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Abstract 

Background  Non-homologous DNA end joining (NHEJ) is the predominant DNA double-strand break (DSB) repair 
pathway in human. However, the relationship between NHEJ pathway and hepatocellular carcinoma (HCC) is unclear. 
We aimed to explore the potential prognostic role of NHEJ genes and to develop an NHEJ-based prognosis signature 
for HCC.

Methods  Two cohorts from public database were incorporated into this study. The Kaplan–Meier curve, the Least 
absolute shrinkage and selection operator (LASSO) regression analysis, and Cox analyses were implemented to deter-
mine the prognostic genes. A NHEJ-related risk model was created and verified by independent cohorts. We derived 
enriched pathways between the high- and low-risk groups using Gene Set Enrichment Analysis (GSEA). CIBERSORT 
and microenvironment cell populations-counter algorithm were used to perform immune infiltration analysis. XRCC6 
is a core NHEJ gene and immunohistochemistry (IHC) was further performed to elucidate the prognostic impact. 
In vitro proliferation assays were conducted to investigate the specific effect of XRCC6.

Results  A novel NHEJ-related risk model was developed based on 6 NHEJ genes and patients were divided into dis-
tinct risk groups according to the risk score. The high-risk group had a poorer survival than those in the low-risk group 
(P < 0.001). Meanwhile, an obvious discrepancy in the landscape of the immune microenvironment also indicated 
that distinct immune status might be a potential determinant affecting prognosis as well as immunotherapy reactive-
ness. High XRCC6 expression level associates with poor outcome in HCC. Moreover, XRCC6 could promote HCC cell 
proliferation in vitro.

Conclusions  In brief, this work reveals a novel NHEJ-related risk signature for prognostic evaluation of HCC patients, 
which may be a potential biomarker of HCC immunotherapy.
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Introduction
Globally ranking the fourth leading cause of cancer- 
related death, hepatocellular carcinoma (HCC) is a malig-
nant disease with poor prognosis [1]. Despite continuous 
progress in diagnosis and treatment, the 5-year survival 
rate of HCC remains poor due to the spread, metasta-
ses and high rate of recurrence. Several studies aimed to 
construct effective predictive models in HCC previously, 
including deep learning-based multi-omics model, radi-
omics model and gene signature models [2–6]. Studies 
have proved that m6A-related genes, ferroptosis-related 
genes, and aging-related genes were all associated with 
cancer prognosis [7, 8]. However, it is still hard to predict 
patient’s prognosis effectively, highlighting the need to 
identify HCC biomarkers.

Non-homologous DNA end joining (NHEJ) is the pre-
dominant DNA double-strand break (DSB) repair path-
way in mammalian cells. NHEJ is also important for B 
cell and T cell development. Mutation or absence of 
NHEJ can result in immunodeficiency [9]. Several studies 
have reported that core NHEJ factors are overexpressed 
in certain tumor tissues. The dysregulation or hyperacti-
vation of NHEJ machinery has been linked to cancer and 
resistance to anti-tumor treatment [10]. As such, NHEJ 
components have emerged as drug targets for cancer 
therapy [11], and DNA-dependent protein kinase (DNA-
PK) inhibitors have entered clinical trials. DNA damage 
repair factors, like XRCC6, XRCC5, PARP1, were crucial 
and closely related to cancer development and progres-
sion [12, 13]. Whether NHEJ factors-based model is 
effective for HCC prediction is still unclear and worth to 
be revealed.

Since that there were only 20% of HCC patients which 
exhibited response to PD-1/PD-L1 antibody, patients’ 
stratification and selection is crucial and meaningful 
[14]. The efficacy of immunotherapy is partly depend-
ent on immune infiltration, especially cytotoxic T cells 
[15]. Therefore, to identify patients who would benefit 
from immunotherapy, prediction of immune infiltration 
is favorable. Here, we also aimed to understand the cor-
relation between NHEJ genes and immune infiltration in 
HCC.

In this study, we identified six prognosis-related 
NHEJ factors using the LASSO methods, on basis 
of which, we subsequently constructed a predictive 
model for HCC patients. We first used data from The 
Cancer Genome Atlas (TCGA) to construct an NHEJ-
based signature associated with the survival rates of 
liver hepatocellular carcinoma (LIHC) patients. One 
of large  data from the Gene Expression Omnibus 
(GEO) ,GSE14520,  was then used to validate the pre-
dictive ability of this signature. Our model was proved 
to be effective to predict prognosis of HCC in two 

independent cohorts. In addition, The NHEJ-related 
model was confirmed to be associated with tumor 
immune infiltration and might be used to predict 
immunotherapy response of HCC.

Methods and materials
Patient data collection
The RNA-seq transcriptome data and clinical infor-
mation of LIHC patients were extracted from TCGA 
(https://​tcga-​data.​nci.​nih.​gov/​tcga/) and GSE14520 data-
bases (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Patients with 
missing survival data or overall survival (OS) < 30  days, 
or without definitive histopathological diagnosis were 
excluded. Patients with OS < 30 days were excluded from 
analysis, as these patients may have had too advanced 
disease or complications of treatments. The TCGA data-
set (n = 356) served as a training cohort. The GSE14520 
dataset (n = 225) was used as the validation cohort. The 
RNA-seq transcriptome data of TCGA dataset were 
downloaded in the format of fragments per kilobase of 
exon model per million mapped reads (FPKM) normal-
ized. The count data of expression array from GSE14520 
were acquired by “GEOquery” package. The different 
gene expression datasets were normalized using the 
“limma” and “SVA” R packages to remove the potential 
batch effect. NHEJ-related genes, shown in Supplemen-
tary Table S1, were selected and downloaded from hall-
mark gene sets in the Molecular Signatures Database 
(MSigDB).

Human HCC samples
The samples of HCC and the paired adjacent normal tis-
sues were obtained from surgical resection at Sun Yat-sen 
Cancer Center (n = 175, from January 2013 to June 2015). 
All patients have pathology confirmed diagnosis of HCC. 
Patients with missing survival data or overall survival 
(OS) < 30 days were excluded. The tissue microarray was 
constructed containing a total of 175 pairs of HCC sam-
ples and matched adjacent normal tissues. Paired data 
were analyzed by paired t-test.

Construction and validation of the NHEJ signature
Thirteen NHEJ genes were first subjected to univari-
ate Cox regression analysis (p < 0.05). Following this, 
the LASSO regression analysis was performed to nar-
row down the prognostically significant candidate 
NHEJ genes. Then, multivariate Cox regression analy-
sis was used to determine the best weighting coef-
ficient of each prognostically significant candidate 
NHEJ genes. The risk score was calculated using the 
following the equation according to the literature 
[16]: Risk score = 

∑
(expressionlevelofeachtargetgene

×correspondingcoefficients).

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
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According to the cut-off point of risk scores derived 
from maximally selected log-rank statistics, LIHC 
patients in the TCGA training cohort were divided into 
low and high-risk groups. The Kaplan–Meier method 
was utilized to estimate OS and the log-rank test was 
used to compare the differences of OS between the two 
groups.

To validate the NHEJ signature, the risk score of HCC 
cases in the GSE14520 dataset were calculated using the 
same formula as the TCGA cohort. Cases in the valida-
tion set were also divided into two groups according to 
the cut-off point of risk score obtained from the maxi-
mally selected log-rank statistics. Survival curves of the 
low- and the high-risk groups in the validation cohort 
were also estimated using the Kaplan–Meier method and 
were compared via the log-rank test.

Functional enrichment analysis
To investigate the potential molecular mechanisms 
of the NHEJ signature, GSEA were performed in the 
TCGA and GSE14520 datasets. The analyses of perform 
Genetic Ontology (GO) term and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway were conducted 
by GSEA 4.0.1 software. After 1000 permutations, sig-
nificant enrichment was defined as the pathway with the 
value of false discovery rate (FDR) < 0.25 and normalized 
p < 0.05.

Evaluation of the immune landscape
The infiltrating immune cells levels were calculated by 
CIBERSORT [17] and microenvironment cell popula-
tions-counter (MCP)-counter algorithms [18] in each 
HCC sample and compared between the high-score and 
low-score groups. The Mann–Whitney U test was per-
formed to compare the differential expression levels of 
PDCD1, CD274, PDCD1LG2 and CTLA4 between the 
two risk groups.

Establishment of a predictive nomogram based 
on the NHEJ signature
Using the TCGA training set, a nomogram integrating 
the NHEJ signature and clinical stage to predict indi-
vidual survival was established. In addition, calibration 
curves and the area under the curve (AUC) for the OS 
probability at 1, 3, 5  years were plotted to evaluate the 
predictive accuracy of this nomogram in the TCGA set 
and the GEO validation set.

Additional information is provided in Additional file 1: 
Methods S1.

Statistical analysis
Continuous data are shown as the mean ± standard 
deviation (SD) and were compared using Student’s 

t-test. Categorical variables were analyzed using the 
chi-square (χ2) test. Cox regression analyses were per-
formed to determine the significantly independent 
prognostic factors for OS. A prognostic nomogram 
model was established using the “rms” R package, while 
its predictive accuracy was assessed via the creation of 
calibration curves. Statistical analysis was performed 
using SPSS (version 22.0) and R software (version 
4.0.1). The threshold of statistical significance was set at 
a p-value < 0.05.

Results
Identification of prognostic NHEJ genes
As represented in the flowchart (Additional file 1: Fig. 
S1), our study focused on the NHEJ pathway genes. 
After excluding 31 cases with unsatisfied follow-up 
or those lacking important clinical information, 343 
cases from the TCGA training set were included to 
identify prognosis-related NHEJ genes. In addition, 
229 cases from the GSE14520 dataset were used as 
verification cohort. Six NHEJ genes, DCLRE1C, FEN1, 
PRKDC, XRCC4, XRCC5 and XRCC6, were identified 
to be associated with HCC prognosis using univariate 
Cox regression (Table  1). All the six genes were nega-
tively correlated with OS of HCC patients, indicating 
that NHEJ genes might act as oncogenes in HCC. Then 
the six genes were subjected to LASSO Cox regres-
sion, with a significant correlation between and OS at 
minimum values (Fig. 1A). Further disciplinary regres-
sion was performed to take λ.min criteria as independ-
ent risk factors for prognosis in patients with HCC 
(Fig. 1B). Finally, a six-NHEJ risk signature was derived 
according to 343 LIHC cases in the TCGA dataset, 
whose risk score was specifically calculated based on a 
linear combination of gene expression levels and their 
corresponding regression coefficients from the mul-
tivariate Cox analysis. The specific formula was as fol-
lows: Risk score = DCLRE1C × 0.249100386163019 + F
EN1 × 0.155181162762813 + PRKDC × 0.22788694845
7229 + XRCC4 × 0.101357794279081 + XRCC5 × 0​.20​
472​220​632​0064 + XRCC6 × 0.0928527312741607. 

Table 1  Identification of prognostic NHEJ genes using 
univariate Cox regression

Gene Symbol P value Hazard ratio

DCLRE1C  < 0.001 1.999(1.390−2.875)

FEN1  < 0.001 1.490(1.224−1.813)

PRKDC  < 0.001 1.630(1.284−2.070)

XRCC4 0.004 1.590(1.162−2.177)

XRCC5  < 0.001 2.039(1.432−2.902)

XRCC6  < 0.001 1.721(1.267−2.338)
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Prognostic Value of the NHEJ Signature in the Training 
Cohort
The cut-off value of risk scores was determined as 3.84 
using the maximally selected log-rank statistics in the 
TCGA training cohort (Additional file  1: Fig. S2A) to 
divide the cases into low-risk and high-risk groups. The 

distribution of the risk score showed that more death 
events were observed in the high-risk group (Fig. 2A). 
We found that all six genes were significantly up-regu-
lated in the high-risk group, which was consistent with 
their prognostic value (Fig.  2B). In the TCGA cohort, 
the Kaplan–Meier curve suggested that the OS of 

Fig. 1  Identification of a prognosis-related NHEJ-based signature in the TCGA training cohort. A LASSO coefficients of prognosis-associated NHEJ 
genes, each curve represents a gene. B Selection of the optimal candidate genes in the LASSO model. The two dotted vertical lines were drawn at 
the optimal scores by λ.min criteria and 1-s.e. criteria (At λ.min criteria including all the six genes)

Fig. 2  Assessment of prognostic value of the NHEJ signature model in the TCGA training cohort. A. The risk score, survival time and survival 
status in the training cohort. B The heatmap showing expression profiles of the 6 NHEJ genes. C Kaplan–Meier curves for the OS of patients in the 
high- and low-risk group. D Multivariate Cox regression analysis of NHEJ genes signature and other clinicopathological factors in the training cohort
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patients in the low-risk group was significantly longer 
than that of patients in the high-risk group (p < 0.001; 
Fig.  2C). Figure  2D showed the results of multivariate 
Cox regression analysis (HR = 2.50, 95% CI = 1.65–3.78, 
p < 0.001).

Prognostic validation of the NHEJ signature in GSE14520 
dataset
According to the risk score based on the maximally 
selected log-rank statistics, 229 cases were divided into 
the high- and low-risk groups in the GSE14520 valida-
tion cohort (Additional file  1: Fig. S2B). The distribu-
tion of the risk score showed that more death events 
were observed in the high-risk group (Fig.  3A). The 
six genes were also significantly up-regulated in the 
high-risk group in the GSE14520 cohort (Fig. 3B). The 
Kaplan–Meier curve suggested that the OS of patients 
in the low-risk group was significantly longer than that 
of patients in the high-risk group (p < 0.001; Fig.  3C). 
Figure  3D showed the results of multivariate Cox 

regression analysis (HR = 2.98, 95% CI = 1.49–5.99, 
p = 0.002).

Functional enrichment analysis
We then performed the GSEA to verify differential 
pathways between low and high-risk group in order to 
investigate the underlying functional mechanism. In 
the high-risk group, KEGG enrichment analysis found 
that genes were primarily enriched in DNA replication, 
mismatch repair, homologous recombination, cell cycle, 
non-homologous end joining in both datasets. By con-
trast, multiple metabolism pathways were enriched in 
low-risk group mainly (Table 2, and Additional file 1: Fig. 
S3). GO enrichment analysis showed similar results and 
found that genes were primarily enriched in cell cycle 
DNA replication, double strand break repair in the high-
risk group, while multiple metabolism pathways were 
enriched in low-risk group mainly (Additional file 1: Fig. 
S3). Full GSEA results are available in Additional file  2: 
Table S4 and Additional file 3: Table S5.

Fig. 3  Assessment of prognostic value of the NHEJ signature model in the GSE14520 validation cohort. A The risk score, survival time and survival 
status in the validation cohort. B The heatmap showing expression profiles of the 6 NHEJ genes. C Kaplan–Meier curves for the OS of patients in 
the high- and low-risk group. D Multivariate Cox regression analysis of NHEJ genes signature and other clinicopathological factors in the validation 
cohort
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Tumor immunity landscape in HCC
To conform whether the NHEJ-related signature was 
associated with immune infiltration and immunotherapy, 
we employed the CIBERSORT algorithm. In the TCGA 
cohort, the infiltration of B cells memory, T cells follicu-
lar helper and macrophages M0 were significantly higher 
in the high-risk group. However, in the low-risk group, 
monocytes and mast cells resting were more abundant 
(Fig.  4A). In the GSE14520 cohort, the infiltration of B 
cells naïve, T cells CD4 naïve, T cells gamma delta and 
NK cells resting were higher in the high-risk group. B 
cells memory, T cells CD4 memory activated, Tregs, 
macrophages M0, dendritic cells resting, dendritic cells 

activating and neutrophils were significantly more abun-
dant in the low-risk group (Fig. 4C). We also performed 
correlation analysis among the 22 types of immune cells 
and found notable correlation between immune cells in 
both cohorts, such as B cells naïve and Plasma cells, CD8 
T cells and macrophages M2 (Fig. 4B, D). And cytotoxic 
lymphocytes, NK cells, neutrophils, endothelial cells 
were more abundant in the low-risk group and fibroblasts 
were higher in the high-risk group (Fig. 4E, F). Thus, we 
proved that our NHEJ signature was closely related to the 
immune microenvironment.

The expression levels of four immune checkpoint genes 
were further investigated between the low- and high-risk 
groups. Compared with HCC patients in the low-risk 
group, patients in the high-risk group expressed higher 
levels of PDCD1 and CTLA4 (Fig.  5A–D) in TGGA 
cohort. Importantly, infiltrating immune cells in the 
tumor overexpress PDCD1 as a strategy to evade immune 
responses. In GEO cohort, patients in the high-risk group 
expressed higher level of CTLA4 (Fig.  5E–H). In both 
cohorts, the high-risk group had a higher expression level 
of CTLA4. Data from different data base-derived analyses 
may have the regional heterogeneity of HCC. This could 
account for upregulation of PDCD1 in TCGA cohort but 
no difference in GEO cohort. Collectively, our results 
suggested an immunosuppressive landscape in HCC of 
high-risk group.

Predictive nomogram construction
To construct a predictive nomogram, we performed the 
multivariate Cox analysis and found that the risk score 
of the NHEJ signature and tumor stage were independ-
ent risk factors of OS in both training cohort and vali-
dation cohort  as shown in  Fig.  2D and Fig.  3D. These 
independently associated risk factors were used to form a 
nomogram (Fig. 6A). The resulting model was internally 
validated using the bootstrap validation method. The 
nomogram demonstrated good accuracy, with an unad-
justed C index of 0.69 (95% CI, 0.64–0.75) in the train-
ing cohort and 0.75 (95% CI, 0.68–0.82) in the validation 
cohort. In addition, calibration plots graphically showed 
good agreement between the risk estimation by the nom-
ogram and actual survival information (Fig.  6B, C). The 
AUC indicated that our nomogram was more effective to 
predict OS of HCC patients than the sole tumor stage in 

Table 2  KEGG enrichment analysis between the high- and low-
risk subgroups in TCGA training cohort and the GEO validation 
cohort

ES, Enrichment Score. Positive ES indicates enrichment in low-risk group; 
Negative ES indicates enrichment in high-risk group

KEGG ID ES p-value FDR

TCGA cohort

 DNA replication − 0.8061 0.002 0.0407

 Mismatch repair − 0.7773 0.0019 0.0458

 Homologous recombination − 0.775 0 0.0411

 Cell cycle − 0.7281 0 0.0354

 Non homologous end joining − 0.6846 0.0313 0.0963

 Primary bile acid biosynthesis 0.9432 0 0.006

 Fatty acid metabolism 0.852 0 0.0064

 Glycine serine and threonine metabo-
lism

0.7974 0 0.0107

 Retinol metabolism 0.7732 0 0.0044

 valine leucine and isoleucine  degrada-
tion

0.7507 0.0061 0.011

GEO cohort

 DNA replication − 0.8487 0 0.0383

 Homologous recombination − 0.769 0 0.0293

 Mismatch repair − 0.7485 0.002 0.0435

 Non homologous end joining − 0.6924 0.002 0.0948

 Cell cycle − 0.69 0 0.0256

 Primary bile acid biosynthesis 0.9223 0 0.0109

 Retinol metabolism 0.8294 0.002 0.0132

 Fatty acid metabolism 0.8283 0 0.0093

 Glycine serine and threonine metabo-
lism

0.8251 0.0021 0.0139

Fig. 4  The results of immune infiltration analyses in the LIHC training cohort and GEO validation cohort. A Violin plot showing differences of 
infiltrating immune cell types between the low- and the high-risk group of CIBERSORT in TCGA cohort. B Correlation of risk scores and immune 
cell infiltration in TCGA cohort. C Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk group of 
CIBERSORT in GSE14520 cohort. D Correlation of risk scores and immune cell infiltration in GSE14520 cohort. E MCP-counter show the differences 
of 22 types of immune cell infiltrated between the two risk groups in TCGA cohort. F MCP-counter show the differences of 22 types of immune cell 
infiltrated between the two risk groups in GSE14520 cohort

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Expression of immune checkpoint molecules between the two risk groups in the TCGA training cohort and GEO validation cohort. A, E PD-1. 
B, F CD274. C, G PDCD1LG2. D, H CTLA4 
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both training cohort and validation cohort (Fig.  6D, E). 
Therefore, our risk score-based nomogram was effective 
to predict HCC survival.

Deeply validation of the negative value of XRCC6 via basic 
exploration
Among six NHEJ genes, XRCC6 exhibited the highest 
expression level in TCGA RNA-seq data and was one of 
the core genes in NHEJ pathway. Also, XRCC6 expression 
was significantly elevated in HCC and elevated XRCC6 
correlated with a worse OS in TCGA cohort (Fig.  7A, 
B). We performed IHC staining in 175 paired peritumor 

and tumor samples to verify the results. The representa-
tive IHC staining images of XRCC6 are shown in Fig. 7C. 
The protein level of XRCC6 in tumor tissues were sig-
nificantly higher than paired peritumor tissues (Fig. 7D). 
Prognostic analysis showed that elevated XRCC6 corre-
lated with a worse OS and progression-free survival (PFS) 
in the SYSUCC (n = 175) cohort (Fig. 7E, F). The expres-
sion of XRCC6 in HCC cells was also detected, which was 
up-regulated in most HCC cell lines (Additional file  1: 
Fig.S4A). PLC/PRF/5 cells exhibited the highest expres-
sion of XRCC6. Knockdown of XRCC6 was performed 
to explore its role in cell proliferation (Additional file 1: 

Fig. 6  Development of a nomogram based on NHEJ genes signature for predicting OS of patients in TCGA cohort and GEO cohort. A The 
nomogram plot integrating NHEJ genes risk score, and stage. B The calibration plot for the probability of 1-, 3-, and 5-years OS in the TCGA training 
cohort. C Time ROC curves nomogram-based OS prediction in the TCGA training cohort. D The calibration plot for the probability of 1-, 3-, and 
5-years OS in the GSE14520 cohort. E Time ROC curves nomogram-based OS prediction in the GSE14520 cohort
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Fig.S4B, C) and suppressed HCC cell proliferation was 
observed in XRCC6 knockdown group (Fig. 7G).

Discussion
Considering the increase in data-driven biological 
research, and ease of access to corresponding data from 
public databases, many studies concentrated on the 

relationship between RNA-seq data of specific gene 
sets and individual outcomes with the of numerous 
public databases [19]. For examples, pyroptosis-asso-
ciated, platelet-related and ferroptosis-related genes 
were reported to predict prognosis and demonstrate 
immune infiltration in HCC patients [20–22]. However, 
there have not yet been studies of NHEJ-related genes 
for predicting the prognosis of HCC patients.

Fig. 7  Validation of XRCC6 upregulation in HCC samples and clinical associations. A XRCC6 levels have the highest expression among the six NHEJ 
genes from TCGA RNA-seq data. B OS rate of HCC patients categorized according to median XRCC6 expression in TCGA cohort. C The representative 
images of IHC stain of XRCC6 in peritumor and tumor samples. D The IHC score of XRCC6 in paired peritumor and tumor samples (n = 175 pairs) 
in SYSUCC cohort. E OS rate of HCC patients categorized according to median XRCC6 expression in SYSUCC cohort. F PFS rate of HCC patients 
categorized according to median XRCC6 expression in SYSUCC cohort. G Effects of sh-XRCC6 on proliferation abilities of PLC/PRF/5 cells measured 
by the CCK-8 assay
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To clarify the relationship between NHEJ genes and 
the prognoses of patients with HCC, we constructed 
a novel prognostic risk score based on six NHEJ genes: 
DCLRE1C, FEN1, PRKDC, XRCC4, XRCC5 and XRCC6. 
The risk score was used to stratify HCC patients into tow 
risk categories and predicted their prognosis based on 
the TCGA database, and then was validated in the GEO 
cohort. The risk score was confirmed to be an independ-
ent prognostic factor for OS according to the multivariate 
Cox regression analysis. Further, a predictive nomogram 
based on NHEJ signature was developed and validated. 
Moreover, we found that this NHEJ risk signature was 
significantly related to different antitumor immune cell 
infiltration levels in the tumor microenvironment of 
HCC.

The connection between NHEJ and DSBs is widely 
accepted, as a conserved pathway to repair DSBs [23]. 
The genomic instability is an evolving hallmark of cancer 
[24] and the failure of DNA repair leads to a subsequent 
accumulation of mutations as well as structural aberra-
tions, usually generating particularly aggressive tumors. 
It’s reported that disruption of NHEJ process can drive 
genomic instability and accelerate the development of 
HCC [25]. However, failure to repair DSBs can result in 
increased instability and cell death through apoptosis, an 
essential mechanism for removing pre-cancerous cells 
[26]. During tumor progression or on therapy-induced 
tumor evolution, the DDR machinery including NHEJ 
pathway can be reconstituted to cope with increased rep-
lication stress and elevated levels of endogenous DNA 
damage [27]. In this study, we identified three NHEJ 
genes (FEN1, PRKDC and XRCC6) were upregulated 
in liver cancer tissue based on TCGA data. Besides, six 
of total thirteen NHEJ genes were associated with poor 
prognosis. Noteworthy, PRKDC is with 2.1% the sixth 
most frequently mutated DNA repair gene in all cancers 
and is identified as a candidate driver of hepatocarcino-
genesis or therapy resistance, exhibiting frequent copy 
number gains [28, 29]. A large population-based study in 
Taiwan Province of China shows that XRCC6 may play an 
important role in HCC carcinogenesis [30]. As a result 
of our study, GO and KEGG enrichment analysis indi-
cated that cell cycle and DNA replication were both sig-
nificantly enriched in the high-risk group. Consistently, 
XRCC6 knockdown suppressed cell proliferation in vitro. 
Perhaps these results suggest that HCC cells become 
more dependent on NHEJ mechanisms to survive, prolif-
erate and acquire resistance to treatments.

Immunotherapy of cancer has been the last major 
breakthrough in the fight against cancer [31]. More 
recently, immune checkpoint inhibition (ICI) has 

emerged as a first-line treatment for advanced HCC 
[32]. Indeed, ICIs have largely improved the prognosis 
of patients with intermediate and advanced HCC. How-
ever, not all patients benefit from immunotherapy and 
most patients would eventually experience disease pro-
gression. Thus, predictive biomarkers of ICI response 
are urgently needed to guide treatment decision and 
patient selection. The tumor microenvironment (TME) 
of HCC is a complex and spatially structured mixture 
of hepatic non-parenchymal resident cells, tumor cells, 
immune cells and tumor-associated fibroblasts [33]. 
Tumor-associated macrophages (TAMs) have a key role 
in cancer-related inflammation and immune response/
immune escape [34]. In the present study, the high-
risk group had higher proportions of M0 macrophages. 
While analyzed with MCP-counter algorithm, fibro-
blasts were higher in the high-risk group. As the most 
abundant components of tumor stroma, cancer-asso-
ciated fibroblasts (CAFs) have been involved in the 
progression of liver cancer. Numerous studies have 
reported that CAFs promote tumor immune escape 
by influencing the proportion and activity of tumor 
immune microenvironment (TIME) [35]. NK cells play 
a vital role in immune monitoring to prevent the devel-
opment and progression of cancer. NK cell-based anti-
HCC therapeutic approaches are becoming increasingly 
attractive [36]. We also observed that infiltrating pro-
portions of NK cells were apparently higher in low-risk 
patients. Moreover, the high-risk group had a higher 
expression level of CTLA4. Taken together, these 
results revealed an immunosuppressive TME in high-
risk group patients. Therefore, our results suggest that 
the risk score could provide a basis for immunotherapy 
to screen patients who respond to ICI treatment.

There are several limitations in our study. Firstly, we 
found that NHEJ-based risk model was closely related 
to the TIME of HCC patients. However, we failed to 
include and analyze immunotherapy cohorts to explore 
whether the model could predict its efficacy. Secondly, 
although the immune cell composition was calculated 
based on various algorithm, it is still inaccurate com-
pared with IHC and flow cytometry. Thirdly, we proved 
the function of XRCC6 in HCC cells, the other NHEJ 
factors should also be verified in HCC. Lastly, the bio-
logical function of XRCC6 was just verified in  vitro, 
further animal experiments should be performed in the 
future.

In conclusion, we constructed a risk signature and 
nomogram to predict prognosis and tumor immune 
infiltration of HCC in two independent cohorts with 
high accuracy. The NHEJ risk model has the potential to 
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be used as a biomarker to develop more individualized 
treatment for HCC patients.
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