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Abstract 

Background  Head and neck squamous cell carcinoma (HNSCC) remains an unmet medical challenge. Metabolic 
reprogramming is a hallmark of diverse cancers, including HNSCC.

Methods  We investigated the metabolic profile in HNSCC by using The Cancer Genome Atlas (TCGA) (n = 481) and 
Gene Expression Omnibus (GEO) (n = 97) databases. The metabolic stratification of HNSCC samples was identified by 
using unsupervised k-means clustering. We analyzed the correlations of the metabolic subtypes in HNSCC with fea-
tured genomic alterations and known HNSCC subtypes. We further validated the metabolism-related subtypes based 
on features of ENO1, PFKFB3, NSDHL and SQLE expression in HNSCC by Immunohistochemistry. In addition, genomic 
characteristics of tumor metabolism that varied among different cancer types were confirmed.

Results  Based on the median expression of coexpressed cholesterogenic and glycolytic genes, HNSCC subtypes 
were identified, including glycolytic, cholesterogenic, quiescent and mixed subtypes. The quiescent subtype was 
associated with the longest survival and was distributed in stage I and G1 HNSCC. Mutation analysis of HNSCC genes 
indicated that TP53 has the highest mutation frequency. The CDKN2A mutation frequency has the most significant 
differences amongst these four subtypes. There is good overlap between our metabolic subtypes and the HNSCC 
subtype.

Conclusion  The four metabolic subtypes were successfully determined in HNSCC. Compared to the quiescent sub-
type, glycolytic, cholesterogenic and mixed subtypes had significantly worse outcome, which might offer guidelines 
for developing a novel treatment strategy for HNSCC.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is a 
heterogeneous disease comprising tumors of the oral cav-
ity, lip, oropharynx, nasopharynx, larynx, hypopharynx 
and salivary gland [1]. HNSCC is the sixth most common 
malignancy in humans worldwide, with 930,000 newly 
diagnosed cases and 467,000 deaths in 2020 [2]. An esti-
mated 1.37 million new cases are projected to occur in 
2040, representing a 32% increase [3]. Current research 
indicates that HNSCC is closely related to numerous 
factors, including smoking, drinking, and human papil-
loma virus [1]. Despite advances in treatment strategies 
and improved prognosis, HNSCC remains an incurable 
malignancy, with approximately half of patients relaps-
ing and dying from the disease [4]. Additionally, histopa-
thology and clinical stage are not sufficient to accurately 
predict the prognosis of a patient because of the hetero-
geneity of HNSCC [1].

Recently, tumor-related metabolic reprogramming 
has been extensively studied, offering an approach to 
target cancers [5]. Metabolic reprogramming is recog-
nized as a hallmark of cancer and presents opportuni-
ties for cancer diagnosis, prognosis, and therapy [6–8]. 
Cancer cells accumulate metabolic alterations to meet 
energetic demands and produce biosynthetic precursors, 
such as glucose, nucleotides, fatty acids and amino acids, 
for rapid tumor growth [8–11]. Such metabolic altera-
tions can affect the fate of cancer. Recent studies have 
shown that the process of HNSCC emergence is related 
to tumor metabolism, which is mainly characterized by 
abnormal glycolysis and cholesterol synthesis. On the 
one hand, cancer cells utilize glycolysis for producing 
energy to promote the proliferation of cancer cells [12]. 
Molecular imaging studies using 18F-fluoro-2-deoxy-
d-glucose positron emission tomography demonstrated 
increased glucose uptake and glycolysis in HNSCC [13, 
14]. Increased glycolysis correlates with aggressive tumor 
progression, treatment resistance, and unfavorable prog-
nosis in HNSCC [15, 16].On the other hand, cancer cells 
require high levels of cholesterol for membrane bio-
genesis and other functional needs, and subsequently 
promotes tumor development [17]. Meanwhile, certain 
investigations have indicated several key enzymes of cho-
lesterol synthesis are closely related to poor prognosis of 
HNSCC [18]. Avasimibe, a specific inhibitor of ACAT, 
significantly inhibited tumor growth and prolonged sur-
vival by inhibiting the accumulation of cholesterol ester 
[19]. Therefore, it is worthwhile exploring prognostic sig-
nificance base on glycolysis and cholesterol metabolism 
and the treatment underlying the metabolic perspective 
in HNSCC.

The difference of 2-DG uptake within patient HNSCC 
tumors raises the possibility that intertumoral differences 

in glycolysis [20] and the balance between glycolysis 
and cholesterol synthesis could regulate tumor aggres-
siveness [21]. HNSCC cell lines have distinct metabolic 
profiles which affect their response to metabolic agents 
[22]. However, whether heterogeneity in distinct meta-
bolic profiles can be used to classify HNSCC into clini-
cally relevant subtypes has not been well established. 
However, as the most recent guidelines indicated for the 
diagnosis of primary HNSCC, the pathology of HNSCC 
is mainly determined based on histological morphology. 
Compared with breast cancer, lung cancer, and gastric 
cancer [23–25], the molecular classification of HNSCC 
has fallen behind and cannot meet the needs for accurate 
clinical treatment. Therefore, it is important to under-
stand energy metabolic reprogramming in HNSCC, 
which may offer a novel strategy for the further subtyp-
ing of HNSCC cases, thus facilitating the development of 
accurate and targeted therapy to improve the prognosis 
of patients.

In this work, we divided HNSCC cases into diverse 
subtypes according to the expression levels of genes 
related to cholesterol production and glycolysis. Consen-
sus clustering analysis was applied to stratify 481 patients 
into four metabolic subtypes, and the stratification was 
further validated in the GEO cohort. This study exam-
ined the heterogeneities in survival as well as additional 
clinicopathological features across different HNSCC 
metabolic subtypes and detected carcinogenic molecular 
events among these diverse subtypes. Understanding the 
metabolic subtyping of HNSCC may therefore instruct 
the clinical management of this cancer and may help 
develop personalized therapies targeting metabolic path-
ways for prolonged patient survival.

Materials and methods
HNSCC dataset acquisition and processing
The GEO (https://​www.​icgc.​org, GSE41613) [26] and 
TCGA (Illumina HiSeq Systems;) data portals were used 
to obtain HNSCC datasets together with related clini-
cal data. In addition, the standard RNA sequencing data 
of the 481 TCGA-derived patients and 97 GSE41613-
derived patients were collected. The human genome 
reference sequence GRCh37 formulated by the Genome 
Reference Consortium was used. In addition, somatic 
mutational data (SNVs, CNVs, and INDELs) were col-
lected for each sample.

RNA sequencing data analysis
RNA expression of every sample was normalized by the 
transcripts per million algorithms, which was later log-
transformed into log10 ((normalized count*1e6145) + 1). 
A log2-fold change (FC) ≥ 1 was used as the threshold 
to select RNAs with significant differential expression. 

https://www.icgc.org
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Samples whose tumor content was < 30% were eliminated 
from this work [27].

Metabolic gene subgroup classification
Genes obtained from the gene sets of the molecular sig-
natures database (mSigDB) [28], namely, “REACTOME 
CHOLESTEROL BIOSYNTHESIS” (n = 24) and “REAC-
TOME GLYCOLYSIS” (n = 29), were identified as cho-
lesterogenic and glycolytic genes, respectively. Then, 
these genes were subjected to consensus clustering by 
adopting ConsensusClusterPlus (parameters: reps = 100, 
pFeature = 1, pItem = 0.8) [29]. Meanwhile, the Euclid-
ean distance (ED) and Ward. D2 were adopted as the dis-
tance matrix and the clustering algorithm, respectively, 
with k = 4 (Additional file 1: Figure S1). In addition, the 
median expression of coexpressed cholesterogenic and 
glycolytic genes was utilized to assign the quiescent (gly-
colytic ≤ 0, cholesterogenic ≤ 0), cholesterogenic (gly-
colytic ≤ 0, cholesterogenic > 0), glycolytic (glycolytic > 0, 
cholesterogenic ≤ 0), or mixed (glycolytic > 0, cholestero-
genic > 0) metabolic subtypes for every sample.

Pre‑existing HNSCC subgroup classification
Samples were classified by consistent clustering accord-
ing to common tumor subtypes investigated by Weidong 
Zhang et  al.[30] and Hongbo Zhou et  al.[31]. Typically, 
subtyping was classified according to 6 mRNA expression 
levels in the original paper by Weidong Zhang, whereas 
subtyping was categorized according to 3 mRNAs from 
the original study by Hongbo Zhou. In the classification 
process for every subtype, each sample was consistently 
clustered according to mRNAs in every classifier, fol-
lowed by semiautomatic subtype assignment.

Mutation analysis for HNSCC genes
Gene sequences were identified from the GRCh37/hg19 
human genome assembly. To identify oncogenic events 
among diverse HNSCC metabolic subtypes at the molec-
ular level, the frequencies of SNVs, CNVs and INDELs 
were detected from frequently mutated HNSCC genes 
[32], and their associations with diverse HNSCC meta-
bolic subtypes were also explored. For tumor ploidy, 
we defined DNA fragments with copy statuses ≥ 3 as 
amplified, whereas those ≤ 1 were defined as deleted 
[33]. Additionally, HNSCC copy number events were 
selected according to prior work using 10 or more sup-
porting probes at the threshold of mean fragment > 0.2 
(amplified) or < -0.2 (deleted). Afterward, the copy num-
ber event coordinates were mapped into the gene coding 
region using maftools, whereas contingency analysis was 
applied to test CNVs and SNVs for every gene. Finally, we 
tested those genes screened from every subgroup.

Pan‑TCGA RNA‑seq analysis
The RNA-seq data [RNA-seq by expectation maximi-
zation (RSEM); GRCh37] of each TCGA-derived non-
HNSCC sample were obtained using the GDC data 
portal. Then, samples of different cancer types that had 
100 or more samples were screened, and 262 cancer types 
were obtained. The expression levels were subjected to 
log transformation (log10(RSEMþ1)), and then genewise 
location scaling was used for batch correction in every 
cancer type. Typically, consensus clustering (Consen-
susClusterPlus, parameters: pFeature = 1, pItem = 0.8, 
reps = 100; ED and Ward. D2, k = 4) was repeated for 
every individual cancer type based on gene expression 
in the “REACTOME CHOLESTEROL BIOSYNTHESIS” 
and “REACTOME GLYCOLYSIS” gene sets. Moreover, 
we determined the percentages of cholesterogenic and 
glycolytic genes in every cluster, and clusters consisting of 
at least 50% of each gene set were identified as the “core” 
clusters. With regard to cancer types that had over one 
core cluster in one gene set, we chose the most homog-
enous cluster as the core cluster. Cancer types without 
75% or higher homogeneity in the core cholesterogenic 
and glycolytic clusters were eliminated from subsequent 
analysis, giving rise to 12 cancer types. Meanwhile, for 
every cancer type, we further determined its metabolic 
subtypes according to the median expression of repre-
sentative core cholesterogenic and glycolytic genes.

Survival of HNSCC cases
For this study the ‘‘survminer’’ v.0.4.2 and ‘‘survival’’ 
v.2.4.2 R packages were employed to generate Kaplan–
Meier plots. Cases whose overall survival (OS) was 
shorter than 1  month were eliminated from survival 
analysis.

Patient specimens and Immunohistochemistry (IHC)
A total of 22 tissue samples were obtained from patients 
with HNSCC, who underwent surgical resection at 
Xiangya Stomatological Hospital, Central South Uni-
versity between 2020 and 2022, including 12 recurrent 
HNSCC patient and 10 first diagnosed HNSCC patients 
surviving at least 5  years. All HNSCC patients were 
diagnosed by professional pathologist. All of 3 normal 
mucosa tissues were obtained during surgical removal of 
lower third molars and confirmed by pathologic exami-
nation. The study was approved by the Ethics Commit-
tee of Xiangya Stomatological Hospital of Central South 
University and informed consent was obtained from 
the patients. Clinicopathological characteristics with 
the patients were collected and presented in Additional 
file  1: Table  S1. Paraformaldehyde-fixed tissue were 
embedded in paraffin and sectioned into 3-μm sections, 
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deparaffinized, and rehydrated, followed by IHC proto-
col. Subsequently, 3-μm sections were incubated within 
3% hydrogen peroxide for 15  min to block endogenous 
peroxidase activity and antigen retrieval was performed 
by microwave oven. Next, the slide were blocked in 5% 
goat serum for 15  min at 37  °C. Slides were incubated 
overnight at 4  °C with the following primary antibod-
ies: anti-ENO1 rabbit polyclonal antibody  (1:200; Pro-
teintech, Wuhan, China), anti-PFKFBS rabbit polyclonal 
antibody (1:200; Proteintech, Wuhan, China), anti-SQLE 
rabbit polyclonal antibody (1:200; Proteintech, Wuhan, 
China), anti-NSDHL rabbit polyclonal antibody (1:200; 
Proteintech, Wuhan, China). Finally, slides were observed 
under a light microscope and evaluated based on the 
immunoreactive score (IRS) [34], which was multiplied 
by the staining proportion score and staining intensity 
score. The staining proportion was assigned a score of 0 
(no staining), 1 (< 10% of positive cells), 2 (10–50% posi-
tive stained cells), 3 (51–80% positive stained cells) and 
4 (> 80% positive stained cells). Staining intensity score 
was graded from 0 to 3 as follows: 0 = negative stain-
ing; 1 = weak staining; 2 = moderate staining; 3 = strong 
staining. According to IRS, patients were divided into 
three groups as follows: negative expression group, 
IRS = 0–1; mild expression group, IRS = 2–3; moder-
ate positive expression group, IRS = 4–8; and strongly 
positive expression, IRS = 9–12. All slides were indepen-
dently scored by two pathologists blinded to the clinico-
pathological features and outcome data.

Statistical analysis
In this study, both GraphPad Prism 8 (San Diego, CA, 
USA) and SPSS 23.0 (IBM Corp., Armonk, NY, USA) 
were employed for data analysis. The levels of protein 
expression was analyzed by two-tailed Student’s t-test by 
comparing with the control group. Patient survival was 
analyzed by the log-rank test and Kaplan–Meier test. 
The optimal thresholds for every gene and every survival 
curve were obtained through R Studio. A difference of 
P < 0.05 (two-sided) indicated statistical significance.

Results
Identification and validation of HNSCC subtypes based 
on the expression levels of glycolytic and cholesterogenic 
genes
To reveal the metabolic heterogeneity of HNSCC based 
on the relative gene expression levels of glycolytic and 
cholesterol synthesis pathways, we downloaded RNA-
seq data from HNSCC samples in TCGA. We obtained a 
dataset containing 481 samples and filtered out samples 
with low (< 30%) tumor cell content. Genes belonging 
to the molecular signature database gene sets “glycoly-
sis” (n = 29) and “cholesterol biosynthesis” (n = 24) were 

identified as glycolytic and cholesterogenic genes for 
further analysis. We utilized a consensus clustering 
approach to identify two group clusters based on genes 
coregulated in metabolic pathways in HNSCC. Accord-
ing to the consensus cluster analysis, these genes in the 
glycolysis (n = 12) and cholesterol biosynthesis (n = 16) 
pathways were used for the HNSCC metabolic subtype 
(Fig. 1A).

Expression levels of both glycolysis and cholesterogenic 
genes as a profile in each sample were calculated and 
assigned to four metabolic subtypes in HNSCC, includ-
ing the glycolysis, cholesterogenic, mixed and quiescent 
subtypes. The details are as follows. The glycolytic phe-
notype was characterized by remarkable upregulation of 
glycolytic genes and downregulation of cholesterogenic 
genes. The cholesterol phenotype was characterized by 
the relative upregulation of cholesterogenic genes and 
downregulation of glycolytic genes. The mixed pheno-
type was characterized by the combined upregulation of 
each major category. The quiescent phenotype was char-
acterized by the combined downregulation of each major 
category (Fig. 1B). The expression levels of genes involved 
in glycolysis and cholesterogenesis across all metabolic 
subtypes in HNSCC are shown in Fig. 1C. The quiescent 
subtype made up the largest portion of HNSCC samples 
(172/481; 35.76%), followed by the glycolytic subtype 
(110/481; 22.87%), mixed subtype (100/481; 20.79%) and 
cholesterogenic subtype (99/481; 20.58%). We further 
performed survival analysis, since survival represents a 
key clinical index of tumor aggressiveness, and overall 
survival outcome were significantly different among the 
four HNSCC subtypes. The other three subtypes had 
significantly worse outcome than the quiescent subtype 
(Fig. 1D).

To confirm the robustness of our classification model, 
RNA-seq data and metadata of 97 HNSCC samples from 
GEO (GSE41613) were applied for external validation of 
the gene signature. These genes in the glycolysis (n = 12) 
and cholesterol biosynthesis (n = 15) pathways were 
used for metabolic subtype according to the formula 
above (Fig. 2A, B). In 97 patients with HNSCC, glycoly-
sis subtype, cholesterogenic subtype, quiescent subtype 
and mixed subtype cases accounted for 27.84% (27/97), 
23.71% (23/97), 25.77% (25/97) and 22.68% (22/97), 
respectively. There was no statistically significant differ-
ence in the proportion of the four subtypes. Consistent 
with previous results, the quiescent subtype had better 
survival than the glycolysis subtype in the GEO valida-
tion dataset (Fig. 2C).

These findings indicated that multiple metabolic phe-
notypes were established in HNSCC and were involved 
in glycolysis or cholesterogenic biosynthesis. Compared 
with tumors of the quiescent subtype, we reasoned that 
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tumors with a higher glycolysis subtype or higher choles-
terogenic subtype are much more aggressive in HNSCC.

Clinical relevance and molecular mechanism of the four 
metabolic subtypes in HNSCC
To construct a clinical matrix that predicts the progno-
sis of HNSCC patients among the four subtypes, clin-
icopathological factors, including tumor (T), node (N), 
metastasis (M), clinical stage, grade (G), age, gender and 
smoking history, were analyzed in TCGA HNSCC data-
sets. As illustrated in Fig. 3A, B, we observed that most 

quiescent subtypes were enriched in T1 stage and Stage 
I. Our results also showed that the G2-G4 stages con-
sisted of more glycolysis subtype cases than the G1 stage 
(Fig. 3C). We found no difference in N, M, patient age or 
smoking history (Fig. 3D–H). Interestingly, there was no 
quiescent subtype in the G4 stage of HNSCC (Fig.  3C), 
suggesting metabolic alterations in HNSCC progression.

To investigate the underlying molecular mechanisms 
of the four metabolic subtypes, we conducted GSEA of 
HNSCC samples. The cholesterogenic and glycolysis 

Fig. 1  Stratification of TCGA HNSCC samples based on the expression of glycolytic and cholesterogenic genes. A Heatmap depicting consensus 
clustering solution (k = 4) for glycolytic and cholesterogenic genes in TCGA HNSCC samples. B Scatter plot showing median expression levels of 
coexpressed glycolytic (x-axis) and cholesterogenic (y-axis) genes in each HNSCC sample. Metabolic subgroups were assigned on the basis of 
the relative expression levels of glycolytic and cholesterogenic genes. C Heatmap depicting the expression levels of coexpressed glycolytic and 
cholesterogenic genes across each subgroup. D Kaplan–Meier survival curves of patients in four metabolic subtypes in TCGA. Log-rank test P values 
are shown



Page 6 of 16Zhou et al. Cancer Cell International           (2023) 23:37 

subtypes were mainly involved in pathways in cancer 
(Fig.  4A, B), whereas the mixed subtype was enriched 
in pathways in immune disease (Fig. 4C). Importantly, 
the quiescent subtype mainly focused on DNA repair, 
and the glucocorticoid synthesis pathway indicated that 
the quiescent subtype had a better prognosis than the 
other three subtypes (Fig.  4D). In short, we proposed 
that metabolic alteration was associated with the worse 
prognostic outcome.

Molecular subtypes identified by immunohistochemical 
markers
Expression levels of several selected glycolysis and cho-
lesterogenic proteins corresponding to the top genes 
were examined to further characterize the different sub-
types from tumor tissue with first diagnosed HNSCC 
patients surviving at least 5 years and recurrent HNSCC 
patients. These proteins include Enolase 1 (ENO1), 
Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 
(PFKFB3), NADP steroid dehydrogenase like (NSDHL) 

Fig. 2  Stratification of GEO-HNSCC samples based on the expression of glycolytic and cholesterogenic genes. A Heatmap depicting the expression 
levels of coexpressed glycolytic and cholesterogenic genes across each subgroup. B Scatter plot showing median expression levels of coexpressed 
glycolytic (x-axis) and cholesterogenic (y-axis) genes in each HNSCC sample. Metabolic subgroups were assigned on the basis of the relative 
expression levels of glycolytic and cholesterogenic genes. C Kaplan–Meier survival curves of patients with four metabolic subtypes in GEO. Log-rank 
test P values are shown
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and squalene epoxidase (SQLE) and we analyzed these 
protein expression levels by IHC. The results showed 
that ENO1, PFKFB3, NSDHL and SQLE were primar-
ily detected in the in the cytoplasm of cancer cells in 
HNSCC tissues and the expression of these protein in 
recurrent HNSCC was significantly higher than that in 
normal tissues (Fig.  5A–D). The expression of PFKFB3 
and NSDHL in recurrent HNSCC was significantly 
higher than that in the normal tissue (Fig. 5B, C). These 
data suggested that abnormal metabolism-related pro-
tein expression was founded to be HNSCC patients with 
poor prognosis. Furthermore, we observed that ENO1, 
PFKFB3, NSDHL and SQLE were highly expressed in 
recurrent HNSCC tumor compared with first diagnosed 
HNSCC patients surviving at least 5  years (Fig.  5A–D). 
Together, these findings suggested that tumors with a 
higher glycolysis or higher cholesterogenic proteins are 
worse survival in HNSCC.

Association of the four metabolic subtypes in HNSCC 
with featured genomic alterations and the known HNSCC 
subtypes
Genomic alterations, such as oncogenic mutant TP53 
or CDKN2A, could drive metabolic reprogramming 
in cancers, including HNSCC [35, 36]. We next used 
RNAseq data from TCGA HNSCC datasets to examine 
the frequency of insertion-deletion mutations (INDELs), 
single nucleotide variations (SNVs) and copy number 
variations (CNVs) across the metabolic subtypes (Addi-
tional file  1: Figure S2). The study indicated that TP53, 
CDKN2A, PIK3CA, LRP1B and FLG were the most fre-
quently mutated genes among the four metabolic sub-
types in HNSCC (Fig.  6A and Additional file  1: Figure 
S2). Of note, we observed that among the four subtypes, 
TP53 has the highest mutation frequency. The CDKN2A 
mutation frequency has the most significant differences 
amongst the four subtypes, whereas PIK3CA, LRP1B 

Fig. 3  Factor analysis of four HNSCC subtypes based on clinical characteristics: (A) T stage, (B) clinical stage, (C) G stage, (D) N stage, (E) M stage, (F) 
age, (G) gender, (H) smoking history distribution in the four HNSCC subtypes
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Fig. 4  Metabolic subtype signature-associated biological signaling pathways by GSEA in TCGA-HNSCC samples. KEGG enrichment analysis results 
of genes: (A) in the glycolytic subtyp,. (B) in the cholesterogenic subtype, (C) in the mixed subtype, (D) in the quiescent subtype. Colors indicate the 
enriched signaling pathway
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and FLG had marginally significant mutation frequencies 
(Fig.  6B). Overall, this result suggested that alterations 
in oncogenes might influence the metabolic reprogram-
ming of HNSCC.

Previous studies have reported a gene expression sig-
nature associated with survival time in patients with 

HNSCC [37]. According to the prognosis models of 
Zhang [30] and Zhou [31], we determined the risk score 
of HNSCC prognosis and investigated their overlap with 
the metabolic subtype in TCGA HNSCC datasets. The 
quiescent subtype contained the highest frequency of 
low-risk cases, and the cholesterogenic subtype was also 
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mainly composed of low-risk samples. In contrast, glyco-
lysis and the mixed subtype predominantly consisted of 
the high-risk prognosis group (Fig. 7A, B).

Moreover, Chung and Walter et al. identified molecular 
subtypes of HNSCC based on gene expression, termed 
basal, mesenchymal, classical and atypical [38–40]. The 
tumor subtype with the worst outcome was the classi-
cal classification [39]. Similarly, the basal and mesenchy-
mal subtypes were also associated with poor outcome 
[38–40]. To validate our subtypes, we investigated the 
subtypes that corresponded to the Chung and Walter 
classification [40]. As shown in Fig. 7C, most of the basal 
subtypes (33.8% and 41.46%, respectively) of HNSCC 
were enriched in the glycolysis and cholesterogenic sub-
types. The classical subtype (40.58%) was enriched in the 
mixed subtype, but the mesenchymal subtype (42.39%) 
was enriched in the quiescent subtype. Likewise, we 

assessed the overlaps between our metabolic subtypes 
and the miRNA classification in HNSCC [39]. The Group 
4 subtype was related to poor outcome. Consistent with 
the glycolytic subtype conferring the worse prognosis as 
described above, the majority of these samples were part 
of the Group 4 subtype (Fig.  7D). Finally, a Sankey dia-
gram for the association between the above three clas-
sifications and patient survival was generated (Fig.  7E). 
Taken together, these data implied that metabolic altera-
tion may influence the prognosis of the known HNSCC 
subtypes and that glycolysis biosynthesis might be a 
potential target for HNSCC therapy.

Relevance of cholesterogenic and glycolytic gene clusters 
in other cancers
Diverse cancers show distinct metabolic signatures 
resulting from enzyme expression in specific organs 

Fig. 6  Mutational analysis in the four metabolic subtypes of HNSCC. A Somatic landscape depicting the distribution of somatic mutation 
(SNV/indel) and copy number variation (CNV) events affecting frequently mutated genes in the four metabolic subtypes. B Differences in the 
percentages of TP53, CDKN2A, PIK3CA, LRP1B and FLG mutations and wild-type genes among the four subtypes of HNSCC
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and mutational landscapes, which may affect outcome. 
To determine the relevance of the expression levels 
of cholesterogenic and glycolytic genes at additional 

organ sites, consensus clustering was repeated to ana-
lyze the expression levels of cholesterogenic and glyco-
lytic genes among the 12 types of TCGA cancers. Most 

Fig. 7  Relationships between metabolic subtypes and known HNSCC subtypes. A, B Bar plots illustrating the proportion of published HNSCC 
expression subtypes across each metabolic subgroup based on patient prognosis. C Factor analysis of four HNSCC subtypes based on mRNA-based 
subtyping. D Factor analysis of four HNSCC subtypes based on miRNA-based subtyping. E Sankey diagram showing overlay of the metabolic 
profiles with HNSCC expression subtypes based on mRNA-based subtyping by Chung and miRNA-based subtyping by Walter, as well as patient 
survival
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genes showed coexpression in the majority of cancers, 
and only a few of them had coexpressed genes involved 
in the cholesterogenic and glycolytic pathways. Fur-
thermore, these data indicated that some genes con-
tributed to metabolic programs in every cancer type 
specific to the cell type (Fig.  8A, B). The candidate 
relationships of specific metabolic genes with the clin-
icopathological characteristics of different cancers 
were also examined. The difference in survival rates 
was significant across the four metabolic subtypes in 
liver hepatocellular carcinoma (LIHC) (P = 0.0001) 
(Fig.  8C) and sarcoma (SARC) (P = 0.018) (Fig.  8D). 
The OS rate of LIHC markedly decreased in the 
mixed subgroup compared with the cholesterogenic 
subgroup. For SARC, the glycolytic and mixed sub-
groups showed poor prognostic outcome relative to 
those of the quiescent and cholesterogenic subgroups. 
Therefore, this model shed new light on the molecu-
lar characteristics of different cancers and illustrated 
tumor-specific gene expression in different metabolic 
subtypes.

Discussion
As several targeted therapies have been approved for 
HNSCC treatment and many more are in progress, the 
identification of predictive biomarkers to establish thera-
peutic guidelines is a major research priority. Specifically, 
dysregulated metabolism was previously reported to be 
associated with clinical outcome in diverse cancers [7, 8]. 
Several studies also conducted metabolic subtype based 
on metabolic dysregulation and heterogeneity of tumors, 
suggesting that metabolic profile studies may be a novel 
approach to identify tumor-specific targets for diagnosis 
and therapy [25, 27, 41]. However, to date, no research 
has defined the metabolic classification of HNSCC. 
Here, we successfully established four distinct subtypes 
of HNSCC, the quiescent, glycolytic, cholesterogenic 
and mixed subtypes, which affect tumor progression and 
patient survival.

Furthermore, we found that the metabolic subtype of 
HNSCC was linked to clinicopathological features and, 
in particular, to clinical stage and grade. The quiescent 
subtype was mainly enriched in stage I and G1, suggest-
ing a better outcome. Previous studies have shown that 

Fig. 8  Glycolytic and cholesterogenic gene profiling of other cancer types. A Heatmap depicting which glycolytic and cholesterogenic genes were 
robustly coexpressed when consensus clustering was applied to each individual cancer type. B The distributions of different tumor types in four 
metabolic subtypes. C Kaplan–Meier survival analysis curves showing differences in overall survival across metabolic subgroups in LIHC. D Kaplan–
Meier survival analysis curves showing differences in overall survival across metabolic subgroups in SARC. Log-rank test P values are shown
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lactate levels are not correlated with presenting T stage 
or N stage [42]. In accordance with previous studies, our 
results showed that T stage and N stage were not sig-
nificantly different in the distribution of the metabolic 
subgroups. Our study demonstrated that metabolomic 
profiling could be potentially useful for prognosis.

Glycolytic metabolism is a common event in tumori-
genesis, as indicated by the dramatic increase in glucose 
uptake [22]. The finding that tumors with increased gly-
colytic properties were related to the shortest overall 
survival confirms the role of glycolysis in tumor aggres-
siveness in HNSCC [43]. Chen et al. found that six gly-
colysis-based genes were identified and can be used as 
prognostic markers for patients with HNSCC. In addi-
tion, lipid metabolic reprogramming is one hallmark of 
cancer. Cholesterol plays a key role in pathways govern-
ing carcinogenesis and malignant progression. High 
expression levels of cholesterogenic genes were associ-
ated with human HNSCC development and supported 
poor prognosis [44–47]. Emerging evidence supports 
these observations. ENO-1 acts as a glycolytic enzyme 
and promotes invasion and metastasis formation in vari-
ous cancers [48–50]. PFKFB3 is an essential glycolysis-
activating enzyme, and its powerful kinase activity can 
increase glycolysis flux and was involved in the aggressive 
features of multiple malignances and correlates with poor 
survival [51–53]. SQLE, a rate-limiting enzyme in the 
cholesterol synthesis, aggravates malignant progression 
in multiple cancers [54, 55]. NSDHL is also a cholesterol 
synthesis, which related to cancer growth and the sign-
aling of proto-oncogenes [56]. Our study demonstrated 
that the other three subtypes including glycolytic, cho-
lesterogenic and mixed subtypes, had significantly worse 
outcome than the quiescent subtype, which was charac-
terized by abnormal expression of metabolism-related 
genes. We further validated the metabolism-related sub-
types based on features of ENO1, PFKFB3, NSDHL and 
SQLE expression in HNSCC. Our data showed that both 
ENO1, PFKFB3, NSDHL and SQLE have high expres-
sion levels in clinical HNSCC samples, and all of them 
presented higher expression in patient with recurrence 
tumor. However, these proteins were almost no expres-
sion in normal tissue.

Metabolic reprogramming can be largely viewed as 
a consequence of oncogenic driver events [57]. With 
the aim of confirming the molecular drivers of distinct 
metabolic subtypes in HNSCC, we observed that TP53 
has the highest mutation frequency and the CDKN2A 
mutation frequency has the most significant differences 
amongst these four subtypes. Previous studies in multi-
ple cancers have identified a role for oncogenes, includ-
ing CDKN2A, also called p16, as regulators of a range of 
tumor cell processes directly and indirectly contributing 

to the regulation of many different metabolic pathways. 
CDNK2A participates in metabolism control by regu-
lating glucose transporter 1 (GLUT1) expression, which 
mediates glucose uptake in pancreatic cancer [36, 58]. 
Also, mutant p16 can induce oxidation of NADH and 
maintain glycolysis by generating NAD + , a substrate for 
GAPDH-mediated glycolytic reaction, thereby promot-
ing pancreatic ductal adenocarcinoma development [59]. 
In addition, TP53 mutation have been extensively linked 
to the promotion of glycolysis through sustaining high 
fuel oxidation and ATP production in cancer [60, 61]. 
The current study indicates that different metabolic sub-
types with distinct molecular profiles will provide poten-
tial subtype-specific therapeutic targets.

There is significant molecular heterogeneity in HNSCC 
leading to distinct tumor subtypes based on immune 
checkpoints, epigenetic modification and genetic altera-
tions [1, 38–40]. Analysis of available expression datasets 
revealed that the four metabolic subtypes are reproduci-
ble in HNSCC and have a few overlaps with other molec-
ular subtypes found in HNSCC. Notably, a clear pattern 
of correlation was observed in which the glycolysis and 
cholesterogenic subtypes of HNSCC corresponded to the 
HNSCC basal subtype, which is known to be associated 
with worse clinical outcome. In addition, the mesenchy-
mal subtype is often described as a poor outcome. Our 
results showed that the quiescent subtype was enriched 
in the mesenchymal subtype. This implied the heteroge-
neity in HNSCC. Understanding the metabolic profiles 
of different molecular subtypes is important in hetero-
geneous diseases such as HNSCC, which contributes to 
a growing interest in translating this information into 
clinical practice for outcome prognostication and the 
development of personalized treatments based on each 
tumor’s unique molecular signature.

The metabolic expression subtypes defined here have 
potential clinical implications. We showed that the exten-
sive correlations of metabolic subtypes with prognosis 
in HNSCC, suggesting that the subtypes reflect essen-
tial aspects of tumor aggressiveness. Furthermore, cur-
rent strategies for considering the effect of metabolism 
on therapy focus on functionally important metabolic 
gene that show cancer-specific somatic or expression 
changes. Overall, the results here support the potential 
utility of metabolic subtypes as prognosis and guideline 
for therapy. However, there are still some limitations in 
our study. First, the data we studied were from public 
databases rather than our database, the four metabolism 
subtypes should be further identified in large patient 
samples. Second, the mechanisms underlying metabolic 
regulation and HNSCC metabolic subtypes of several 
metabolism-related genes included in the mutation data 
needed to be explored.



Page 14 of 16Zhou et al. Cancer Cell International           (2023) 23:37 

A vital outcome of the work in cancer metabolism 
is our ability to translate these findings into personal-
ized therapeutic approaches. Several metabolic inhibi-
tors already in pre-clinical and clinical investigation. 
For example, 2-DG, antiglycolytic agent, acts as a com-
petitive inhibitor of the glycolytic enzyme hexokinase. 
And there is currently a clinical trial in advanced cancer 
(Targeting EMT in Cancer with Repurposed Metabolic 
Inhibitors). ABT-510, which inhibits FA and LDL protein 
uptake, were both found to be highly effective for second-
ary lymph node metastatic tumor development and has 
been tested in clinical trials [62]. Although these inhibi-
tors have limited therapeutic effect in many types of can-
cers, it may be combined with other therapeutic agents to 
exhibit a synergistic anticancer effect. Here, the correla-
tion of gene expression heterogeneity along the glycolysis 
and cholesterol and prognosis subtypes of HNSCC have 
shown that subtype-specific therapeutic strategies target-
ing unique metabolic vulnerabilities, together with con-
ventional antineoplastics. One treatment strategy is the 
glycolytic subtype may be targeted by combining inhibi-
tion of glycolysis with CDKN2A or TP53. On the other 
hand, targeting both cholesterol and CDKN2A or TP53 
in the cholesterogenic subtype may be an efficient ther-
apy. Therefore, we need further explore the key metabolic 
gene and mutation among the four subtypes.

Conclusions
In summary, the four metabolic subtypes were success-
fully determined in HNSCC. Compared to the quies-
cent subtype, glycolytic, cholesterogenic and mixed 
subtypes had significantly worse outcome, which might 
offer guidelines for developing a novel treatment strat-
egy for HNSCC.
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