrespective of p53 status (mutant or absent)
PARP cleavage

[47]

DLD-1 cells ↑ P53 protein levels
↑ Apoptosis
↑ Lysosomal pH

[46]

WiDr cells ↑ Anticancer activity [48]

NRK normal cells
Swiss-3T3 normal cells

No significant decrease in viable cells
No apoptosis
No toxicity

[47]

HCT116 cells
SW480 cells
HT-29 cells
N87 cells
AGS cells
LoVo cells
Nude BALB/c male mice

Accumulation of LC3B-II and SQSTM
↓ Lysosomal activity by accumulating EGFP-LC3 
puncta
Triggers autophagy
↑ LC3-II/LC3-I
↑ Caspase 3 levels
↑ in-vitro sensitivity to 5-FU
↑ in-vivo 5-FU efficacy

[49]
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Table 1  (continued)

Cancer(s) type Study model(s) Anticancer effect(s) Reference(s)

SW480 cells
HCT116 cells
DLD1 cells
Athymic nu/nu mice

Restores P53
Activates P73
Prevents formation of colonosphere irrespective of 
p53
↓ Viability of self-renewing 5-fluorouracil-resistant 
Aldefluor( +) CRCSCs
↓ Growth of xenograft tumours initiated with 
Aldefluor( +) cells without toxic effects and limits 
their tumourigenesis
Activates a p53-responsive luciferase reporter in 
colonospheres
↓ Levels of the oncogenic N-terminally truncated 
isoform ΔNp73 in Aldefluor( +) cells
↑ Levels of the transcription factor c-Jun

[50]

P53 mutant SW480 cells Rescues a deficient P53 pathway
↑ Antitumour effects via disruption of the mutant 
P53/P73 complex and P73 upregulation

[51]

Breast T47D cell line No effect on cell cycle
↑ Signature ER stress markers (i.e., CHOP and GRP78)
↑ Caspase 3 levels
↑ Bax expression levels
↑ Bak expression levels
↓ Bcl-2 expression levels
↓ Survivin transcription levels
↑ Apoptosis
↓ RAD51 mRNA expression
↑ JNK signalling pathway
↑ P38 MAPK signalling pathway

[44, 52–55]

MCF-7 cell line ↑ Signature ER stress markers (i.e., CHOP and GRP78)
↑ Apoptosis
↓ RAD51 mRNA expression
↑ JNK signalling pathway
↑ P38 MAPK signalling pathway
Activates the IRE1–JNK pathway
Activation of GSK3β
Accumulation of P53 protein
↑ Bak expression levels
↑ Caspase 3 levels
↑ Caspase 7 levels
↓ Bcl-2 expression levels
↓ Survivin transcription levels
↑ Bax expression levels
Activates NAG-1
Activates the PERK–eIF2α pathway
↑ P53 protein levels
↑ PUMA protein levels
Arrests cell cycle at G1 phase

[52–58]
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Table 1  (continued)

Cancer(s) type Study model(s) Anticancer effect(s) Reference(s)

MDA-MB-231 cell line ↓ Bcl-2 transcription and expression levels
↓ Cell viability
↓ Proliferation
↓ Phosphorylated LRP6
↓ Phosphorylated DVL2
↑ Apoptosis
↑ Caspase 3 levels
↑ Caspase 8 levels
↑ Caspase 9 levels
No effect on Raf-1
↑ Bak expression levels
↓ Survivin transcription and expression levels
↓ HSP90ɑ mRNA and protein levels
↑ Bax mRNA levels
↓ RAD51 mRNA expression
↑ JNK signalling pathway
↑ P38 MAPK signalling pathway
↓ mTOR expression levels
↓ EGFR expression levels
↓ VEGF expression levels
PARP cleavage
Blocked Wnt/β-Catenin signalling
↓ CDK1 levels
↓ phosphorylated GSK3β
↓ β-catenin gene expression
Supports normal breast cell proliferation or growth*

Prevents tumour locoregional recurrence in vivo*

Causes significant breast cancer cell death*

[53, 55, 56, 59–63]

KPL-1 cell line
MKL-F cell line

↑ Apoptosis
↑ Bak expression levels
Activates caspase 3
↓ Bcl-2 expression levels
↑ Bax expression levels

[53]

MDA-MB-468 cell line ↓ Cell viability
↓ Proliferation
↑ Apoptosis
Blocked Wnt/β-Catenin ssignalling
↓ Phosphorylated LRP6
↓ Phosphorylated DVL2
↓ phosphorylated GSK3β
↓ β-catenin gene expression

[60]

MDA-MB-231 xenografts
MMTV-Wnt1 transgenic mice

↓ Tumour progression
↓ Ser9 phosphorylated GSK3β
↓ Wnt/β-Catenin ssignalling
↓ CDK levels
↓ Phosphorylated LRP6
↓ Phosphorylated and unphosphorylated DVL2
↓ Active β-catenin

Haematopoietic Acute human T cell leukaemia cells (Jurkat clone 
E6-1)
NSO myeloma cells
HL-60 human promyelocytic leukaemia cells
Human Burkitt lymphoma cells (Ramos)

↓ Number of viable cells
↑ Apoptosis
Acts in absence of p53
↓ Vacuolar ATPase
No significant toxicity, apoptosis, or decrease in 
normal cells

[64]

Acute human T cell leukaemia cells (Jurkat clone 
E6-1)

↑ Phosphorylation of p38-MAPK [65]

Wt-p53Molt-4 cells (T-ALL) ↓ Survivin protein levels
↑ Caspase 3 levels
↑ accumulation of P53
Less uniform cells without membrane integrity
↓ Number of viable cells
Diminishes metabolic activity
↓ Rate of proliferation

[66]
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Table 1  (continued)

Cancer(s) type Study model(s) Anticancer effect(s) Reference(s)

CCRF-CEM cells ↓ Proliferation rate
↓ Viable cell number
↓ Survivin mRNA and protein levels
↓ MMP-9 mRNA and protein levels
↑ Caspase 3
↑ Apoptosis

[67]

B and T cells ↑ Apoptosis
↑ Caspase 3 levels
↑ Caspase 9 levels

[68]

HCC HepG2
WiDr cells

Changes cellular morphology to apoptotic types
Disrupts cell connections
↓ Cell proliferation
↓ Metabolic activity
Activates caspase 3
↓ survivin expression
↑ Apoptotic rate
↑ Anticancer activity

[48, 69]

Pancreatic H8898 cell line ↓ Cell proliferation
↑ mitotic arrest
↑ ROS levels
Cell death
DNA fragmentation
↑ Apoptosis

[70]

Lung Doxorubicin-sensitive A549 cell line
Doxorubicin-resistant anti-Dox-A549 cell line

↑ Cytotoxicity
↑ Anticancer activity
↑ PARP cleavage
↑ Apoptosis
Activates autophagy
↓ Autophagic inhibitor expression
Activates non-PI3K-Class III/Beclin-1 inducer expres-
sion
↓ PI3K-p85/AKT/mTOR signalling pathways

[48, 71, 72]

Doxorubicin-sensitive- and -resistant-bearing 
C57BL/6 mice

No acute toxicity
↓ Tumor cell accumulation around the trachea

A549 cell line
HSAEC cells (i.e., an immortalised healthy cell line)

No cytotoxic effect on healthy cells
↓ Cell viability
Changes morphology
↓ DNA replication
↑ Metabolic rewiring

[72]

A549 cells
CL1-5 cells
H23 cells
293 T cells

↑ p27KIP1 expression
Stabilises p27KIP1 through transcriptional repression 
of SKP2
↓ E2F1
↓ PKB levels

[73]

95-D cells ↓ RhoA gene expression and protein levels
↓ MMP-2
↓ Metastasis and invasion
↑ Cell aggregation

[74]

GLC cell line ↑ Mitochondrial apoptosis via caspase-dependent 
and independent manner
↑ Cytochrome c and AIF release into the cytoplasm

[75]

GLC4/ADR cell line ↑ Cytochrome c release
Activates caspase cascade
↑ PARP cleavage

[76]

Urothelial CNE2 cells ↓ Cell proliferation
↓ Cell migration
↓ Cell invasion
Interrupts the cell cycle in G0/G1 phase

[77]
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Table 1  (continued)

Cancer(s) type Study model(s) Anticancer effect(s) Reference(s)

Nasopharyngeal Cisplatin-sensitive or resistant cells
 J82
 253 J
 T24
 RT-112

Blocked autophagy
Resensitised cisplatin-resistant cells to apoptotic cell 
death
In combination with cisplatin, prodigiosin sensitised 
both cisplatin-sensitive and -resistant cell lines to 
cisplatin
↓ Activities of cathepsin B and L
Alters lysosomal function

[22]

Choriocarcinoma JEG3 cell line ↓ IAP family, including XIAP, cIAP-1 and cIAP-2
↓ Cell growth
↑ Apoptosis
↑ Caspase 3 levels
↑ Caspase 9 levels
↑ PARP cleavage
↑ P53 expression level
↑ Bax/Bcl-2 expression level

[78, 79]

Prostate cancer PC3 cell line
PC3 and JEG3 tumour-bearing nude mice

↓ Cell and tumour growth
↑ Bax/Bcl-2 expression level
↑ Apoptosis
↑ PARP cleavage
↑ Caspase 3 levels
↑ Caspase 9 levels
↑ P53 expression level
↓ IAP family, including XIAP, cIAP-1 and cIAP-2

[78]

Melanoma The substrain B16BL6 of mouse melanoma B16 cells ↓ Metastasis and invasion
↑ Mouse survival rate

[74]

SK-MEL-5 cell line Activates the mitochondrial apoptotic pathway
Disrupts MCL-1/BAK complexes
↓ mTORC1 protein levels
↓ mTORC2 protein levels
Loss of AKT phosphorylation

[80, 81]

SK-MEL-28 cell line Cell cycle arrest at G0/G1 phase
↑ Apoptosis
↑ DNA damage
↓ Survivin protein levels
↓ Clonogenic capacity in survivin knockdown cells
↓ mTORC1 protein levels
↓ mTORC2 protein levels
Loss of AKT phosphorylation

[81, 82]

SK-Mel-19 cell line Cell cycle arrest at G0/G1 phase
↑ Apoptosis
↑ DNA damage
↓ Survivin protein levels
↓ Clonogenic capacity in survivin knockdown cells

[82]

↑denotes overexpression, upregulation, overactivation, or induction, whereas ↓ expresses reduced activity, suppression, or downregulation
* According to the in-vitro and in-vivo results of an experimental study of prodigiosin-encapsulated scaffolds using blended FDA-approved polymers (polylactic-co-
glycolic acid [PLGA], polyethylene glycol [PEG] and polycaprolactone [PCL])

5-FU, 5-fluorouracil; ADR, adriamycin-resistant; AIF, apoptosis-inducing factor; ALL, acute lymphocytic leukaemia; ATP, adenosine triphosphate; ATPase, adenosine 
triphosphatase; Bax, Bcl-2-associated X protein; Bad, Bcl-2-associated death promoter; Bcl-2, B-cell lymphoma-2; Bak, Bcl2 antagonist/killer; B-CLL, B-Cell chronic 
lymphocytic leukaemia; BCRP, breast cancer resistance protein; BiP/GRP78, binding immunoglobulin protein-glucose-regulated protein 78; CDK1, cyclin dependent 
kinase 1; CHOP, C/EBP homologous protein; cIAP-1, cellular inhibitor of apoptosis protein-1; cIAP-2, cellular inhibitor of apoptosis protein-2; CRC, colorectal cancer; 
CRCSCs, colorectal cancer stem cells; DVL2, dishevelled segment polarity protein 2; E2F1, E2F transcription factor 1; EGFP-LC3, enhanced green fluorescent protein-
microtubule-associated protein 1A/1B-light chain 3; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ETC, electron transport chain; GRP78, 
glucose-regulated protein 78; GSK3β, glycogen synthase kinase 3 beta; HSAEC, human primary small airway epithelial cells; HSP90ɑ, heat shock protein 90 alpha; 
IAP, inhibitor of apoptosis protein; IRE1–JNK, inositol requiring enzyme 1-c-Jun NH2-terminal kinase; LRP6, low-density lipoprotein receptor-related protein 6; MAPK, 
mitogen-activated protein kinase; MCL-1/BAK, myeloid-cell leukaemia 1-Bcl2 antagonist/killer MDCK, madindarby canine kidney; MDR1, multidrug resistance 1; 
MKL, megakaryoblastic leukaemia 1; MMP-2, matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; MRP, multidrug resistance-associated protein; MMTV-
Wnt1, mice transgenic for mouse mammary tumour virus-Wnt1; mTOR, mammalian target of rapamycin; NAG-1, nonsteroidal anti-inflammatory drug-activated 
gene-1; PARP, poly (ADP-ribose) polymerase; PERK–eIF2α, protein kinase R (PKR)-like endoplasmic reticulum kinase-eukaryotic translation initiation factor 2A; PI3K, 
phosphoinositide 3-kinase; PKB, protein kinase B; PUMA, P53 upregulated modulator of apoptosis; ROS, reactive oxygen species; SCLC, small cell lung cancer; SKP2, 
S-phase kinase associated protein 2; SQSTM, sequestosome; sXBP1, spliced X-box binding protein 1; VEGF, vascular endothelial growth factor; XIAP, X-linked inhibitor 
of apoptosis
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an inhibited P53 function because the P53 C-terminal 
domain are bound to autoimmune antibodies [109]. 
Mice lacking P53 also had autoimmune lesions in liver, 
lungs, and kidneys. They also had a few number of 
Tregs with impaired differentiation versus p53-express-
ing mice. Additionally, lung- and pancreatic-deficient 
P53 tumours exhibited immune tolerance by recruit-
ing both Tregs and monocyte/macrophage lineage cells 
[110].

There may be a functional HSP90─P53 relationship 
that impacts P53 function, where compounds that dis-
rupt such association would enhance tumour targeting. 
For example, prodigiosin inhibited HSP90 and res-
cued P53 in triple-negative breast cancer (TNBC) and 
P53-deficient CRC cells, respectively, inhibiting tumour 
growth and leading to tumour cell death [51, 59]. Heat 
shock protein 90 is a signal protein that controls the 

function of survivin where HSP90 inhibition dissociates 
the HSP90-survivin complex, initiating mitochondrial 
apoptosis and suppressing metastasis [111]. Prodigi-
osin led to the accumulation of P53, decreased survivin 
levels, and increased capsase-3 expression levels in 
chemoresistant acute lymphoblastic leukaemia (ALL) 
[112]. Notably, prodigiosin initiates selective apoptosis 
in malignant breast cancer cell lines regardless of MDR 
or the P53 status [44, 113]. In contrast, prodigiosin did 
not accumulate P53 in human CLL cells versus doxoru-
bicin-treated cells [68].

The role of prodigiosin on immune cells in the TME
Tregs
Cancer immunotherapy relies partly on the immu-
nomodulating actions mediated by conventional (Tconv) 
T cells and Tregs [114]. Regulatory T cells maintain the 

Fig. 2  Cancer biomarkers where prodigiosin may exert anticancer actions. APC, adenomatous polyposis coli; APEX, AP DNA endonuclease; 
ATPase-β, adenosine triphosphatase-beta; BER, base excision repair; bFGF, basic fibroblast growth factor; BRCA1, breast cancer 1; BRCA2, breast 
cancer 2; CAIX, carbonic anhydrase IX; CD68, cluster of differentiation 68; CD163, cluster of differentiation 163; CEACAM-1, CEA cell adhesion 
molecule-1; COX IV, cytochrome C oxidase subunit IV; DCC, deleted in colorectal carcinoma; DSB, double-strand break; ECM, extracellular 
matrix; ERCC1-XPF, excision repair cross complementing protein 1-xeroderma pigmentosum group F; FEN1, flap endonuclease 1; GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase; GLUT-1, glucose transporter protein type 1; HIF1α, hypoxia-inducible factor 1-alpha; HIF1β, 
hypoxia-inducible factor 1-beta; hTERT, human telomerase reverse transcriptase; IKK-β, inhibitor of nuclear factor kappa-B kinase; iNOS, inducible 
nitric oxide synthase; Kap1, kruppel-associated box (KRAB)-associated protein 1; LAG3, lymphocyte-activation gene 3; MDM2, mouse double minute 
2; MMR, mismatch repair; Msh, MutS homolog 2; NER, nucleotide excision repair; NF-κB, nuclear factor kappa B; NF1, neurofibromatosis 1; PD1/
PD-L1, programmed cell death 1/programmed death ligand 1; PDGF, platelet-derived growth factor; PMS2, PMS1 homolog 2; PNKP, polynucleotide 
kinase 3’-phosphatase; POT1, protection of telomeres 1; PTEN, Phosphatase and TENsin; V-ATPase, vacuolar proton-translocating adenosine 
triphosphatase; RAP1, repressor activator protein 1; Rb1, retinoblastoma protein 1; TAMs, tumor-associated macrophages; TFIID, transcription factor II 
D; TIN2, TRF1-interacting protein 2; TIM3, T-cell immunoglobulin mucin-3; Tomm20, translocase of outer mitochondrial membrane 20; TNC, tenascin 
C; TPP1, tripeptidyl peptidase 1; TRF, telomere restriction fragment; VDAC1, voltage-dependent anion-selective channel 1; WT1, Wilms’ tumor 1; WT2, 
Wilms’ tumor 2; XPA, xeroderma pigmentosum group A; XRCC4, X-ray repair cross complementing 4
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proper function of the adaptive immune system; how-
ever, they can also suppress anticancer immunity and 
lead to poor disease prognosis (e.g., NSCLC, breast can-
cer) [115–118]. Patients at high risk of ovarian and breast 
carcinomas are expected to have reduced survival rates 
due to elevated levels of Tregs [119, 120]. Heat shock pro-
teins facilitate the immunosuppressive function, divi-
sion and growth, and cytokine release of Tregs [99]. A 
second-generation HSP90 inhibitor (i.e., ganetespib) 
reduced the number of Tregs in skin cancer in vitro and 
in  vivo. Similarly, the notion that prodigiosin inhibited 
HSP90α expression levels in TNBC cells supports that 
it may prevent Tregs-mediated immunosuppression in 
the TME. Prodigiosin may also decrease Tregs numbers 
and enhance their antitumour functions by suppressing 
HSP90 and survivin as well as activating p53 simultane-
ously. Moreover, prodigiosin may modulate Tregs differ-
entiation and prevent immune tolerance because of its 
effect on P53 irrespective of its status.

T lymphocytes
Despite their antigen-directed cancer cytotoxicity, over-
stimulation of T cells (i.e., T cell exhaustion) causes T cell 
senescence with defects in effector functions and prolif-
eration, preventing tumour control [121–123]. Persistent 
antigen exposure helps tumours evade the immune sur-
veillance and causes T cell dysfunction, where dysfunc-
tional T cells have multiple inhibitory receptors such as 
PD-1 [124]. Prodigiosin selectively suppressed the prolif-
eration and immune functions of T cells but not B-cells 
in vitro and in vivo [125]. However, data are insufficient 
to confirm whether prodigiosin directly or indirectly 
inhibited the immune functions of T cells. Prodigiosin 
also suppressed IL-2Rα expression in the IL-2/IL-2R 
signalling to block T-cell activation, inhibiting graft ver-
sus host disease (GvHD) and delayed the progression 
of autoimmune diabetes without toxicity in mice [126]. 
Prodigiosin 25-C (a related compound) directly attacked 
the activated CD8+ T cells by inhibiting the acidification 
of intracellular organelles needed for cytotoxic T lym-
phocytes (CTLs) functions [127]. Prodigiosin represents 
an effective molecule in an immunosuppressive TME 
characterised by dysfunctional T cells, and might be an 
important molecule for immunologic studies on T cells 
[126]. Studying the extent of T-cell inhibition after treat-
ment with prodigiosin is noteworthy, because deficient 
T-cell inhibition causes autoimmune diseases, whereas 
cancers arise due to excessive T-cell inhibition [128].

B lymphocytes
Regardless of the available consensus about the immu-
nosuppressive role of prodigiosin on T-cell proliferation, 

little is known about its effects on B cells [129, 130]. 
B cells constitute ~ 25% of all cells in some cancers and 
40% of tumour-infiltrating lymphocytes (TILs) in breast 
cancer patients [131–133]. B cells destruct tumours by 
increasing T cell responses and support tumour growth 
by favouring immunosuppression via complement acti-
vation or immune complex formation [134]. Prodigiosin 
inhibited polyclonal B-cell proliferation and immortalisa-
tion in human peripheral blood lymphocytes (PBLs) and 
Epstein Barr virus (EBV) [130]. The differential response 
of prodigiosin on T and B cells might be attributed to the 
source of the cells used in the experiments. For instance, 
human cells demonstrate selective inhibition of T-cell 
proliferation compared to mouse cells [23, 129, 130, 135]. 
Moreover, B cells are heterogeneous and diverse, and 
might increase T-cell anticancer activities or facilitate 
carcinogenesis through angiogenesis, inflammation, and 
immunosuppression [134].

Tumour‑associated macrophages (TAMs)
Existing data support the interesting role of prodigiosin 
in modulating tumour-associated macrophages (TAMs). 
Recruited macrophages into the TME are converted into 
TAMs, certain types of immunosuppressive macrophages 
that promote “tumour tolerance” by suppressing the gen-
eration and function of antitumour T cells [136, 137]. 
Solid tumours (e.g., breast, prostate) had accumulations 
of TAMs that confer poor disease prognosis [138–140]. 
Prodigiosin is proapoptotic and effective against both 
epidermal growth factor receptor (EGFR) and vascular 
endothelial growth factor (VEGF). It might also prevent 
the growth of malignant tumours by inhibiting the induc-
tion of TAM infiltration and M2 polarisation (Fig.  3) 
[102, 141, 142]. For example, less M2-polarised TAMs 
exist in CRC mouse models after EGFR signal disruption 
by gene knockout (KO) or cetuximab [18, 143]. Involve-
ment of the phosphatidylinositol 3-kinase (PI3K/Akt) 
pathway in TAM regulation and the inhibitory effect of 
prodigiosin on this pathway, suggest that prodigiosin 
might prevent TAM recruitment and initiate tumour-
necrosis factor (TNF)-related apoptosis [26, 144–146]. 
TAMs-induced matrix metalloproteinase-9 (MMP-9) 
and VEGF also mediate metastasis in a TNBC mouse 
model and primary lung cancer tissues [147, 148]. Pro-
digiosin inhibited matrix metalloproteinase-9 (MMP-9) 
that is argued to release VEGF to regulate TAM-driven 
tumour growth and angiogenesis (Fig. 3) [67, 149–152].

Prodigiosin might interfere with TAMs-secreted 
nicotinamide adenine dinucleotide phosphate oxidase 
(NOX) function or suppress its upregulation in the TME, 
preventing oxidative stress-induced carcinogenesis. 
Tumour-associated macrophages secrete chemokines 
and cytokines (e.g., interleukins [ILs], prostaglandin E2 



Page 10 of 20Anwar et al. Cancer Cell International          (2022) 22:419 

[PGE2], and TNF-α) that facilitate carcinogenesis, and 
express NOX2 that maintains immunological tolerance, 
tumourigenesis, and metastasis [153–156]. Prodigi-
osin analogue inhibited NOX activation by affecting the 
translocations of p47phox and Rac protein to the plasma 
membrane in a mouse macrophage cell line [157]. Target-
ing NOX2 by prodigiosin to reduce metastasis warrants 
further investigation, considering reactive oxygen species 
(ROS) source, tumour cells’ susceptibility to ROS toxicity, 
cancer progression stage, and effector cells’ sensitivity to 
ROS‐induced immunosuppression.

Prodigiosin might modulate the immune response of 
TAMs by inhibiting TNF-α, IL-2, and interferon-gamma 
(IFN-γ), reducing TAMs-mediated immunosuppression. 
Cuevas et  al., recently showed that prodigiosin modu-
lated the immune response and stabilised atherosclerotic 
lesions by inhibiting circulating TNF-α, IL-2, and IFN-γ 
in vivo (Fig. 3) [158]. Activation of M1 macrophages via 
IFN-γ is essential in immune function and contributes to 
tissue damage by proinflammatory cytokines [136].  For 
example, IFN-γ switched the immunosuppressive TAMs 
into immunostimulatory cells, potentiating the efficacy 
of antitumour immunotherapies by generating effector 
T cells in ovarian cancer [137]. Nevertheless, IFN-γ also 
conditioned protumourigenic effects in solid tumours 
and induced lung colonisation and enhanced expression 
of class I major histocompatibility complex (MHC I)-
related antigens [159, 160]. Prodigiosin also inhibited the 
onset and progression of autoimmune diabetes in non-
obese diabetic mice, and reduced IL-2, IFN-γ, and TNF-α 
mRNA levels in prodigiosin-treated group without side 
effects [161]. Nonetheless, prodigiosin did not inhibit 
the secretion of IL-2 in vitro but inhibited the mitogenic 
signalling from IL-2, suggesting an unusual mechanism 
of action [135]. It is important to consider the negative 
effect of prodigiosin on IL-2, because it is among the 
most potent inducers of antitumour activity in preclinical 
studies [162].

Solid tumours are characterised by suppressed 
antitumour immunity due to high PGE2 levels that 
reduce apoptosis, and increase tumour growth, inva-
sion, metastasis, and angiogenesis [163–166]. There 
is a TAMs-PGE2 reciprocal relationship where TAMs 
secrete PGE2 that directly inhibits CD4+ and CD8+ 
T cells’ effector function, while PGE2 regulates mac-
rophage polarisation into M2 TAMs [166–168]. Acti-
vation of the COX-2/PGE2 pathway also stimulates 
PD-L1 expression via TAMs to inhibit the immune 
response and promote immune tolerance by modu-
lating T-cell activity and facilitating cancer immune 
escape [155, 169]. Accordingly, it is wise to consider 
that prodigiosin-related mTOR inhibition may interfere 
indirectly with the COX-2/PGE2 pathway by decreasing 

PD-L1 levels (Fig.  4) [93]. However, mTOR inhibition 
simultaneously upregulates PD-L1 expression in some 
circumstances such as in xenografted tumour tissues 
and in RCC cell lines [94].

Tumour‑associated dendritic cells (TADCs)
Similar to TAMs, prodigiosin might modulate TADCs 
immune functions via PGE2. Although DCs initiate 
T-cell anticancer immune response, malignant tumours 
possess other types of DCs with reduced migration and 
accumulation in lymphoid organs that lead to immu-
nosuppressive T cells [170]. High PGE2 levels shift 
the immunostimulatory DCs into immunosuppressive 
cells to reduce the proliferation of anticancer T cells 
by upregulating PD-L1 [170]. Prostaglandin E2 inhibits 
MHC II expression and upregulates IL-10 via EP2 and 
EP4 receptors, suppressing DCs’ antigen presentation 
mediated via the COX-2/EP3 signalling [171, 172]. The 
immunomodulatory actions of prodigiosin on TAMs 
discussed earlier denote that it may affect DCs in the 
TME. Prodigiosin might reverse TAM-mediated atten-
uation of tumouricidal and tumour antigen-presenting 
behaviours occurring to DCs due to the established 
metabolic crosstalk [142].

NK cells
Activated NK cells eliminate tumours via death recep-
tor-mediated killing, granule exocytosis, and cytokine 
production (i.e., IFN-γ) that stimulates other immune 
cells [173]. Nevertheless, PGE2 per se trades off NK cell 
activities (e.g., tumour lysis) for metastases develop-
ment via activated EP2 and EP4 receptors [171, 174]. 
Prostaglandin E2 suppresses the function of NK cells by 
multiple mechanisms, such as inhibiting IFN-γ produc-
tion and ILs–induced IFN-γ expression in NK cells via 
EP2 receptor or downregulating NK receptors through 
the cAMP/PKA pathway [171]. EP4 antagonist inhib-
ited PGE2-mediated NK cell suppression by protecting 
IFN-γ production by NK cells, inhibiting breast and lung 
tumour metastases [175–177]. Prodigiosin might have an 
immunomodulatory role since the reciprocal NK-DCs 
crosstalk is inhibited by PGE2 through chemokine and 
cytokine modulation (Fig. 5) [178].

MDSCs
Tumours maintain an immunosuppressive TME through 
high levels of heterogeneous immature myeloid cells, 
referred to as MDSCs [179]. It is mandatory to target 
myeloid populations that stop anticancer immunity or 
activate stimulatory cells that promote antitumour immu-
nity. In addition to ILs and VEGF, PGE2-rich tumoural 
exosomes induce MDSCs activation and migration and 
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promote MDSCs-dependent tumour growth [179–182]. 
Prostaglandin E2 controls MDSCs differentiation and 
increases their levels, enhancing the stemness of cervi-
cal cancer cells in vitro and in vivo (Fig. 4). For example, 
MDSCs express the four PGE2 receptors (i.e., EP1-4) in 
tumour-bearing mice [183, 184].

COX-2 inhibitors reduce MDSCs levels and delay the 
burden of primary carcinoma tumour, because PGE2-
induced COX-2 activates the secretion of endogenous 
MDSCs-related PGE2 (Fig. 4) [185]. Production of PGE2 
in lung and ovarian cancers is correlated with COX-2 
expression, promoting recruitment and retention of 
MDSCs [185, 186]. COX-2 inhibitors reduce PGE2 pro-
duction resulting in decreased levels of MDSC-attracting 
C-C Motif Chemokine Ligand 2 (CCL2) in vivo, suggest-
ing that blocking COX-2 impedes the development and 
accumulation of MDSCs [187]. In–silico molecular dock-
ing analysis revealed that prodigiosin inhibited COX-2 
effectively and could be assessed as an antiinflamma-
tory compound in further research [188]. Inflammation 
is characterised by high levels of PGE2 through COX-2. 
Moreover, overexpression of COX-2 (also a downstream 
target of mTORC1) promoted proliferation and growth 
of several cancers. Downregulation of COX-2 exerts a 
protective effect against hyperactivated mTORC1-medi-
ated tumourigenesis caused by loss of tuberous sclero-
sis complex (TSC) in TSC-null cell [189]. Likewise, the 

ability of prodigiosin to inhibit the mTOR pathway might 
prevent COX-2-mediated tumourigenesis via increased 
PGE2 production (Fig. 4).

Production of PGE2 by MDSCs increases PD-L1 
expression in ovarian cancer through the mTOR signal-
ling pathway (Fig.  4). Bone marrow (BM) cells cultured 
with bladder cancer cells showed significant PD-L1 
expression in monocytic MDSCs [183]. Tumour-infiltrat-
ing PD-L1+  cells also showed high expression levels of 
both COX-2 and PGE2 synthase 1 (mPGES1) in tumour-
bearing mice. Inhibition of mPGES1/COX-2 by prodigio-
sin may reduce the expression of MDSCs-related PD-L1, 
arguing that reprogramming PGE2 metabolism enhances 
tumour sensitivity to immunotherapy.

The role of prodigiosin in the metabolic reprograming 
of immune cells
The interesting anticancer and immunomodulatory 
actions of prodigiosin (Table  1) prompt us to further 
discuss whether it is involved in the metabolic repro-
gramming of TME-related immune cells (Fig. 5) [190]. 
Interaction of the principal metabolic pathways in 
immune cells (e.g., pentose phosphate pathway [PPP], 
fatty acid oxidation [FAO], Krebs’ cycle, and gly-
colysis), provides energy and nutrients to maintain 
their activity. Both metabolites and metabolic activity 
regulate autophagy, apoptosis, and posttranslational 

Fig. 3  A proposed model for the immunomodulatory effect of prodigiosin on TAM-mediated immunosuppression via ROS imbalance and 
inhibition of MMP-9, PGE-2, VEGF, TNF-α, PI3K/Akt, LPS, IFN-γ, cytokines, and chemokines. CTCs, circulating tumour cells; IFN-γ, interferon-gamma; 
LPS, lipopolysaccharide; MMP-9, matrix metalloproteinase-9; PD-L1, programmed death-ligand 1; PGE-2, prostaglandin E2; PI3K/Akt, 
phosphoinositide-3-kinase–protein kinase/Akt; ROS, reactive oxygen species; TAM, tumour-associated macrophages; TNF-α, tumour necrosis 
factor-alpha; VEGF, vascular endothelial growth factor
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modifications, and pro and antiinflammatory effects 
[191–194].

NK cells  The mTOR/PI3K pathway is sensitive to a 
high number of extracellular signals and is a key regu-
lator of cellular growth, proliferation, and metabolism. 
Cancer is characterised by an aberrant mTOR signalling 
that supports tumour proliferation, survival, metabolic 
programming, and drug resistance [195]. The mTOR 
signalling pathway enhances glycolysis and mitochon-
drial function to regulate the metabolism of NK cells. 
Inhibition of mTOR by rapamycin reduced both IL-2/
IL-12-stimulated glycolysis and IL-2-stimulated lev-
els in mouse NK cells and human NK cell glycolysis, 
respectively (Fig.  5) [196, 197]. For instance, higher 
glucose transporter 1 (GLUT1) levels that absorb glu-
cose exist following the upregulation of both CD71 and 
CD98 [198, 199]. The anti-mTOR activity of prodigiosin 
in Table 1 highlight that it might have a pivotal role in 
the metabolic reprogramming of NK cells [59].

TAMs  Macrophages with different polarisation states 
are also different in glycometabolism. Anaerobic glyco-
lysis provides instant energy to help proinflammatory 
M1 macrophages eliminate pathogens, whereas mito-
chondrial oxidative phosphorylation (OXPHOS) gen-
erates energy for antiinflammatory M2 macrophages 

[200]. Therefore, mitochondrial dysfunction impedes 
M2 repolarisation that inhibits regulatory immune sig-
nals, and facilitates tumour angiogenesis, migration, 
and metastasis [166, 201].

Prodigiosin suppresses inflammatory responses 
induced by lipopolysaccharide (LPS) in activated 
murine macrophage, by inhibiting the activation of 
p38 mitogen-activated kinase (MPAK), c-Jun N-ter-
minal kinase (JNK), and nuclear factor kappa B (NF-
κB) (Fig.  5). Stimulation of LPS and IFN-γ reduces 
OXPHOS levels, impairing the mitochondrial function 
required for M2 repolarisation with the accumulation 
of hypoxia-inducible factor-1α (HIF-1α) and metabo-
lites of Krebs’ cycle (e.g., succinate) [202]. Hypoxia-
inducible factor-1α regulates GLUT1 to affect the 
polarisation and functions of macrophages via meta-
bolic reprogramming of PPP and anaerobic glycolysis 
[203]. In this regard, prodigiosin might prevent mito-
chondrial impairment (Fig. 3) and facilitate ‘M2 polari-
sation’. Namely, inhibition of LPS and IFN-γ increases 
OXPHOS levels (Figs.  3, 5), implicating a mechanism 
by which prodigiosin be immunosuppressive where M2 
macrophages prevail to favour tumour progression and 
tissue repair.

T lymphocytes  Naïve T cells preserve a resting state 
using OXPHOS in contrast to activated T cells that grow 

Fig. 4  The inhibitory effect of prodigiosin on mTOR and COX-2/PGE-2 pathways that further sensitise tumour cells to drugs. COX-2, 
cyclooxygenase-2; CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; PGE-2, prostaglandin E2; MDSCs, myeloid-derived suppressor 
cells; mTOR, mammalian target of rapamycin; TAM, tumour-associated macrophages
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via glucose and lipid metabolism. Proliferating cells exhibit 
higher aerobic glycolysis rate, referred to as the Warburg 
effect where the principal driver of aerobic glycolysis is 
‘mitochondrial dysfunction’ [204, 205]. Imbalance of ROS 
production due to mitochondrial dysfunction destroys cell 
membranes and DNA, disrupts cell proliferation, induces 
apoptosis, and inhibits autophagy [206–210]. Prodigiosin 
fosters the protecting antioxidative function of nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) and scavenges ROS in 
hepatocellular carcinoma (HCC) cells [211, 212]. However, 
it upregulates ROS levels and suppressed proliferation and 
autophagy in leukaemia cell line. These data suggest that 
prodigiosin might interfere with be the metabolic repro-
gramming of T cells via ROS, considering its ROS stimula-
tory and scavenging roles (Fig. 3).

The mTOR pathway is crucial in upregulating GLUT1 
expression in naïve T cells to promote glucose absorption 
and to improve the immune response [213–215]. It also 
helps Th2 cells’ differentiation via the OXPHOS–aerobic 
glycolysis metabolic transition. Mammalian target of rapa-
mycin complex 1 (mTORC1) is essential for Th1 cells while 
mammalian target of rapamycin complex 2 (mTORC2) 
regulates OXPHOS and glycolysis in Th2 cells [216–218]. 
Moreover, the mTOR pathway regulates the production 
and memory differentiation of CD8+  T cells [219–223]. 
Consistent with the inhibition of the PI3K/Akt/mTOR 

pathway by prodigiosin in cancer, it might be involved in 
the metabolic reprogramming of Th cells and CD8+ T cells 
[42, 48, 71, 72]. However, these data should be used cau-
tiously because the ability of prodigiosin to suppress the 
immune functions of T cells has not been confirmed yet.

TADCs  Metabolic reprogramming (i.e., decreased 
OXPHOS and an increased glycolysis) is essential for acti-
vation and functions of DCs [224]. Stimulated LPS helps 
DCs regulate the mTOR signal, stabilise HIF1-α, and 
increase inducible nitric oxide synthase (iNOS) expression 
[225, 226]. Since prodigiosin inhibits the mTOR pathway 
and reduces iNOS expression by inhibiting LPS-triggered 
inflammatory responses, it might prevent the manipulation 
of the metabolic processes that affect the activation and 
functions of DCs (Fig. 5) [72, 227]. However, the metabolic 
environment where DCs compete with neighbouring cells 
for nutrition is difficult to simulate and measure both  in 
vitro and in vivo [203].

Given these, does prodigiosin have possible 
immunomodulatory actions on TAMs, TADCs, NK cells, 
and MDSCs via COX‑2/PGE2 in cancer?
The crosstalk between immune cells outlines the poten-
tial of prodigiosin to interfere with the COX-2/PGE2 
pathway (Fig.  4) and decrease the immunological 

Fig. 5  The potential role of prodigiosin as an immunomodulator in the TME. COX-2, cyclooxygenase-2; CTL, cytotoxic T lymphocyte; HSP90, heat 
shock protein 90; IFN-γ, interferon-gamma; IL, interleukin; JNK, c-Jun N-terminal kinases; LPS, lipopolysaccharide; MAPK; mitogen-activated protein 
kinase; MDSC, myeloid-derived suppressor cell; MMP-9, matrix metalloproteinase-9; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor 
kappa B; NK, natural killer; PD-L1, programmed death-ligand 1; PGE-2, prostaglandin E2; PI3K/Akt, phosphoinositide-3-kinase–protein kinase/Akt; 
TADC, tumour-associated dendritic cell; TAM, tumour-associated macrophage; Treg; regulatory T cell; VEGF, vascular endothelial growth factor
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tolerance mediated by TAMs, TADCs, NK cells, and 
MDSCs. Nonetheless, the opposite effects of PGE2 (sup-
pressive/protective) due to disease course (e.g., cancer, 
gastric lesions) and status of the immune system, should 
be considered while developing cancer-specific treat-
ments. For instance, PGE2 protected rats from HCl/
ethanol-induced gastric lesions by reducing the levels 
of antioxidants, apoptotic biomarkers, and inflamma-
tory mediators [228]. Prodigiosin prevented apoptosis in 
the gastric mucosa by downregulating the expression of 
COX-2, caspase-3, IL1-β, Bax, and TNF-α, while upregu-
lating Bcl-2 expression; hence, increasing PGE2 produc-
tion [228]. However, these conditions favour tumour 
growth and proliferation. These data are confirmed by 
the idea that reducing PGE2 levels might prevent tumour 
initiation, inhibit tumour growth and metastasis, repro-
gram antitumour immunity, and increase the efficacy of 
immunotherapies.

Tumour mutation burden (TMB)
Analysis of ~ 5000 mutations from ~ 7000 cancers high-
lighted that tumour mutation burden (TMB) status 
in cancer cells—the number of somatic mutations/
megabase of the genome encoding tumours—successfully 
predicted the efficacy of immune checkpoint blockade 
[229]. Studies demonstrated that PI3K/mTOR pathway 
mutations are correlated with TMB status in NSCLC and 
nasopharyngeal carcinoma [230, 231]. Treatment with an 
mTOR inhibitor (i.e., everolimus) led to tumour shrink-
age and disease stabilisation in patients with NSCLC 
[230]. Prodigiosin may have an interesting role on TMB 
by inhibiting PI3K/mTOR pathway and P53 (Table  1) 
[50].

Conclusion
The current review demonstrated the compelling immu-
nomodulatory and metabolic reprogramming activities 
of prodigiosin on TME-related immune cells (Fig.  5). 
Particularly, the crosstalk between the immune cells, the 
involvement of the mTOR pathway, and expression of 
PGE-2 and COX-2, dictate the potential of prodigiosin as 
an immunomodulator in the TME. Using prodigiosin to 
inhibit the PI3K/mTOR pathway may clarify its hypoth-
esised effects on TMB, especially because the TMB status 
associated with PI3K/mTOR pathway gene mutations is 
still unclear.

Future perspectives
Further research may confirm whether prodigiosin 
has a compensatory mechanism that overcomes can-
cer resistance, and whether it renders B cells pro or 
antitumourigenic. More data are required to exam-
ine the controversial role of prodigiosin in blocking 

T-cell activation by suppressing IL-2Rα expression in 
the IL-2/IL-2R signalling. It is also important to focus 
on prodigiosin encapsulation in nanoparticles because 
limited research demonstrated that it might be an 
excellent alternative in cancer treatment. Based on the 
crosstalk between immune cells, using prodigiosin in 
cancer immunotherapy elicits outstanding inquiries 
such as:

•	 Could prodigiosin be used as a tool to identify the 
point at which immune tolerance occurs?

•	 What is the dominant role (immunostimulatory/
immunosuppressive) of prodigiosin on every 
immune cell in the TME?

•	 How could prodigiosin modulate NK-DC crosstalk 
and strengthen both DC- and NK-cell-mediated 
immune response?
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