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Abstract 

Background:  Glioblastoma (GBM) is the most malignant, aggressive and recurrent primary brain tumor. Cell senes-
cence can cause irreversible cessation of cell division in normally proliferating cells. According to studies, senescence 
is a primary anti-tumor mechanism that may be seen in a variety of tumor types. It halts the growth and spread of 
tumors. Tumor suppressive functions held by cellular senescence provide new directions and pathways to promote 
cancer therapy.

Methods:  We comprehensively analyzed the cell senescence-associated genes expression patterns. The potential 
molecular subtypes were acquired based on unsupervised cluster analysis. The tumor immune microenvironment 
(TME) variations, immune cell infiltration, and stemness index between 3 subtypes were analyzed. To identify genes 
linked with GBM prognosis and build a risk score model, we used weighted gene co-expression network analysis 
(WGCNA), univariate Cox regression, Least absolute shrinkage and selection operator regression (LASSO), and multi-
variate Cox regression analysis. And the correlation between risk scores and clinical traits, TME, GBM subtypes, as well 
as immunotherapy responses were estimated. Immunohistochemistry (IHC) and cellular experiments were performed 
to evaluate the expression and function of representative genes. Then the 2 risk scoring models were constructed 
based on the same method of calculation whose samples were acquired from the CGGA dataset and TCGA datasets 
to verify the rationality and the reliability of the risk scoring model. Finally, we conducted a pan-cancer analysis of the 
risk score, assessed drug sensitivity based on risk scores, and analyzed the pathways of sensitive drug action.

Results:  The 3 potential molecular subtypes were acquired based on cell senescence-associated genes expression. 
The Log-rank test showed the difference in GBM patient survival between 3 potential molecular subtypes (P = 0.0027). 
Then, 11 cell senescence-associated genes were obtained to construct a risk-scoring model, which was systematically 
randomized to distinguish the train set (n = 293) and the test set (n = 292). The Kaplan-Meier (K-M) analyses indicated 
that the high-risk score in the train set (P < 0.0001), as well as the test set (P = 0.0053), corresponded with poorer 
survival. In addition, the high-risk score group showed a poor response to immunotherapy. The reliability and credibil-
ity of the risk scoring model were confirmed according to the CGGA dataset, TCGA datasets, and Pan-cancer analysis. 
According to drug sensitivity analysis, it was discovered that LJI308, a potent selective inhibitor of RSK pathways, has 
the highest drug sensitivity. Moreover, the GBM patients with higher risk scores may potentially be more beneficial 
from drugs that target cell cycle, mitosis, microtubule, DNA replication and apoptosis regulation signaling.
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Conclusion:  We identified potential associations between clinical characteristics, TME, stemness, subtypes, and 
immunotherapy, and we clarified the therapeutic usefulness of cell senescence-associated genes.

Keywords:  Glioblastoma, Cell senescence-associated genes, Tumor microenvironment, Pan-cancer analysis, Drug 
sensitivity

Introduction
Glioblastoma (GBM), known as a grade IV glioma, is 
one of the most common primary cancers of the brain 
[1]. Despite surgical resection and adjuvant therapy, the 
median overall survival of GBM patients is only about 
12–15 months, and the 5 year survival rate is well below 
10% [2, 3]. The highly aggressive nature and the high 
recurrence rate of GBM increase the difficulty and fail-
ure rate of treatment to a large extent. Therefore, it is 
extremely significant to explore new treatment methods 
and treatment modalities.

Cell senescence can be defined as the permanent, irre-
versible cessation of the normal proliferating cell cycle 
[4]. Senescence’s pleiotropic character has been linked to 
good effects on a variety of biological processes, includ-
ing immunological clearance, wound healing, and embry-
ogenesis, as well as a reduction in mutation accumulation 
and eventual cancer [5, 6]. Senescent cells are cumula-
tive with age in normal tissues and have been associated 
with degeneration and senescence of whole organisms. 
Mechanistically, the expression of pro-senescence func-
tions is associated with the limitation of the regenerative 
capacity of stem and progenitor cells as well as the secre-
tion of bioactive molecules (the so-called SASP), specifi-
cally pro-inflammatory and matrix-modifying peptides 
[7, 8]. At present, many experts and scholars believe that 
mitochondrial dysfunction is another major way to affect 
cell senescence. Senescence-associated mitochondrial 
dysfunction (SAMD) is closely related to the continuous 
DNA damage response signal or the expression and accu-
mulation of genes related to cell senescence [9, 10]. The 
expression of cell senescence-associated genes is highly 
conserved in different tissues and organs, even in differ-
ent species. At present, the research on cell senescence-
associated genes mainly focuses on prolonging life spans 
and promoting health. There are other relevant studies on 
the function and role of cell senescence-associated genes 
in various malignancies, especially the function and role 
of cell senescence-associated genes in tumor infiltration 
and recurrence, but there are a relatively small number 
of these.

Immunotherapy normalizes the antitumor immune 
response that attacks cancer cells and more significant 
gains in cancer-related treatments [11]. Under normal 

circumstances, Immune cells in the tumor microenvi-
ronment (TME) have ability to recognize and eradicate 
tumor cells [12]. However, cancer cells can harmonize 
the host immune system to evade immune surveillance 
by tumor-induced immunosuppressive effect, antigenic 
modulation, tumor-induced generation of exempted 
areas and downregulating of tumor immunogenicity [13, 
14]. In clinical applications, immunotherapy has achieved 
remarkable results in the treatment of certain tumors. 
For example, pembrolizumab resulted in significantly 
longer overall survival for patients with locally advanced 
or metastatic non-small cell lung cancer compared to 
chemotherapy [15]. However, there are still multiple chal-
lenges with cancer immunotherapy [16, 17]. According to 
statistics, only 13% of patients with malignancies respond 
to immunotherapy, Patients with a significant clinical 
response may eventually experience cancer progression 
after several years due to factors such as acquired drug 
resistance [18, 19]. Moreover, immune-related adverse 
events (irAEs) continue to occur at a significant rate in  
cancer patients receiving immunotherapy [20]. Stemness 
indices are used to evaluate the similarity of tumor cells 
to stem cells [21]. This characteristic is mainly meas-
ured by using the mRNA expression-based stemness 
index (mRNAsi) as well as the epigenetic regulation-
based index (EREG-mRNAsi). The ranges of mRNAsi 
and EREG-mRNAsi are from 0 to 1, where higher values 
indicate a high resemblance of tumor cells to stem cells 
[22]. Primary undifferentiated tumors have a greater 
ability to migrate aggressively or form distant metasta-
ses, ultimately resulting in tumor progression [23]. It is 
basic to disclose the alteration of the TME and immuni-
zation checkpoints, and identify predictive biomarkers 
for immunotherapy response and stemness indices for 
promoting the investigation to develop novel therapeutic 
strategies in GBM.

Based on genetic transcription features, GBM can be 
distinguished as five subtypes(classical, CL; mesenchy-
mal, MES; neural; proneural, PN; proliferative) [24]. Dif-
ferent subtypes have significantly different prognosis. 
The results of a related study showed that patients with 
the proneural subtype have a better prognosis, whereas 
patients with the mesenchymal subtype show a signifi-
cantly more aggressive and poor prognosis [25–27]. In 
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addition, different subtypes of glioblastoma have differ-
ent epigenomic markers, and some of them have shown 
prognostic and predictive values. Thus, further typing 
of GBM will help to understand the differences between 
subtypes of GBM, which is important for developing 
more personalized and accurate treatment plans to com-
bat GBM.

In the study, we analyzed the differential expression of 
cell senescence-associated genes in GBM. Then, we con-
structed a risk scoring model of cell senescence-associ-
ated genes. According to the risk score model, the clinical 
prognostic factors, immune checkpoints, mutations of 
cell senescence-associated genes, and drug sensitivity 
in patients with GBM were discussed. Finally, Through 
GBM data in the CGGA database, TCGA database and 
pan-cancer analysis further verified the rationality and 
reliability of the risk scoring model.

Materials and methods
Data Collection
The RNA-seq transcriptome data and clinical informa-
tion (including gender, age, IDH status, CIMP status, 
etc.) of GBM were downloaded from the cancer genome 
atlas (TCGA, https://​portal.​gdc.​cancer.​gov/), the Chinese 
Glioma Genome Atlas (CGGA, Home | CGGA - Chinese 
Glioma Genome Atlas) and the GlioVis [GlioVis - Visu-
alization Tools for Glioma Datasets (cnio.es)]. Somatic 
mutation counts and copy number variation (CNV) also 
were downloaded from the TCGA database. 279 cell 
senescence-associated genes were acquired from the cell 
senescence gene database (CellAge, https://​genom​ics.​
senes​cence.​info/​cells/). Significant differential expression 
of cell senescence-associated genes was set at FDR < 0.05 
and |log2FC|≥2. 39 differentially expressed genes that 
were related to cell senescence were finally obtained in 
this study.

Characteristics of the cell senescence‑associated genes
Firstly, We analyzed the correlated regulatory relation-
ships between 39 cell senescence-associated genes 
by using the R package “igraph”. In the meantime, the 
somatic mutation prevalence, the copy number variation, 
and the genetic locus of cell senescence-associated genes 
were analyzed. We further dissected the differences in the 
expression of cell senescence-associated genes between 
tumor cells and normal cells by applying variance analy-
sis. We also use the same research method to analyze the 
profile of 39 cell senescence-associated genes in differ-
ent expression types of GBM (including mesenchymal,; 

classical; and proneural). Combining GBM patient sur-
vival, 39 cell senescence-associated genes were analyzed 
using univariate Cox regression and forest plots were 
drawn.

Immunohistochemistry (IHC) staining
We chose the most representative genes with a posi-
tive or negative correlation with the prognosis of GBM 
patients as the research objects, whose IHC staining was 
downloaded from the Human Protein Atlas (HPA: http://​
www.​prote​inatl​as.​org/) and analyzed. This allowed us 
to assess differences in cell senescence-associated genes 
expression at the protein level.

We collected section from paraffin-embedded tis-
sues of human glioma and peritumor. We dewaxed and 
dissociated the sections and rehydrated sections. After 
heating in tris-EDTA buffer, we blocked slides using 
5% gout serum and incubated slides with primary anti-
body (PTTG1, 1:500, #ab128040; Abcam) (MYC, 1:100, 
#ab32072; Abcam) at 4 °C overnight. Then the slides were 
incubated with secondary antibody and the images were 
captured using a Leica DM 2500 microscope.

Cell culture
GBM cell line U251 was purchased from the Chinese 
Academy of Sciences (Shanghai) culture bank. Cells 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM; Thermo Fisher Scientific; Waltham, MA, USA) 
supplemented with 10% fetal bovine serum (FBS; Thermo 
Fisher Scientific, USA). Cells were maintained at 37 °C in 
a humidified chamber containing 5% CO2.

PTTG1 and MYC silencing
siRNAs targeting PTTG1 and MYC were synthesized 
(GenePharma; Shanghai, China). Lipofectamine™ 3000 
reagent (Thermo Fisher Scientific; USA) was used to 
transfect siRNAs according to manufacturer’s protocol. 
Knockdown efficiency was evaluated by Western blot-
ting. siRNA sequences are the following: si-PTTG1: 
5′-GGG​AGA​TCT​CAA​GTT​TCA​A-3′; and si-MYC: 
5′-GCU​UGU​ACC​UGC​AGG​AUC​UTT-3′.

Western blotting
Harvested cells are thermally denatured in the RIPA cell 
lysis buffer. The protein lysate was run on SDS-PAGE and 
the protein was transferred to the PVDF membrane. Blots 
are cultured with primary antibodies against PTTG1 
(#ab128040; Abcam), MYC(#ab32072; Abcam); GAPDH 
(Cell Signaling Technology; Danvers, MA, USA). Specific 

https://portal.gdc.cancer.gov/
https://genomics.senescence.info/cells/
https://genomics.senescence.info/cells/
http://www.proteinatlas.org/
http://www.proteinatlas.org/
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proteins were detected with enhanced chemilumines-
cence (ECL, Millipore, Bedford, MA, USA). GAPDH was 
used as the loading control.

5‑ethynyl‑2′‑deoxyuridine (EdU) cell proliferation assay
An EdU cell proliferation assay kit (RiboBio, #C10310-
1; Guangzhou, China) was used to measure the glioma 
cell proliferation according to the manufacturer’s proto-
col. The glioma cells were incubated in 250 µl EdU solu-
tion for 2 h. Cells were fixed in 4% paraformaldehyde for 
15 min, 0.4% Triton X-100 penetrability for 10 min, and 
incubated with 250 µl Apollo® reagent for 30 min. Then 
the cells were stained with Hoechst 33,342 for 30  min. 
The ratio of EDU positive cells (red) to the total number 
of Hoechst 33,342 positive cells (blue) was used as cell 
proliferation rate.

3D tumor spheroid invasion assay
Glioma cells were seeded into a 3D culture qualified 
96-well spheroid-formation plate (5 ×103 cells/well) 
and incubated in the spheroid-formation matrix (Trevi-
gen, Gaithersburg, MD, USA) and DMEM containing 
10% FBS for 72 h. When the spheroids grew to a diam-
eter of > 200 mm, the invasion matrix (Trevigen, Gaith-
ersburg, MD, USA) was infused. The spheroids at 24  h 
were regarded as a reference point for measuring the area 
invaded by the sprouting cells. Spheroids were imaged 
every 24 h using a Leica microscope.

Unsupervised clustering for cell senescence‑associated 
genes in GBM
We explored potential molecular subtypes of GBM 
patients obtained from GlioVis datasets, which were dis-
tinguished into the gene.clusters.C1(C1), gene.clusters.
C2(C2) and gene.clusters.C3(C3), by using the Consensus 
Cluster Plus (CC) R package based on unsupervised clus-
ter analysis. The survival differences of different poten-
tial molecular subtypes of GBM patients were analyzed 
through the log-rank test to test the rationality of distin-
guishing different potential subtypes.

Characteristic differences of C1, C2, and C3 subtypes
To understand the variability in the degree of similarity 
between different subgroups of GBM tumor cells and 
stem cells, we examined the stemness index of GBM 
in the C1, C2 and C3 subtypes separately and draw the 
box diagram. The mutual relationships of three poten-
tial subtypes, clinical typology and presence or absence 
of cytosine-phosphate-guanine (CpG) island methylator 
phenotype (G-CIMP) were demonstrated by the Sankey 
diagram. Single-sample gene set enrichment analysis, 

ESTIMATE as well as CIBERSORT were leveraged to 
quantify the TME in three subtypes. Additionally, three 
different possible molecular subtypes of GBM patients’ 
immunological checkpoints, immune cell infiltrate and 
immune inhibitors and/or stimulators were examined. 
Gene ontology biological processes (GOBP) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG: http://​
www.​genome.​jp/​kegg/​pathw​ay.​html) pathways were used 
to annotate the three subtypes.

Construction of the risk score
Weighted Gene Co-expression Network Analysis 
(WGCNA) was leveraged to recognize differentially 
expressed genes relevanted in the prognosis of GBM. 
Then, the univariate Cox regression analysis, least abso-
lute shrinkage and selection operator (LASSO) regression 
and multivariate Cox regression analysis were exerted to 
gain the cell senescence-associated genes for predicting 
survival and prognosis of GBM. The risk score formula is 
shown below:

Risk Score=
∑n

j=1Coe genej× Exp of genej  
The Coe (genej) was the abbreviation of the coefficient 

of genes and Exp (genej) was the expression of genes.
The risk score was assigned systematically randomly 

into the train set and test set in a 1:1 ratio and went for 
intra-group validation. Then, the reliability of the risk 
score was assessed through the Log-rank test of the train 
set and test set. The receiver operating characteristic 
curve (ROC curve) is a comprehensive index reflecting 
the continuous variables of sensitivity and specificity, 
which is mainly through the area under the ROC curve 
(AUC) [28]. The value of AUC is between 0.5 and 1.0. 
When AUC > 0.5, the closer the AUC is to 1, the better 
the diagnostic effect. When AUC = 0.5, the diagnostic 
method is completely ineffective[29]. In this study, we 
assessed the specificity and sensitivity of the risk score 
model in predicting the survival and prognosis of GBM 
patients through the value of AUC. We then analyzed the 
survival situation of GBM patients in high- and low- risk 
scores and the differences in cell senescence-associated 
genes expression in different risk scores were assessed. 
Further, we obtained the clinical prognostic factors asso-
ciated with the prognosis of GBM patients by combining 
risk scores and clinical characteristics.

Nomogram construction and immune checkpoint 
acquisition
The potential interrelationships regarding the three 
potential subtypes, clinical typing, the G-CIMP or NON-
G-CIMP and risk scores also were revealed by the San-
key diagram. The nomogram, combining prognostic 

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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characteristics and clinical characteristics, was per-
formed by leveraging the R package “RMS”. We evaluated 
the risk score models well as the nomogram by calibra-
tion curves and time-dependent ROC curves. Also, we 
explored the statistical significance of risk scores with 
different clinical prognostic factors. The single-sample 
gene set enrichment analysis, ESTIMATE as well as 
CIBERSORT were shafted to quantify the difference in 
TME in high- and low-risk scores. Due to the application 
prospect of immunotherapy, the differences in immune 
checkpoints, immune cell infiltration and immune inhib-
itors (or stimulators) in different risk scores of GBM 
patients were also measured.

Verification of the risk score
The risk scoring model was validated by the GBM dataset 
obtained from the CGGA database and TCGA database 
and the clinical prognostic factors were analyzed. Then, 
we assessed the specificity and sensitivity of the risk score 

model in predicting the survival and prognosis of patients 
with glioblastoma through the value of AUC again. Next, 
we constructed nomograms and verified them with cali-
bration curves by leveraging the R package “RMS”. At the 
same time, the tumor mutational burden (TMB) of high- 
and low-risk scores was analyzed based on The TCGA 
database by leveraging the R package “ maftools”.

Pan‑cancer analysis and the drug sensitivity
The discrepancy between TMB, microsatellite instability 
(MSI), and CD274 in 32 different cancer types was ana-
lyzed and defined their differences and similarities based 
on the risk score. Additionally, We explored the related-
ness between risk scores and TME as well as stemness 
indices in pan-cancer. The expression information of dif-
ferent cell lines was obtained from Broad Institute Can-
cer Cell Line Encyclopedia (CCLE, https://​porta​ls.​broad​
insti​tute.​org/​ccle/​about).

Fig. 1  The flowchart of this study

https://portals.broadinstitute.org/ccle/about
https://portals.broadinstitute.org/ccle/about
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Fig. 2  The characteristics and expression of differences of cell senescence-associated genes in GBM A Network diagram showing the interaction of 
39 cell senescence-associated genes in GBM. The size of the circles indicates the p-value of each gene on survival prognosis. Purple represents risk 
factors and green dots represent favorable factors. The thickness of the lines indicates the correlation values between genes. The red and blue lines 
represent positive and negative correlations of gene regulation, respectively. B Mutation prevalence of 39 cell senescence-associated genes in GBM. 
C The copy number variation (CNV) of 39 cell senescence-associated genes in GBM. D The localization of 39 cell senescence-associated genes the 
on TCGA-GBM 23 chromosomes. E The effect of 39 cell senescence-associated genes on the overall survival for GBM patients
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Then, the percent weight of binary response and immune 
phenotype in high- and low-risk scores were measured. 
Tumor neoantigens are not only highly specific but also 
strongly immunogenic, which are usually expressed only in 
tumor tissues [30, 31]. The prognosis of GBM patients com-
bining risk scores and tumor neoantigens was predicted by 
survival analysis and plotting the survival curve. The drug 
response information and drug targeting pathways were ana-
lyzed by spearman correlation analysis to acquire drugs asso-
ciated with risk scores, which were collected from Genomics 
of Drug Sensitivity in Cancer (GDSC, https://​www.​sanger.​ac.​
uk/​tool/​gdsc-​genom​ics-​drug-​sensi​tivity-​cancer/).

Statistical analysis
In the present experiment, the statistical analyses were 
performed in R software (version 4.1.3). Related R pack-
ages including “ pheatmap,” “ edgeR,” “ glmnet,” and “ 
forestplot” and other related R packages were obtained 
from Bioconductor packages or R packages and some of 
the study results were visualized and presented by the 
Emerging biomedical data visualization toolkit ( Hiplot: 
https://​hiplot-​acade​mic.​com). For each analysis, statisti-
cal significance was set at P < 0.05. In this study, the flow-
chart was presented in Fig. 1.

Results
The characteristics of cell senescence‑associated genes
A total of 39 cell senescence-associated genes were 
included in this study through difference analysis 
(Additional file  9: Table. S1). We analyzed the regula-
tory relationships associated with the expression of 39 
cell senescence-associated genes in GBM patients, for 
example, EZH2 positively regulates PTTG1 expression, 
while PTTG1 has a significant positive effect on TACC3 
expression, and the result is presented in Fig. 2A. In the 
meantime, to deepen our understanding, we researched 
the somatic mutation prevalence of cell senescence-
associated genes among GBM. Among them, a total of 13 
out of 39 cell senescence-associated genes have somatic 
mutations and the MATK had the highest mutation rate, 
which is 2%, and mainly missense mutations (Fig.  2B). 
The analysis straightforwardly represented the differ-
ences in mutation profiles of different cell senescence-
associated genes in GBM. Moreover, the investigation 
of 39 cell senescence-associated genes exhibited that 
CNV-related mutations were widespread. CKD4, SOX2, 

TACC3, CDK6, NUAK1, SOCS1 and MYC showed 
widespread CNV amplification, while EZH2, HK3, KL, 
IGFBP1, IGFBP3, VENTX, CAV1, SORBS2, PTTG1, 
GATA4, TLR3, SIX1, CBX7, AAK1, ALOX15B and 
TRPM8 had CNV deletions (Fig.  2C). Meanwhile, the 
localization of the 39 cell senescence-associated genes on 
TCGA-GBM 23 chromosomes was determined (Fig. 2D). 
The expression of most cell senescence-associated genes 
in GBM tissues was different from that in normal tis-
sues. Additionally, we found that the expression of 31 
cell senescence-associated genes significantly varied 
among three subtypes (CL, MES and PN) of GBM (Addi-
tional file 1: Fig. S1 and Additional file 2: Fig. S2). In an 
exploration of the effect of 39 cell senescence-associated 
genes on the overall survival (OS) of GBM patients, we 
found that downregulation of MYC, LIMA1 and SIX1 
expression and upregulation of PTTG1, EZH2, AURKA, 
TACC3, VEGFA, CENPA, IGFBP3 and SOCS1 expres-
sion exhibited a statistically significant effect on the over-
all survival of GBM patients (Fig. 2E).

Furthermore, the IHC staining of PTTG1 and MYC 
was downloaded from the HPA. The result showed that 
the protein encoded by PTTG1 was higher expressed in 
glioma than normal tissues (#Antibody CAB008373). The 
level of MYC had lower expression in glioma than normal 
tissues (#Antibody CAB010307) (Fig.  3A). IHC staining 
was performed to detect the representative PTTG1 and 
MYC protein levels in gliomas and peritumor tissues (15 
cases) of The Second Hospital of Shandong University. 
Consistent with the previous results, the protein level 
of PTTG1 was significantly increased in glioma in com-
parison to peritumor tissue, while the level of MYC was 
decreased in tumor (Fig. 3B).

To explore the effect of PTTG1 and MYC on glioma 
cell survival and invasion, we transfected cells with 
siRNA to downregulate PTTG1 and MYC. Western blot 
was used to verify the efficiency (Fig.  3C). Then EdU 
assays were performed. The downregulation of PTTG1 
resulted in significant decreases in the percentage of EdU 
positive cells in U251 cells 48 h after transfection, while 
knockdown of MYC showed the opposite trend (Fig. 3D). 
In order to investigate the influence of PTTG1 and MYC 
on the invasion of glioma cells, we conducted a 3D col-
lagen spheroid invasion assay. Silencing PTTG1 reduced 
the area invaded by U251 spheroids relative to controls, 
while knockdown of MYC increased the area. (Fig.  3E). 

(See figure on next page.)
Fig. 3  Validation of PTTG1 and MYC expression and their function in glioma. A The expression level of PTTG1 and MYC in normal tissue and glioma 
from the HPA. B Representative images of IHC staining for PTTG1 and MYC in tumor and peritumor tissue (scale bar: 50 mm). (C) Western blot was 
used to verify the efficiency of PTTG1 and MYC downregulation. D The result of EdU assay 48 h after transfection was showed. E Representative 
images showing invading spheroids in the 3D invasion assay for U251 cells transfected with si-RNA and control evaluated at 24 h, 48 and 96 h

https://www.sanger.ac.uk/tool/gdsc-genomics-drug-sensitivity-cancer/
https://www.sanger.ac.uk/tool/gdsc-genomics-drug-sensitivity-cancer/
https://hiplot-academic.com
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Fig. 3  (See legend on previous page.)
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Fig. 4  Characterization and TME in different potential molecular subtypes. A The GBM patients (n = 585) were divided into 3 potential molecular 
subtypes (C1, C2 and C3) by using the ConsensusClusterPlus (CC). B Log-rank test for the C1 (151 cases), C2 (239 cases) and C3 (195 cases) cohorts 
(p = 0.0027). C The stemness index difference between the 3 subtypes. (D) The Sankey diagram is about the relationship between 3 subtypes, 
clinical typing, and cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). E The regulatory role of cell senescence-associated 
genes on immunization checkpoint expression in GBM tumors. F The abundance of each TME-infiltrating cell in C1, C2, and C3 clusters. G The 
differences in stromal score ESTIMATE score and immune score between the 3 potential subgroups. GOBP H analyses and KEGG analyses I for cell 
senescence-associated genes
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These results suggested that PTTG1 and MYC silencing 
significantly influenced glioma cell activity in vitro.

Characterization and TME in different potential molecular 
subtypes
The unsupervised cluster analysis was used to clas-
sify the GBM patients which were the GlioVis dataset. 
3 potential subtypes, gene. cluster1 (C1), gene.cluster2 
(C2) and gene.cluster3 (C3) were acquired (Fig. 4A). The 
result of the Log-rank test showed the difference in GBM 
patient survival between 3 potential molecular subtypes 
(P = 0.0027) (Fig.  4B), which indicated that the GBM 
patients in C1, C2 and C3 subtypes were different and 
that confirmed the 3 subtypes distinction is reasonable. 
The mRNAsi and EREG-mRNAsi of the C3 cluster were 
closer to the 1 in the stemness index analysis, which sug-
gests that GBM in C3 has a notable resemblance to stem 
cells (Fig.  4C). However, further research is necessary, 
as some studies have shown that higher indices appear 
to be directly associated with the degree of progression 
and poor prognosis for a variety of cancers, which is not 
consistent with the results of this study. In the Sankey 
diagram, the interrelationship between 3 subtypes and 
clinical typology, and G-CIMP/NON-G-CIMP was iden-
tified (Fig.  4D). In the exploration of the TME between 
the 3 subtypes, we found discrepancies in immunization 
checkpoints and immune cell infiltration. For instance, 
the expression of CD80, CD86, LDHA and PTPRC were 
abundant in C2 subtypes (Fig. 4E). And T cell regulatory, 
T cell CD8, B cells naive, dendritic cell activated, and 
other immune cells were also remarkably abundant in 
C2 subtypes. While NK cells activated and macrophages 
M2 were a significant expression in C1 subtypes (Fig. 4F). 
Meanwhile, The violin diagram demonstrates the differ-
ences in stromal score ESTIMATE score and immune 
score between the 3 potential subgroups (Fig. 4G). In the 
GOBP and KEGG analysis of the biological pathways of 
GBM, it was found that the senescence pathway plays a 
major role in GBM and the results are shown in Fig. 4H 
, I.

Construction of the risk score and Acquisition of clinical 
prognostic factors
The WGCNA operations were performed on the com-
bined GBM dataset to obtain the key modules most 
relevant to the clinical features (Fig.  5A). A total of 
228 differential cell senescence-associated genes were 
obtained, while co-expression modules were identified 
(Additional file  10: Fig. S10). According to the heatmap 
of module-trait relationships, the ME blue and ME tur-
quoise modules demonstrate the highest pertinence 
with clinical features (Fig. 5B). Univariate Cox regression 
algorithm was exerted to, preliminary acquisition of 62 
genes (Additional file 11: Fig. S11) associated with GBM 
prognosis and the HR and P values of the 228 cell senes-
cence-associated genes were calculated, and the result is 
shown in Fig. 5C. Next, the LASSO algorithm and multi-
variate Cox regression analysis were applied to determine 
the prognostic gene set of GBM and ultimately found 
11 gene sets (Fig. 5D and E). Finally, 11 cell senescence-
associated genes were used to construct the risk score for 
predicting the survival and prognosis of GBM patients. 
The cohort of GlioVis-GBM patients was systematically 
randomized to distinguish the train set (n = 293) and the 
test set(n = 292). The Kaplan-Meier analyses evidenced 
that the GBM patients with high-risk scores in the train 
set (P < 0.0001) as well as the test set (P = 0.0053) cor-
responded with less favorable survival (Fig.  5F). The 1-, 
2-,3-,5- year AUC of the train set were 0.710, 0.782,0.802 
and 0.864, and of the test set were 0.576, 0.621, 0.683 and 
0.602, respectively (Fig.  5G). In exploring the relation-
ship between survival status and risk score, the survival 
rate of GBM patients gradually decreased as the risk 
score increased in both the train set as well as the test set 
(Fig. 5H). The multivariate Cox regression analyses were 
utilized to assess clinical independent prognostic fac-
tors for GBM patients. The results show that age was an 
independent prognostic factor for GBM patients in the 
train set as well as the test set (Additional file 3: Fig. S3 
and (Additional file 4:  Fig. S4).

The Hybrid Nomogram and TME
The mutual relationships regarding the three poten-
tial subtypes, clinical typology, the G-CIMP or NON-
G-CIMP and risk scores were reflected by the Sankey 

(See figure on next page.)
Fig. 5  Constructing risk score models. A Weighted gene co-expression network analysis (WGCNA) based on gene expression data identified gene 
modules with highly synergistic changes. B The heatmap of module-trait relationships. (C) Univariate Cox regression analysis of 228 genes relevant 
to GBM prognosis. D The least absolute shrinkage and selection operator (LASSO) method of cell senescence-associated genes. E The multivariate 
Cox regression analysis ultimately found 11 gene sets associated with prognosis to construct risk score. (F) Kaplan–Meier curves of the train set 
(P < 0.001, log-rank test) and test set (P = 0.0053, log-rank test). G Time-dependent receiver operating characteristics (ROC) of trainset and test set. H 
Correlations between survival status and risk score and gene expression status and risk score
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diagram (Fig.  6A). The hybrid nomogram can be used 
in the clinical administration of GBM patients due to its 
stable and accurate characteristics (Fig.  6B). The nomo-
gram was also integrated into ROC to assessed the sur-
vival time and survival situation of the GBM patients. 
The 1-, 2-,3-,5- year AUC of the train set were 0.741, 
0.800,0.857, and 0.849, and of the test set were 0.623, 
0.725, 0.732 and 0.693 (Fig.  6C). The calibration curves 
were applied to evaluate and validate the ROC, and were 
shown in Fig. 6D. Meanwhile, the differentially expressed 
genes of the risk factors were displayed in Fig. 6E. In the 
valuation of the liaison between the risk score and differ-
ent underlying subtypes of GBM patients, the Wilcoxon 
test revealed a remarkable discrepancy in the risk score 
between the C1, C2 and C3 and the statistical differ-
ence between the risk score and G-CIMP or NON-G-
CIMP also was appearance. And also, the Wilcoxon test 
proved a variance of age in high-risk and low-risk scores 
(Fig. 6F). In the analysis of TME, several immune-related 
factors in the low-risk score were found to be nota-
bly abundant (Fig.  6G). About the immune checkpoint, 
CD40LG, CD8A, JKA1, JAK2, LDHB and others were 
more pronounced high expression in low-risk scores as 
well as LDHA and YTHDF1 were expressed in high-risk 
scores significantly (Fig. 6H).

Validation of the risk score
Apply the same arithmetic algorithm to construct the 
risk scoring model whose samples were obtained from 
CGGA datasets. Then, the Kaplan-Meier analyses fer-
reted out the expression of GBM patients with high-risk 
scores corresponded with poorer survival (P = 0.0075) 
(Fig. 7A). It is shown that the percentage weights of clini-
cal prognostic factors in GBM patients with a high-risk 
score and low-risk score are in Fig.  7B. For example, 
in the high-risk score group, the percentage of GBM 
patients who were no-methylated was 60.2%. While in 
the low-risk score group, only 40% of GBM patients were 
no-methylated. After, we drew the hybrid nomogram 
according to the CGGA dataset (Additional file  5:    Fig. 
S5). The 1-, 2-,3-,5year AUCs which were combined risk 
score or nomogram score, were 0.564, 0.650,0.627, 0.685, 
and 0751, 0.747, 0.758, 0.717, respectively (Fig. 7C). We 
also passed the correction curve for verification (Fig. 7D). 

For further verification, we also constructed risk scor-
ing models based on TCGA datasets and the same result 
was obtained by the Kaplan-Meier test (Fig. 7E). Further-
more, the map tools package was leveraged to the tumor 
somatic mutations presented in high- and low-risk scores 
respectively. The result shows that the low-risk score pre-
sented a wider range of TMB than the high-risk score 
(Fig.  7F). Meanwhile, the tumor somatic mutations of 
several genes are rarely observed in the low-risk group 
but frequently observed in the high-risk group, for exam-
ple, PTEN. PTEN, which is the main negative regulator of 
the pI3k/Akt pathway and was a tumor suppressor gene 
with phosphatase activity closely related to tumorigen-
esis [32, 33]. But interestingly, TP3, the somatic mutation 
rate was as high as 63% in the low-risk group, which is 
a tumor suppressor gene with the function of regulating 
cell division and proliferation. The association of TP53 
mutations with the development of a variety of tumors 
has been well documented [34, 35]. Therefore, further 
research is needed.

Pan‑cancer analysis and drug sensitivity
Pan-cancer analysis was used to assess similarities and 
differences in risk score models between different tumor 
types. We systematically evaluated TMB, MSI as well as 
the expression of CD274 among pan-cancer. The risk 
score was proactively correlated with TMB in BRCA, 
COAD, LGG, PAAD, STAD and THYM (P < 0.05), while 
the inverse correlation with TMB in KIRC, KIRP, LAML 
and UVM (P < 0.05) (Fig.  8A). For MSI, a positive cor-
relation in STAD, DLBC, COAD, HNSC and THCA as 
well as a negative correlation in CHOL and KIRC, was 
defined (P < 0.05) (Fig.  8B). Additionally, the risk score 
was positively relevant to CD274 expression in ACC, 
COAD, HNSC, LGG, SKCM, THCA and negatively rele-
vant with CD274 content in BRCA, CESC, HNSC, KIRC, 
LAML, LUSC, OV and PCPG(P < 0.05) (Fig. 8C). In addi-
tion, the mutual relationship between risk score and sev-
eral immune cell infiltration as well as stemness indices 
were calculated, respectively (Additional file  6:    Fig S6 
and  (Additional file 7: Fig. S7, (Additional file 8: Fig. S8). 
Using the immunotherapy cohort of advanced urothe-
lial cancer (IMvigor210 cohort) to evaluate the impact 
of risk scores on predicting immunotherapy sensitivity. 

Fig. 6  The hybrid nomogram and TME basing on risk scores in GBM. A The Sankey diagram is about the relationship between 3 subtypes, clinical 
typing, cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP), and risk score. B The hybrid nomogram integrated the clinical 
factors and risk scores. C The ROC of the train set and a test set containing a nomogram. D Validation of the ROC of the train set and a test set 
containing a nomogram. E The decision curve analysis (DCA) of trainset and test set containing nomogram. F The relationship between the risk 
score model and age, 3 subtypes, clinical typing and cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). G The differences 
in the TME infiltration between the high- and low-risk score. H Expression of immune checkpoints among high and low GBM risk groups

(See figure on next page.)
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The Log-rank test also showed that GBM patients with a 
high-risk score were associated with poorer survival con-
ditions (Fig. 8D). Then, integration risk scores were ana-
lyzed with immune checkpoint blockade (ICB) treatment 
studies. The results showed that the proportion of GBM 
patients of the high-risk score group in the response 
groups (CR and PR) was notably lower than in the low-
risk score group, while the percentage of patients in the 
no/limited response groups (SD and PD) showed the 
contrary phenomena, pointing that the risk score could 
prove the response of GBM patients to ICB therapy. 
However, in exploring immune phenotypes in high- and 
low-risk scores, the desert phenomenon was more nota-
ble in the low-risk score, while the inflamed was seen 
more in the high-risk group (Fig.  8E). From combined 
risk score and tumor neoantigen burden correlation anal-
ysis, the GBM patients with low-risk scores together with 
a high neoantigen burden exhibited the most stretched-
out survival time and the GBM patients with high-risk 
scores in connection with a low neoantigen burden had 
the worst survival situation (Fig. 8F). The Spearman cor-
relation analysis was shafted to measure the value of the 
risk score to anticipate drug sensitivity for multiple types 
of cancer. Finally, 119 drugs for which the risk score and 
drug sensitivity significantly correlated, were obtained 
from the GDSC database. Subsequently, we selected the 
50 most representative drugs for mapping. The risk score 
was the most significantly negatively sensitive to 5 drugs, 
including AZD5991, YK.4.279, Alisertib, Vinblastine and 
Eg5_9814; and the most significantly positively correlated 
with sensitivity to 5 drugs, including LJI308, AMG.319, 
CZC24832, PLX.4720 and PFI3 (Fig. 8G). Among them, 
the strongest drug sensitivity is LJI308. The study shows 
that LJI308 is a powerful selective inhibitor of RSK, 
which can inhibit the growth and proliferation of can-
cer stem cells [36]. In addition, the signal path targeted 
by the selected drugs was discovered. The relationship 
between drug sensitivity and risk score targeted the cell 
cycle, mitosis, microtubule, DNA replication and apop-
tosis regulation signaling were positive. On the contrary, 
drug sensitivity with negatively related to the risk score 
targeting the PI3K/mTOR signaling and chromatin his-
tone methylation (Fig.  8H). In summary, the establish-
ment of a risk score will be beneficial in exploring the 
facility and effective treatment strategies for GBM.

Discussion
Cell senescence is a cellular defense mechanism that pre-
vents the acquisition of unwanted damage in proliferating 
cells subjected to different stresses and is a permanent 
state of cell cycle arrest [37]. During embryogenesis and 
tissue remodeling, senescent process is required [38]. 
And senescent cells usually exhibit biological processes 
or biological pathways associated with senescent, includ-
ing accumulation of lipofuscin, DNA damage foci, secre-
tion of a large number of factors which were known as 
the senescence-associated secretory phenotype (SASP) 
and other changes [39–42]. It has been demonstrated 
that senescence can arrest tumor progression and can 
occur in different types of tumor cells [43, 44]. This 
tumor-suppressive function of senescence has provided 
emerging directions and paths for cancer therapy, a pro-
cess termed pro-senescence therapy [45]. Therefore, this 
study focuses on the role of cellular senescence genes in 
drug resistance, immunotherapy, and the prediction of 
prognosis in GBM.

In our research, a total of 39 cell senescence-associated 
genes were eventually included. First, the characteris-
tics of 39 cell senescence-associated genes represented 
by somatic mutations, and the CNV amplification were 
explored. Then, by exploring the impact of 39 cell senes-
cence-associated genes on the overall survival of GBM 
patients, we identified 11 cell senescence-associated 
genes with statistically significant effects on the sur-
vival and prognosis of GBM patients (P < 0.005), which 
included PTTG1 and MYC. Currently, enormous shreds 
of evidence reveal that CS is an effective anti-tumor 
mechanism and proto oncogene-induced cell senescence 
is a barrier to preventing tumorigenesis as well as a tar-
get to treat tumors [46, 47]. PTTG1 in normal human 
fibroblasts can inhibit cell proliferation and result in sev-
eral cell senescence-related events, including increasing 
SA-beta-galactosidase activity and SA-heterochromatin 
foci formation, decreasing BrdU incorporation [48]. 
Combined with the survival status of GBM patients, the 
results of univariate Cox regression analysis showed that 
PTTG1 and MYC have significant statistical differences. 
PTTG1-induced senescence was p53-dependent and 
telomerase-independent [49]. However, the high expres-
sion of PTTG1 in tumor cells can inhibit senescence, 
which has also been confirmed by many studies [50, 51]. 

(See figure on next page.)
Fig. 7  Validation of the risk score. (A) Kaplan–Meier curves of the risk score based on CGGA datasets (P = 0.0075, log-rank test). B The percent 
weight of different clinical prognostic factors of the high- and low-risk scores. C The AUC of the 1, 2, and 3-year survival rate of GBM and validation 
of the ROC of the risk score. D The AUC and validation of the ROC of the risk score containing nomogram. (E) Kaplan–Meier curves of the risk score 
based on TCGA datasets (P = 0.036, log-rank test). F Waterfall plot showing tumor mutational burden (TMB) presented by those with high-risk scores 
and low-risk scores
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For example, a study by Tong et al.  showed that knock-
ing down PTTG1 strengthened drug-induced senescence 
in colon carcinoma cells, confirming that PTTG1 func-
tions to suppress drug-induced senescence [52]. Our 
study also showed the higher expression of PTTG1 in 
glioma and inhibition of PTTG1 decreased the prolifera-
tion and invasion of glioma cells. The MYC gene family 
includes c-Myc, N-Myc, and L-Myc [53]. Knocking down 
c-Myc signaling in human diploid fibroblasts (HDFs) was 
found to trigger telomere-independent senescence in 
human diploid fibroblasts (HDFs), which was mediated 
by cyclin-dependent kinase inhibitor p16 [54]. The ampli-
fication of c-Myc, N-Myc, and L-Myc was reported to be 
closely related to tumorigenesis and prognosis [55–59]. 
Whilst, c-Myc plays an important role in senescence and 
apoptosis [60, 61]. For example, in pancreatic and breast 
cancer cells, MYC expression products bind to and acti-
vate the promoters of the pro-apoptotic proteins BIM and 
BID, thereby facilitating the initiation of mitochondrial 
responses to apoptotic stimuli [62–64]. At the same time, 
there is also evidence that c-MYC levels progressively 
increase with age, leading to an age-dependent decrease 
in Nrf2 (nuclear factor erythroid 2 (NFE2)-related factor 
2) signaling and adaptive homeostasis, thereby minimiz-
ing age-dependent cancer incidence [65]. Interestingly, 
in this study, high expression of MYC was beneficial for 
the prolonged survival of GBM patients. Therefore, fur-
ther studies about the biological functions and biological 
pathways involved in MYC in GBM are necessary. Our 
studies indicated cell senescence-associated genes such 
as PTTG1 and MYC influenced the activities of glioma 
cell obviously.

Three potential molecular subtypes were obtained by 
classifying GBM patients using the unsupervised con-
sistency clustering algorithm. After analysis and evalu-
ation, there was a statistically obviously discrepancy in 
the survival status of GBM patients between the three 
subtypes. Meanwhile, differences in immune checkpoint 
and immune cell infiltration between subgroups were 
observed. Next, a risk score model based on differentially 

expressed genes was constructed to predict the survival 
and prognosis of GBM patients. At the same time, the 
potential possibility of immunotherapy in GBM was eval-
uated relying on the risk scoring model.

Current shreds of evidence have proved that immu-
notherapy may be a potential strategy for patients with 
GBM. However, the shortage of comprehension of the 
TME and immune cell infiltration in GBM results in 
undesirable therapeutic effects for patients receiving 
immunotherapy, which reveals the restrictions and defi-
ciency of current clinical models of GBM. In this study, 
the risk score model for GBM prognosis based on the 
difference cell senescence-associated genes in expression 
was constructed to discover the value of the risk score 
in predicting the response of GBM to immunotherapy, 
and analyzing the differences in expression of immune-
related cells in high and low-risk scores.

Meanwhile, we observed that patients who had lower risk 
scores exhibited prolonged overall survival in the ICB ther-
apy and the utilization of this risk score model to predict 
the effect of immunotherapy in GBM patients was con-
firmed. In addition, an interaction between drug sensitiv-
ity and the risk score was observed by investigating the risk 
scores in GBM patients. The regulation of apoptosis and 
metabolism played an active role in the treatment of GBM. 
In contrast, the drug positively correlating with risk scores 
targets the cell cycle, mitosis, microtubule, DNA replica-
tion and apoptosis regulation signaling were positive. These 
findings suggest that inhibiting cell proliferation by pro-
moting the expression of cell senescence-associated genes 
will contribute to the treatment of GBM.

Conclusion
In this research, 39 cell senescence-associated genes were 
applied to systematically generate and assess risk scores 
for GBM and integrated these patterns with TME. The risk 
score models to predict prognosis as well as response to 
immunotherapy in GBM patients was established. The Sys-
tematic assessment of risk scores will extend our percep-
tion of GBM and will help to develop more individualized 
and refined treatment strategies. Moreover, this research 

Fig. 8  The pan-cancer analysis of 32 types of tumors and the drug sensitivity. Tumor mutation burden (TMB) A, microsatellite instability (MSI) B, and 
CD274 C of 32 types of tumors. D Survival analysis of the low- and high-risk score patient groups based on the IMvigor210 cohort. E The percentage 
of immunotherapy response and immunophenotype in high and low-risk scores. F The Kaplan-Meier test of GBM patients receiving ICB therapy by 
risk score combining tumor neoantigen burden. E Assessing drug sensitivity of GBM tumor based on the risk score. F Signal paths are targeted by 
drug sensitivity with the risk score. Blue (positive correlation) or red (negative correlation)

(See figure on next page.)
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will contribute to our understanding of the role of cell 
senescence-associated genes in GBM.
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