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Abstract 

Chronic myeloid leukemia (CML) is a hematological tumor derived from hematopoietic stem cells. The aim of this 
study is to analyze the biological characteristics and identify the diagnostic markers of CML. We obtained the expres‑
sion profiles from the Gene Expression Omnibus (GEO) database and identified 210 differentially expressed genes 
(DEGs) between CML and normal samples. These DEGs are mainly enriched in immune‑related pathways such as Th1 
and Th2 cell differentiation, primary immunodeficiency, T cell receptor signaling pathway, antigen processing and 
presentation pathways. Based on these DEGs, we identified two molecular subtypes using a consensus clustering 
algorithm. Cluster A was an immunosuppressive phenotype with reduced immune cell infiltration and significant 
activation of metabolism‑related pathways such as reactive oxygen species, glycolysis and mTORC1; Cluster B was 
an immune activating phenotype with increased infiltration of CD4 + and CD8 + T cells and NK cells, and increased 
activation of signaling pathways such as interferon gamma (IFN‑γ) response, IL6‑JAK‑STAT3 and inflammatory 
response. Drug prediction results showed that patients in Cluster B had a higher therapeutic response to anti‑PD‑1 
and anti‑CTLA4 and were more sensitive to imatinib, nilotinib and dasatinib. Support Vector Machine Recursive Fea‑
ture Elimination (SVM‑RFE), Least Absolute Shrinkage Selection Operator (LASSO) and Random Forest (RF) algorithms 
identified 4 CML diagnostic genes (HDC, SMPDL3A, IRF4 and AQP3), and the risk score model constructed by these 
genes improved the diagnostic accuracy. We further validated the diagnostic value of the 4 genes and the risk score 
model in a clinical cohort, and the risk score can be used in the differential diagnosis of CML and other hematological 
malignancies. The risk score can also be used to identify molecular subtypes and predict response to imatinib treat‑
ment. These results reveal the characteristics of immunosuppression and metabolic reprogramming in CML patients, 
and the identification of molecular subtypes and biomarkers provides new ideas and insights for the clinical diagnosis 
and treatment.
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Introduction
Chronic myeloid leukemia (CML) is a hematologi-
cal tumor with malignant proliferation of hematopoi-
etic stem cells [1]. The Philadelphia (Ph) chromosome 
formed by the translocation of chromosomes 9 and 
22, namely t(9;22), is closely related to disease, and the 
recombined Breakpoint cluster region-Abelson (BCR-
ABL1) fusion gene encodes an oncoprotein with strong 
tyrosine kinase activity that is a key factor contribut-
ing to CML pathogenesis. CML is divided into chronic 
phase (CP), accelerated phase (AP) and blast phase (BP) 
[2]. The main therapeutic drugs for CML are tyrosine 
kinase inhibitors (TKIs), among which imatinib (IM) is 
widely used as a first-generation TKI with good thera-
peutic benefits [3]. However, over 5 years of follow-up, 
approximately 1 in 5 CML patients developed resist-
ance to IM [4], which included primary resistance and 
relapse after treatment response. For the former, the 
BCR-ABL1 kinase has an independent mechanism; for 
the latter, it is mainly due to mutations in the structural 
domain of the BCR-ABL1 kinase [5]. Moreover, the 
long-term use of TKI is associated with many compli-
cations that affect patients’ quality of life [6]. Therefore, 
it is important to explore the pathogenesis of CML in 
depth and identify new diagnostic biomarkers or thera-
peutic targets.

With the development of next-generation sequenc-
ing (NGS) technologies, studies based on the levels of 
gene expression and regulation have shed light on the 
pathogenesis and malignant phenotypes of many dis-
eases [7–10]. The incorporation of NGS into the diagno-
sis, risk stratification and therapeutic evaluation of CML 
patients is of great importance [11]. Additional novel 
biomarkers can be identified by systematically analyzing 
the differences in gene expression profiles between CML 
samples and normal samples [12, 13]. However, most of 
the current studies related to CML are limited to a sin-
gle molecule or signal pathway, lacking large samples and 
multidimensional exploration. Comprehensive analysis of 
gene expression characteristics, signaling pathway activi-
ties and immune cell infiltration levels in CML samples 
may contribute to our understanding of CML pathogen-
esis and tumor microenvironment (TME).

In this study, we focused on multiple CML transcrip-
tome sequencing cohorts, and found more downregu-
lated genes and significantly fewer immune cells in CML 
samples compared to normal samples. CML patients can 
be further classified into immune activating and immu-
nosuppressive phenotypes and have different predictive 
responsiveness to treatment with TKI drugs and immune 
checkpoint inhibitors. We further identified 4 genes with 
diagnostic value by multiple machine learning methods 
and validated them in validation cohorts.

Methods
Data acquisition and processing
The datasets GSE13159, GSE144119, GSE100026 were 
downloaded from the Gene Expression Omnibus (GEO) 
database. For GSE13159 (76 CML samples and 74 normal 
samples), we downloaded the original “cel” files and nor-
malized it using the robust multiarray averaging (RMA) 
method. For GSE144119 (16 CML samples and 11 remis-
sion samples, as well as 6 normal samples), we down-
loaded the count data and converted it to transcripts 
per kilobase million (TPM) values. GSE100026 (10 CML 
samples and 5 normal samples) is our own CML data, 
and we converted the fragments per kilobase of tran-
script per million (FPKM) values to TPM values for sub-
sequent validation. In this study, GSE13159 was used as 
the discovery cohort for systematic analysis, GSE144119 
and GSE100026 were used as the validation cohorts. In 
addition, GSE13159 contained samples from 750 patients 
with acute lymphoblastic leukemia, 542 patients with 
acute myeloid leukemia, 448 patients with chronic lym-
phocytic leukemia, and 206 patients with myelodysplas-
tic syndromes, which were further used in the differential 
diagnosis of CML.

Identification of differentially expressed genes (DEGs)
We performed differential expression analysis using 
the R package “limma” to identify DEGs between CML 
and normal samples in the dataset. The threshold for 
DEGs was set at an absolute value of log2 fold change 
|log2FC|> 1 and an adjusted P value < 0.05.

Functional enrichment analysis and construction 
of protein–protein interaction (PPI) network
Functional enrichment analysis was performed by the R 
package “clusterProfiler”. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) analy-
ses were used for the identification of biological functions 
associated with DEGs; Gene Set Enrichment Analysis 
(GSEA) and Gene Set Variation Analysis (GSVA) algo-
rithms quantified the activity of corresponding signal-
ing pathways or biological behaviors by calculating the 
enrichment scores of gene sets, and the GSVA score 
was calculated based on the overall position of the gene 
set genes in the expression ranking of all genes, and the 
higher the overall expression level of these genes, the 
higher the GSVA score. The STRING website (https:// 
cn. string- db. org/) was used to construct PPI networks, 
and Cytoscape software was further used to calculate and 
identify sub networks with the highest connectivity.

Identification of molecular subtypes based on DEGs
We performed consensus clustering analysis on the 
expression of DEGs based on the “consensusclusterplus” 

https://cn.string-db.org/
https://cn.string-db.org/
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package to identify the molecular subtypes of CML, and 
performed 1000 iterations to ensure the reliability and 
stability of classification. Principal component analysis 
(PCA) was used to validate the classification.

Estimation of immune cell infiltration
CIBERSORT is a deconvolution algorithm that quanti-
fies the proportion of immune cell infiltration in a sample 
(22 different cell types) based on gene expression profiles. 
We further compare the immune cell infiltration charac-
teristics in CML samples and normal samples to reveal 
differences in the immune microenvironment between 
the two.

Construction of upstream regulatory network
We used the eXpression2Kinases website (X2K) (https:// 
amp. pharm. mssm. edu/ X2K/) for the construction of 
upstream regulatory network, where regulatory correla-
tions between transcription factors (TFs), kinases and 
intermediate proteins were calculated based on hyper-
geometric P values.

Prediction of treatment response for different molecular 
subtypes
The half-maximal inhibitory concentrations (IC50) of 
different patient samples to therapeutic drugs were 
predicted based on drug response data of blood cell 
lines from the Cancer Genome Project (CGP) database 
(https:// cancer. sanger. ac. uk/ cosmic) via the "pRRophetic" 
package. Tumor Immune Dysfunction and Exclusion 
(TIDE, http:// tide. dfci. harva rd. edu/) was considered 
a good predictor of immunotherapeutic response for 
molecular subtypes [14, 15]. The SubMap algorithm 
(https:// cloud. genep attern. org/ gp) was used to predict 
immunotherapy response to anti-PD-1 and anti-CTLA4 
immune checkpoint inhibitors across different molecular 
subtypes.

Identification of diagnostic biomarkers for CML
We use three machine learning algorithms [16], Sup-
port Vector Machine Recursive Feature Elimination 
(SVM-RFE), Least Absolute Shrinkage Selection Opera-
tor (LASSO) and Random Forest (RF), to filter variables 
significantly associated with CML. SVM-RFE is based on 
the support vector machine algorithm to rank the varia-
ble attributes and further identify the best variables using 
the “e1071” package. “LASSO” was performed using the 
“glmnet” package as a regression analysis algorithm that 
applies regularization to variable selection. RF identifies 
the categorical importance of variables based on deci-
sion tree theory. We applied three algorithms to identify 
overlapping genes as diagnostic biomarkers of CML in 
the GSE13159 dataset and validated them in GSE144119 

and GSE100026 cohorts. To further improve the diagnos-
tic value of the biomarkers, we calculated the regression 
coefficients of overlapping genes by LASSO regression 
analysis and constructed a risk-score diagnostic model of 
CML based on the following formula:

where i is the diagnostic model gene, “Coef” and “Exp-
Gene” are the non-0 regression coefficient and the 
expression value of it.

Construction of a miRNA regulatory network for CML 
diagnostic genes
We identified miRNAs with binding sites to CML diag-
nostic genes using the ENCORI database (https:// 
starb ase. sysu. edu. cn/) and screened for interactions of 
miRNA-target demonstrated by at least three predicting 
programs.

RNA isolation and quantitative real‑time PCR (RT‑qPCR)
Our project was approved by the Ethics Committee of 
the Second Affiliated Hospital of Nanchang University, 
and peripheral blood samples from 16 CML patients and 
16 normal controls were collected. Informed consent was 
obtained from all participants before using the samples. 
We extracted RNA from mononuclear cells and reverse 
transcribed it. TAKARA kit (Japan) was used to perform 
RT-PCR on the ABI7500 instrument to determine the 
expression of 4 diagnostic genes. The results were cal-
culated using  2−△△CT method. The primer sequences 
are as follows. HDC: F, ATG CTG ATG AGT CCT GCC 
TAAAT; R, TGT CAT CCA CAG GCA GAA ATTTC. SMP-
DL3A: F, CAC CTC ATG TTC CTG TAC CTGAA; R, ACC 
TGT GGC CAA TAG TCA TGATT. IRF4: F, CAG ATC GAC 
AGC GGC AAG TA; R, TGT CGA TGC CTT CTC GGA AC. 
AQP3: F, CCT TCT TGG GTG CTG GAA TAGTT; R, GGC 
CAG CAC ACA CAC GAT AAG. GAPDH: F, ATG GTG 
AAG GTC GGT GTG AA; R, ATG GTG AAG GTC GGT 
GTG AA.

Statistical analysis
R software and corresponding packages were used for 
calculations and analysis. We used Wilcoxon rank sum 
test and Kruskal–Wallis test to determine differences 
between two or more groups. Spearman’s method used 
to analyze the correlation of variables. Receiver operating 
characteristic (ROC) curve analysis was used to deter-
mine the diagnostic value of biomarkers. A two-sided P 
value of < 0.05 was considered statistically significant.

Risk score =
∑i

1
(Coefi ∗ ExpGenei),

https://amp.pharm.mssm.edu/X2K/
https://amp.pharm.mssm.edu/X2K/
https://cancer.sanger.ac.uk/cosmic
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp
https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
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Results
To better reveal the differences in gene expression lev-
els between CML and normal samples, we analyzed two 
cohorts of CML sequencing data. We identified a total 
of 378 DEGs in the GSE13159 cohort and 3937 in the 
GSE144119 cohort (Fig. 1A, B), for a total of 210 DEGs 
with the same expression trend in both cohorts (Fig. 1C), 
and these genes were used for subsequent analysis. We 
observed in both cohorts that fewer genes were up-regu-
lated in expression and more genes were down-regulated 
in expression in CML samples compared to normal sam-
ples. We further performed functional analysis of these 
shared DEGs, and the results of KEGG analysis showed 
that most of the down-regulated genes were mainly 
enriched in immune-related signaling pathways, such 
as Th1 and Th2 cell differentiation, primary immunode-
ficiency, T cell receptor signaling pathway, antigen pro-
cessing and presentation, natural killer cell mediated 
cytotoxicity, PD-L1 expression and PD-1 checkpoint 
pathway in cancer, cytokine-cytokine receptor interac-
tion, chemokine signaling pathway, B cell receptor signal-
ing pathway (Fig. 1D). GO annotations also indicated that 
the molecular functions of these genes and the biologi-
cal processes involved are focused on inflammatory and 
immune signatures (Fig. 1E).

Immune cell infiltration and the upstream regulatory 
network of DEGs
We further explored the differences in biological charac-
teristics between CML and normal samples. the results of 
GSEA enrichment analysis reconfirmed that the activity 
of immune-related signaling pathways was significantly 
reduced in CML, but that metabolic-related pathways 
such as alpha-linolenic acid metabolism, arachidonic acid 
metabolism, histidine metabolism, nicotinate and nicoti-
namide metabolism, and starch and sucrose metabolism 
were significantly activated (Fig. 2A, B). Immune cell infil-
tration analysis showed that naive and memory B cells, 
plasma cells, CD4 + and CD8 + T cells, resting NK cells, 
activated dendritic cells and mast cells were significantly 
reduced in CML samples compared to normal samples, 
while eosinophils and resting mast cells were signifi-
cantly enriched in CML samples, except for neutrophils 
(Fig.  2C). All of our data indicated that the CML sam-
ples were in an immunosuppressed state. Subsequently, 
we explored the expression of immune checkpoint genes 
between the two groups. Increased expression of PD-L1, 
PD-1, and CTLA4 was observed in the CML samples 
(Fig. 2D). These results suggest that CML patients exhibit 
inertia in anti-tumor immunity, which may be an impor-
tant contributor to the progression of CML.

Fig. 1 Identification of differentially expressed genes (DEGs) between CML and normal samples. A, B Volcano plots of datasets GSE13159 (A) and 
GSE144119 (B) from the GEO database; blue dots represent up‑regulated DEGs, gray dots represent nonsignificant genes, and red dots represent 
down‑regulated DEGs. The top 10 high‑ and low‑expressing DEGs with the smallest adjusted P‑values would be listed. C The heatmap shows DEGs 
with common expression trend in both cohorts. D KEGG enrichment analysis of DEGs. E GO annotation analysis of DEGs
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DEGs may be important factors involved in abnormal 
alterations of the biological features of CML. We per-
formed PPI network construction for these DEGs, in 
which the DEGs with downregulated expression were 
located in the core of the network and those with upreg-
ulated expression were located at the edges (Fig.  2E). 
We extracted the top 20 genes with the highest con-
nectivity, and these genes such as CD8A, CD3D, CD3E, 
CD3G, GZMA, GZMB, CD86, ITK, CD79A, CD79B are 
closely related to the function of immune cells (Fig. 2F). 
We further used DEGs to predict the upstream regula-
tory network of CML pathogenesis, which includes TFs, 
kinases and intermediate proteins. The most significantly 
associated kinases included HIPK2, CSNK2A1, CDK1, 
MAPK14, AKT1, GSK3B, CDK4, JNK1, CDK2, MAPK3, 
and MAPK1 (Fig. 2G). The most significantly associated 
TFs included IRF8, TRIM28, SUZ12, RUNX1, SMAD4, 

AR, NFE2L2, TP63, ESR1, SOX2 (Fig. 2H). A total of 105 
intermediate proteins with 1437 edges were linked to the 
TFs and kinases (Fig. 2I).

Distinct molecular subtypes in CML
We performed consensus clustering of CML patients 
based on the expression of DEGs and identified two 
molecular subtypes (Cluster A and Cluster B) (Fig. 3A). 
The PCA algorithm further validated the reliability of 
the classification (Fig.  3B). Compared to Cluster A, 
most DEGs were upregulated in Cluster B (Fig.  3C). 
Moreover, immune infiltration analysis showed that 
CD8 + T cells, resting CD4 + memory T cells, resting 
and activated NK cells were significantly enriched in 
Cluster B, and monocytes and neutrophils were infil-
trated at higher levels in Cluster A (Fig.  3D). In the 
GSE144119 cohort, we used the same approach to 

Fig. 2 Analysis of immune cell infiltration and prediction of upstream regulatory network according to the DEGs. A GSEA analysis of enrichment 
pathways in the CML group. B GSEA analysis of enrichment pathways in the Normal group. C Differences in infiltration of 22 immune cells between 
CML and normal samples. D Differences in expression of immune checkpoints between CML and normal samples. E PPI network of the DEGs. F The 
subnetwork of the top 20 most connected genes in the PPI network. G Kinases and H transcription factors according to the predictions of the DEGs. 
I Regulatory network diagram according to the prediction of the DEGs. Nodes’ size is scaled proportional to the corresponding degree
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identify two molecular subtypes with familiar expres-
sion and immune infiltration characteristics (Addi-
tional file 1: Figure S1A-S1B). Meanwhile, we used the 
GSVA algorithm to compare the difference in activity 
of the tumor hallmark gene set in the two molecular 
subtypes (Fig.  3E). We found that the reactive oxy-
gen species (ROS) pathway, glycolytic and mTORC1 
signaling pathways were more active in Cluster A; 
the gene sets of interferon gamma (IFN-γ) response, 
IL6-JAK-STAT3 signaling pathway, IL2-STAT5 sign-
aling pathway, inflammatory response, P53 pathway, 
and IL2-JAK-STAT5, Notch, TGF-β, TNF-α, WNT-β 
signaling pathways had higher enrichment scores in 
Cluster B. These results suggest that the two molecu-
lar subtypes are significantly different, with Cluster 
B exhibiting an inflammatory and immune activat-
ing phenotype and Cluster A exhibiting immune sup-
pression, as well as a more active energy metabolism 
characteristic.

Prediction of treatment response for different molecular 
subtypes
We further predicted the treatment response of dif-
ferent molecular subtypes. The TIDE score reflects 
the immune escape ability of tumor cells, and we 
observed a higher TIDE score for Cluster B than Clus-
ter A (Fig.  3F), suggesting that Cluster B has a higher 
immune escape ability, implying that patients of this 
subtype may benefit more from immunotherapy. We 
mapped the expression profiles of CML patients with 
another dataset containing 47 melanoma patients who 
responded to immunotherapy. The results showed that 
patients with Cluster B were more likely to respond to 
anti-CTLA4 and anti-PD-1 therapies (Fig. 3G). We then 
predicted the response of different molecular subtypes 
to TKIs commonly used for CML treatment, and the 
results showed that Cluster B patients had higher ther-
apeutic sensitivity to imatinib, nilotinib and dasatinib 
(Fig. 3H, J); however, there was no significant difference 

Fig. 3 Identification of molecular subtypes of CML and prediction of drug response in different subtypes. A The consensus clustering algorithm 
divided CML patients into two different molecular subtypes based on the expression of DEGs. B PCA algorithm was used to verify the classification 
reliability of the two molecular subtypes. C–F Differences in expression of DEGs (C), infiltration of 22 immune cells (D), activity of tumor hallmark 
gene sets (E) and TIDE scores (F) between the two molecular subtypes. (G) Differences in the therapeutic response of the two molecular subtypes 
to immune checkpoint inhibitors. H–K Differences in therapeutic sensitivity of the two molecular subtypes to four TKIs
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in therapeutic sensitivity to bosutinib between the two 
groups (Fig. 3K).

Identification and validation of diagnostic biomarkers
To further explore the diagnostic value of DEGs in CML. 
We used LASSO, RF and SVM-RFE algorithms to iden-
tify 13, 30 and 110 feature variables related to CML from 
DEGs, respectively (Fig.  4A–E). Finally, 4 overlapping 
diagnosis-related genes (HDC, SMPDL3A, IRF4 and 
AQP3) were selected from the three algorithms. Com-
pared with the normal group, the expression of HDC 
was significantly up-regulated in CML samples, while 
SMPDL3A, IRF4 and AQP3 were significantly down-
regulated (Fig. 4G). In the validation cohort GSE144119, 
we observed consistent expression differences; interest-
ingly, four diagnostic genes showed a reversion to nor-
mal expression levels in remission patients, which also 

indicates the value of therapeutic evaluation of these bio-
markers (Fig. 4H).

Next, we used LASSO regression analysis to con-
struct a risk score model based on four diagnostic genes 
to explore the diagnostic value of combining these bio-
markers. Figure  4I shows the model coefficients for the 
diagnostic genes (Additional file  1: Table  S1). Patients 
with CML had significantly higher risk scores than those 
in the normal group (Fig. 4J-K), and the risk score of the 
remission patients was reduced to the level of the normal 
group (Fig.  4K). By ROC curve analysis, we confirmed 
the high diagnostic efficiency of four diagnostic genes 
in both CML cohorts, while the risk score model further 
improved the diagnostic power (Fig. 5A, B). In addition, 
Cluster A had significantly higher risk scores than Cluster 
B, which observed consistent distributive features in both 
analysis cohorts (Fig. 5C, D). Meanwhile, in the GSE2535 

Fig. 4 Screening diagnostic markers for CML. A, B Diagnostic markers were screened by the LASSO regression algorithm. C, D Diagnostic markers 
were screened by the RF algorithm. E Diagnostic markers were screened by the SVM‑RFE algorithm. F Venn diagram of variables screened by LASSO, 
RF and SVM‑RFE algorithms. G Differences in expression of the four diagnostic genes in the GSE13159 cohort. H Differences in expression of the 
four diagnostic genes in the GSE144119 cohort. I Coefficients for the four genes in the risk score model. J Distribution of risk scores in the GSE13159 
cohort. K Distribution of risk scores in the GSE144119 cohort
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cohort, 12 patients who did not respond to imatinib had 
significantly higher risk scores than 16 patients who 
responded to treatment (Fig.  5E). These results indicate 
that risk score can not only be used for the diagnosis of 
CML, but also for the evaluation of molecular subtypes 
and the prediction of drug resistance.

Correlation analysis of diagnostic biomarkers 
with biological characteristics
To explore the relationship between these diagnostic bio-
markers and biological characteristics of CML, we ana-
lyzed the correlation between their expression and the 
level of immune cell infiltration and the activity of can-
cer-related signaling pathways in CML samples, respec-
tively. Among them, IRF4 and SMPDL3A were positively 
correlated with CD8 + T cells and resting NK cells, but 
negatively correlated with monocytes; HDC was posi-
tively correlated with resting mast cells and negatively 
correlated with monocytes (Fig.  6A). In addition, there 
was a stronger correlation between diagnostic mark-
ers and cancer-related signaling pathways. The higher 

the expression of SMPDL3A, and IRF4, the stronger the 
activity of signaling pathways such as VEGF, Toll like 
receptor, T cell receptor, NOD like receptor, MAPK, JAK-
STAT, chemokine, and B cell receptor (Fig. 6B). However, 
AQP3 shows the opposite correlation.

The above results provide clues to explore the relation-
ship between these biomarkers and the biological char-
acteristics of CML. Meanwhile, considering that most 
of the diagnostic genes were significantly down-regu-
lated in CML samples, we wondered whether miRNA 
in CML cells might be involved in the regulation. We 
first obtained miRNAs with binding sites to diagnostic 
genes in ENCORI Database, and three diagnostic genes 
(AQP3, SMPDL3A and IRF4) were retrieved. Subse-
quently, we obtained the differentially expressed miRNAs 
between CML samples and normal samples from the 
GSE90773 dataset. Based on these data, we performed 
the construction of miRNA regulatory network (Fig. 6C). 
Many studies have confirmed the regulatory relation-
ship between many miRNA-targets in the network. For 
example, miR-877 inhibits progression of gastric cancer 

Fig. 5 Analysis of the diagnostic value of diagnostic markers. A, B ROC curve analysis of the diagnostic value of the four diagnostic genes and the 
risk score in the GSE13159 (A) and GSE144119 (B) cohorts. C, D Differences in risk scores between different molecular subtypes in the GSE13159 
(C) and GSE144119 (D) cohorts. E Differences in risk scores between patients who responded and did not respond to imatinib treatment in the 
GSE2535 cohort
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by down-regulating AQP3 [17], and miR-125b induces 
bone marrow and B-cell leukemia by inhibiting IRF4 [18], 
indicating that many up-regulated miRNAs in CML sam-
ples may inhibit the expression of target genes. Moreover, 
HDC is the only diagnostic gene that is upregulated. We 
predicted drugs interacting with HDC in DGIdb database 
(https:// www. dgidb. org/) to improve clues for related 
studies, in which omeprazole and lixivaptan may have 
regulatory effects on HDC (Fig. 6D).

Validation of clinical independent cohort
To validate the bioinformatics results, we performed 
validation in our own sequencing data. The results 

showed upregulated expression of HDC, significantly 
downregulated expression of SMPDL3A, IRF4, AQP3, 
and significantly higher risk scores in CML samples 
compared to normal samples (Fig.  7A, B), and ROC 
curve analysis also confirmed the high diagnostic effi-
ciency of the risk score (Fig.  7C), which were all con-
sistent with the analysis of GSE13159 and GSE144119 
cohorts. In addition, we also performed PCR valida-
tion in clinical samples. Encouragingly, the expression 
characteristics of the four diagnostic genes and the risk 
score were consistent with the sequencing data, and the 
ROC curve also confirmed their high diagnostic value 
(Fig.  7D–F). This indicates that the results of the data 
analysis are reliable and of potential research value.

Fig. 6 Correlation analysis of diagnostic biomarkers with biological characteristics. A Correlation analysis of four diagnostic genes, risk score and 
immune cells. B Correlation analysis of four diagnostic genes, risk score, and cancer‑related signaling pathways. C Regulatory network of miRNAs 
and four diagnostic genes; red indicates miRNA expression is up‑regulated in CML samples, green indicates expression is down‑regulated, and 
blue indicates that expression data for the relevant miRNAs were not obtained. D The interaction network indicates drugs that may have regulatory 
relationships with HDC

https://www.dgidb.org/
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Risk score accurately differentiates CML from other 
hematological malignancies
The GSE13159 cohort contained samples from 750 
patients with ALL, 542 patients with AML, 448 patients 
with CLL, and 206 patients with MDS, which were fur-
ther used in the differential diagnosis of CML. PCA 
analysis was based on the expression of four diag-
nostic genes for clustering. The results showed that 
CML patients could be clearly distinguished from 
other patients except some AML patients overlapped 
(Fig. 8A). Compared with the other five groups of peo-
ple, the expression level of HDC was the highest in 
CML patients, while the expression of other diagnos-
tic genes did not show significant differences (Fig. 8B). 
In addition, patients with CML had the highest risk 
score (Fig.  8C), and ROC curve analysis showed that 
risk score could accurately distinguish CML from other 
hematological malignancies (Fig. 8D).

Discussion
CML, as a typical hematological tumor induced by chro-
mosomal structural aberrations, the development of 
TKIs has greatly improved the survival of CML patients 
and made the cure of the disease possible through long-
term drug administration [2]. However, due to individual 
differences, the emergence of TKI resistance in some 
patients will lead to accelerated phase and blast phase of 
the disease, resulting in malignant lesions similar to acute 
leukemia, which seriously endangers the lives of patients 
[19]. Moreover, most patients with CML do not have spe-
cific symptoms at diagnosis and are often detected during 
testing for other purposes. At present, the diagnosis of 
CML is mainly based on an increased number of imma-
ture leukocytes in peripheral blood and the identification 
of the Ph chromosome, as well as the qualitative detec-
tion of BCR-ABL1 gene by PCR [20]. In addition, bone 
marrow aspiration is helpful for further staging of CML 

Fig. 7 Clinical independent cohort validated diagnostic markers of CML. A–C Our sequencing cohort validates the differences in four diagnostic 
genes and risk scores between CML and normal samples and the diagnostic value of risk score in CML. D–F Our clinical PCR cohort validated the 
differences in four diagnostic genes and risk scores between CML samples and normal samples, as well as the diagnostic value
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patients [21]. However, there are also some patients who 
do not have a typical Ph chromosome or cannot detect 
the transcripts of the BCR-ABL1 gene [22]. Therefore, it 
is important to explore new biomarkers for CML diagno-
sis and therapeutic evaluation.

In this study, we analyzed the differences in gene 
expression and TME in CML patients. We found that 
compared with normal samples, the number of up-reg-
ulated and down-regulated genes in CML samples was 
unbalanced, down-regulated genes were more, and most 
of them were related to immune-related signaling path-
ways, indicating that CML samples may be in a state of 
immunosuppression. In addition, we observed that the 
activity of fatty acid metabolism-related gene sets such 
as alpha-linolenic acid metabolism and arachidonic 
acid metabolism was higher in CML samples. In the 
bone marrow microenvironment, leukemia cells overex-
pressed the adipocyte transporter CD36, fully absorbed 
fatty acids released by adipocytes, and metabolized fatty 

acids to obtain more energy [23], indicating that CML 
cells may promote their own survival and proliferation 
through metabolic reprogramming. We further found 
that the infiltration of CD8 + T cells was significantly 
reduced in CML samples, which means that the immune 
system could not produce enough killing to CML cells, 
and the high expression of immune checkpoints PD-1, 
PD-L1, and CTLA4 in CML samples promoted the 
immune escape of CML cells. In conclusion, we believe 
that immunosuppression and abnormal energy metabo-
lism may be important reasons for the occurrence and 
development of CML.

The classification of disease subtypes facilitates a bet-
ter evaluation of individual patient characteristics to 
select more targeted treatment options [24]. Here, we 
identified two distinct molecular subtypes (Cluster A and 
Cluster B) in CML patients. Cluster A is an immunosup-
pressive phenotype, showing reduced infiltration of anti-
tumor immune cells such as CD8 + T cells, CD4 + T cells 

Fig. 8 The value of diagnostic markers in the differential diagnosis between CML and other hematological malignancies. A PCA plot shows 
clustering features of CML, AML, CLL, ALL, MDS and normal samples based on expression of the four diagnostic genes. B Differential expression of 
four diagnostic genes in CML, AML, CLL, ALL, MDS and normal samples. C Differences in the distribution of risk scores among CML, AML, CLL, ALL, 
MDS and normal samples. D ROC curve analysis of the differential diagnostic value of the risk score in CML versus other hematological malignancies
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and NK cells, and increased activity of energy metabolic 
pathways such as ROS pathway, glycolytic and mTORC1 
signaling pathways. Studies have shown that BCR-ABL1-
induced ROS production can be involved in CML pro-
gression and TKI resistance [25–27]. Imatinib treatment 
resulted in reduced glucose uptake in sensitive CML 
cells, which correlated with inhibition of cell proliferation 
and induction of apoptosis; however, imatinib-resistant 
CML cells maintain a highly glycolytic metabolic phe-
notype [28, 29]. Our prediction results of drug sensitiv-
ity also confirmed that Cluster A was less sensitive to 
imatinib than Cluster B. In addition, BCR-ABL1 directly 
upregulated the PI3K/AKT/mTOR pathway and led to 
the induction of glycolysis in CML cells [30], which then 
promoted cell proliferation, consistent with the signifi-
cantly increased activity of mTORC1 signaling in Cluster 
A. The other molecular subtype, Cluster B, exhibited an 
immune activation phenotype, including significant infil-
tration of immune cells and activation of immune-related 
signaling pathways, which suggested that the immune 
function of patients may play a positive anti-tumor role. 
However, this molecular subtype also has some immune 
escape, and we predict that it is more likely to respond to 
immunotherapy with immune checkpoint inhibitors such 
as anti-PD-1 and anti-CTLA4, and the drug prediction 
results also suggest that it also shows higher sensitivity to 
multiple TKIs.

Finally, we explored the diagnostic biomarkers of CML 
in depth and identified four diagnostic genes through 
multiple machine learning methods. Their high diagnos-
tic value was verified in multiple cohorts, and the risk 
score model constructed by lasso regression analysis fur-
ther improved the diagnostic efficiency, with significantly 
higher risk scores in CML patients than in normal sub-
jects. Among them, oncoprotein BCR-ABL1 promoted 
HDC expression and histamine synthesis in CML cells 
[31]. Hypermethylation of the CpG motif in the promoter 
region leads to down-regulation of IRF4 expression [32]. 
Moreover, high expression of SMPDL3A is associated 
with poor prognosis in patients with hepatocellular car-
cinoma, and its high expression promotes the growth of 
hepatocellular carcinoma [33]. Loss of the water channel 
AQP3 can enhance the tolerance of CML cells to arsenic 
trioxide [34], and high expression of AQP3 promotes the 
development of several cancers such as breast and gastric 
cancer [17, 35]. The regulatory mechanisms of aberrant 
expression of HDC and IRF4 in CML were confirmed 
by relevant experiments, while other genes need to be 
explored by further research. We performed sequencing 
and PCR validation on clinical samples, respectively, and 
the expression characteristics of four diagnostic genes 
and risk score were consistent with the results of bioinfor-
matics analysis, indicating the accuracy of data analysis 

and the feasibility of clinical application. In addition, 
the risk score can also effectively identify CML patients 
with different molecular subtypes or different responses 
to imatinb treatment, and the risk scores of Cluster A 
patients and imatinb-resistant patients were significantly 
higher. We also evaluated the value of the risk score in 
the differential diagnosis of CML, and the risk score 
was highest in CML compared with other hematologi-
cal tumors. Due to fluctuations in the expression of indi-
vidual genes or incidental detection errors, risk score as 
a comprehensive indicator can greatly reduce the impact 
of detection errors. These results reveal the robustness 
of the diagnostic genes and the constructed risk score 
model in the diagnosis of CML, and the risk score can 
be used as a single indicator to effectively evaluate the 
treatment response and molecular subtype of CML. At 
present, the therapeutic evaluation of CML is mainly 
to detect the expression level of BCR-ABL1 fusion gene 
[20]. However, due to the existence of the independent 
resistance mechanisms, which will give more advantages 
to the pathological growth of CML cells [36], the detec-
tion based on the BCR-ABL1 fusion gene may not be 
able to accurately evaluate the treatment response and 
develop more personalized treatment plans. As an aux-
iliary indicator, the risk score model we constructed has 
potential clinical application value and is beneficial for 
identifying the immune subtypes of CML patients to play 
an evaluative role in immunotherapy response. miRNAs 
may play an important regulatory role in the expression 
of these genes, and our constructed miRNA regulatory 
network provides a certain clue.

In conclusion, this project revealed differences in bio-
logical features such as gene expression, signaling pathway 
activity and immune cell infiltration between CML patients 
and normal subjects based on transcriptomic sequencing 
data. The identified molecular subtypes help to better eval-
uate the disease status of patients and select personalized 
treatment regimens. Biomarkers identified and validated 
based on multiple machine learning approaches have high 
diagnostic value, which also complements the diagnostic 
approach to CML. However, our research also has some 
limitations. The size of clinical samples in the validation 
cohorts is small, and it is a single center sample. The appli-
cation of diagnostic signatures to clinical applications still 
requires more sample validation. In addition, due to the 
diversity of detection methods for gene expression, such 
as RNA-seq, gene chip and RT-qPCR, the gene expres-
sion levels detected by each method are different. There-
fore, further normalized data are needed to determine the 
risk score threshold of a specific situation, which requires 
a large amount of sample data. The accurate threshold 
value will be beneficial to accurately judge the disease sta-
tus of patients and make personalized treatment plan. We 
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will expand the sample size and use multi-center samples 
to verify the application value of risk score in subsequent 
studies, and explore the biological functions and regulatory 
mechanisms of diagnostic genes in CML through more 
basic experiments.
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