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Abstract
Stomach adenocarcinoma (STAD) is the third leading cause of cancer-related deaths and the fifth most prevalent 
malignancy worldwide. Mitochondrial respiratory chain complexes play a crucial role in STAD pathogenesis. 
However, how mitochondrial respiratory chain complex genes (MRCCGs) affect the prognosis and tumor 
microenvironment in STAD remains unclear. In this study, we systematically analyzed genetic alterations and copy 
number variations of different expression densities of MRCCGs, based on 806 samples from two independent STAD 
cohorts. Then we employed the unsupervised clustering method to classify the samples into three expression 
patterns based on the prognostic MRCCG expressions, and found that they were involved in different biological 
pathways and correlated with the clinicopathological characteristics, immune cell infiltration, and prognosis of 
STAD. Subsequently, we conducted a univariate Cox regression analysis to identify the prognostic value of 1175 
subtype-related differentially expressed genes (DEGs) and screened out 555 prognostic-related genes. Principal 
component analysis was performed and developed the MG score system to quantify MRCCG patterns of STAD. 
The prognostic significance of MG Score was validated in three cohorts. The low MG score group, characterized 
by increased microsatellite instability-high (MSI-H), tumor mutation burden (TMB), PD-L1 expression, had a better 
prognosis. Interestingly, we demonstrated MRCCG patterns score could predict the sensitivity to ferroptosis 
inducing therapy. Our comprehensive analysis of MRCCGs in STAD demonstrated their potential roles in the 
tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. Our findings highlight that 
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Introduction
Stomach adenocarcinoma (STAD) is one of the most 
common gastrointestinal cancers, which ranks fifth in 
cancer incidence and third in cancer mortality world-
wide due to its rapid progress to advanced stages [1, 2]. 
Many factors can facilitate its initiation and progres-
sion, including the environment and genetics [3]. The 
incidence of STAD increases progressively with age, and 
most patients are diagnosed at an advanced stage [4]. 
Although great advances have been made in endoscopic 
and surgical therapies, chemotherapy, and systemic treat-
ments, a myriad of STAD patients who are diagnosed in 
the advanced stage do not benefit from it [5]. Therefore, 
exploring early diagnostic tools and effective treatment 
drugs are the most useful strategies for improving the 
prognosis of STAD patients. Recently, immune check-
point inhibitors (ICIs) and other targeted medicine have 
been used for STAD treatment; however, their response 
effect is limited to some patients [6]. Multiple research-
ers have shown genomics has become an indispensable 
tool for STAD treatment which is expected to be further 
developed in the future [6, 7].

Warburg proposed that tumors prefer aerobic gly-
colysis due to a defect in mitochondrial oxidative phos-
phorylation (OXPHOS) [8]. OXPHOS is undertaken by 
mitochondrial respiratory chain complexes (MRCCs), 
which are formed by four multi-subunit complexes 
(complex I–IV; CI, NADH: ubiquinone oxidoreductase; 
CII, succinate: ubiquinone oxidoreductase; CIII, cyto-
chrome bc1 complex; and CIV, cytochrome c oxidase), 
two mobile electron carriers, and an ATP synthase (also 
called CV) [9, 10]. MRCCs are located in the inner mito-
chondrial membrane and play a significant role in energy 
conversion [9]. Previous studies showed that the MRCCs 
plays a vital role in cancer metabolism [11–14]. Gastric 
carcinomas exhibit a higher percentage of OXPHOS 
enzyme defects than adjacent control tissues [15, 16]. 
Moreover, Zhao et al. reported that dizen-1‐ium‐1,2‐
diolate (JS‐K) targets mitochondrial CI and CIV to 
exert a reactive oxygen species (ROS)-dependent anti-
cancer function in gastric cancer [17]. Single or mito-
chondrial respiratory chain complexes play crucial roles 
in the pathogenesis of gastric carcinomas. However, 
the whole landscape of MRCCGs in prognostic roles of 
STAD remains largely unexplored.

Tumor immune microenvironment (TME), including 
endothelial cells, immune and inflammatory cells such as 
lymphocytes and macrophages; and stromal cells such as 

fibroblasts, adipocytes, and pericytes; has emerged as an 
important determinant of tumor progression and thera-
peutic response [18]. Among them, immune cells were 
recognized as emerging hallmarks of cancer [19]. Thus a 
series of immunotherapy approaches were developed and 
clinically applied by harnessing the immune cells within 
or outside the TME to specially recognize and attack the 
cancer cells [20]. In recent years, TME has emerged as a 
potential therapeutic target in STAD, including targeting 
Tumor-Associated Macrophages (TAM), tumor-infil-
trating lymphocytes (TILs), Cancer-Associated Fibro-
blasts (CAFs), and Mesenchymal Stem Cells (MSCs) [21]. 
Hence, understanding the molecular and cellular biology 
of TME will conduce to the discovery of promising new 
therapeutic approaches in the treatment of STAD.

OXPHOS appears of significance in the TME. It pro-
vides the required energy for cancer cells and stromal 
cells to differentiate into OXPHOS-dependent cancer 
stem cells with primary or acquired resistance against 
chemotherapy or tyrosine kinase inhibitors [22, 23]. 
Recent scientific evidence has demonstrated that induc-
ing mitochondrial oxidative stress in cancer-associated 
fibroblasts, a major cellular component of the tumor 
stroma and generated from various TME cell types, is a 
key event in cancers via TME formation [24]. With the 
development of precision medicine, OXPHOS analysis 
provides evidence for the clinical application of chemo-
therapy options in uterine corpus endometrial carcinoma 
[25]. However, to the best of our knowledge, OXPHOS 
combined with TME has not been included in STAD 
prognostic models in previous studies. Therefore, a com-
prehensive understanding of the characteristics of TME 
cell infiltration mediated by multiple MRCCGs may be 
helpful to better understand the underlying mechanisms 
of STAD tumorigenesis and predict the response to 
immunotherapy.

This study systematically evaluated the expression 
profiles of MRCCGs from The Cancer Genome Atlas 
(TCGA) cohort and Gene-Expression Omnibus (GEO) 
datasets and obtained a comprehensive overview of the 
intratumoral immune landscape using CIBERSORT. 
STAD patients were stratified into three discrete pat-
terns according to MRCCG expression levels. We further 
evaluated the relationship between different MRCCG 
patterns and immune cell infiltration characteristics. 
Patients were then classified into three gene subtypes 
based on the differentially expressed genes (DEGs) iden-
tified in the three MRCCG patterns. More importantly, 

MRCCGs may provide a new understanding of immunotherapy strategies for gastric cancer and provide a new 
perspective on the development of personalized immune therapeutic strategies for patients with STAD.

Keywords Stomach adenocarcinoma, Mitochondrial complexes, Tumor microenvironment, Microsatellite instability, 
Prognosis



Page 3 of 21Yang et al. Cancer Cell International           (2023) 23:69 

we established an MG score to predict prognosis and 
characterize the immune landscape of STAD, which 
accurately predicted patients’ response to immunother-
apy. Collectively, our study suggests that MRCCGs play 
a crucial role in the formation of the TME and could be a 
guide for immunotherapy and ferroptosis based therapy 
for patients with STAD.

Materials and methods
Stomach adenocarcinoma data sources
Data sources, including RNA sequencing data (fragments 
per kilobase million, FPKM), genome mutation data, rel-
evant prognostic and corresponding clinical information 
of stomach adenocarcinoma (STAD) patients were down-
loaded from TCGA (https://tcga-data.nci.nih.gov/tcga/) 
databases (373 samples) and GSE84437 (https://www.
ncbi.nlm.nih.gov/geo/) dataset (433 samples). FPKM val-
ues of the RNA data were converted to transcripts per 
kilobase million (TPM) by employing FPKM function of 
the “limma” package in R. The inclusion criteria of STAD 
samples were as follows: (i) gene expression profiling of 
STAD samples was available in the dataset; (ii) complete 
clinical data of STAD patients, including gender, age, 
TNM stage, and overall survival. Compliant data sets 
were subjected to copy number variation (CNV) analysis. 
The plot of MRCCGs copy number changes in the chro-
mosome was drawn using the “Rcircos” package.

Consensus clustering analysis of 24 MRCCGs
96 MRCCGs were retrieved from wiki pathways (https://
www.wikipathways.org/). The full details of these genes 
are shown in Table S1. The differential analysis found 
that 24 MRCCGs were significantly different between 
STAD tissues and normal tissues. The information on 
these genes was depicted in Table S2. These 24 MRC-
CGs were used to screen distinct patterns of STAD in our 
study. Unsupervised cluster analysis in the “Consensu-
ClusterPlus” package was applied to classify patients into 
distinct gene patterns according to the expression of 24 
MRCCGs.

Relationship between MRCCGs patterns with the clinical 
features and prognosis of STAD
To characterize the clinical features of the three pat-
terns identified by consensus clustering analysis, we 
compared the relationships between molecular patterns, 
clinicopathological characteristics, and prognosis. The 
patient’s clinicopathological characteristics included age, 
gender, TNM stage, and survival status. The Cox regres-
sion model was used to evaluate the survival prognostic 
differences of three MRCCG patterns. Furthermore, the 
prognosis among different patterns was assessed using 
Kaplan–Meier curves generated by the “survival” and 
“survminer” R packages.

Gene set variation analysis (GSVA) and gene enrichment 
function annotation
To investigate the differences in 24 MRCCGs in biologi-
cal processes, gene set variation analysis (GSVA) was 
performed with the hallmark gene set (c2. cp.kegg.v7.2) 
derived from the MSigDB database [26]. The cluster pro-
file R Package was used to functionally study the differ-
ence in the activities of MRCCG patterns [27]. The gene 
ontology (GO) function annotations and kyoto encyclo-
pedia of genes and genomes (KEGG) of MRCCGs were 
analyzed using the “clusterProfiler” package. Adjusted 
p-value < 0.05 and FDR < 0.01 were considered statisti-
cally significant.

The TME cell infiltrating characteristics analysis of the 
different MRCCG patterns
To observe the difference between the MRCCG patterns 
and TME infiltrating immune cells, we used the CIBER-
SORT algorithm (https://cibersort.stanford.edu/) to cal-
culate the fractions of 23 human immune cells subsets. 
Furthermore, the levels of immune cell infiltration in the 
STAD were also examined using a single-sample gene set 
enrichment analysis (ssGSEA) algorithm [28].

Screening of DEGs among different MRCCG patterns and 
functional annotation
The R package “limma” was used to screen the MRCCG 
pattern-related DEGs. The gene with an adjusted p-value 
of < 0.001 was identified as significant DEGs. To further 
explore the potential functions of MRCCGs pattern-
related DEGs and identify the related gene functions, the 
gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of DEGs 
were performed using the clusterProfiler R package. 
FDR < 0.01 was considered statistically significant.

Construction of MRCCGs signature
We constructed a scoring system termed as MG score, 
which was calculated to quantify the different MRCCG 
patterns of the individual STAD. First, we executed the 
prognostic analysis for all MRCCG pattern-related DEGs 
in the signature by using univariate Cox regression analy-
sis. Second, the patients were classified into three differ-
ent gene subtype groups (gene cluster 1, gene cluster 2, 
and gene cluster 3) for deeper analysis using a consensus 
clustering algorithm based on the expression of over-
lapped genes. Finally, PCA with the “ggplot2” R package 
was employed to construct MG score. Principal compo-
nents 1 and 2 were selected as signature scores. MG score 
= (PC1i + PC2i). where is the expression of subtype-spe-
cific genes. Based on the median risk score, patients were 
divided into the high MG score group and low MG score 
group, each of which was subjected to Kaplan–Meier 
survival analysis (log-rank tests, p < 0.001).

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.wikipathways.org/
https://www.wikipathways.org/
https://cibersort.stanford.edu/
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Mutation and immunotherapeutic susceptibility analysis
To study the somatic mutations of STAD patients 
between high-MG and low-MG score groups, we calcu-
lated the tumor mutation burden (TMB) score for each 
patient with STAD using the “maftools” R package. We 
used the Wilcoxon test to explore differences in the ther-
apeutic effects of immunotherapeutics in patients with 
high MG scores or low MG scores.

Cell culture
Human gastric cancer cells, BGC823, were preserved and 
passaged in our laboratory and cultured using DMEM 
medium (Hyclone, Logan, UT, USA) supplemented with 
10% fetal bovine serum (Gibco, Grand Island, NY, USA), 
penicillin (100 U/mL) and streptomycin (100 µg/mL). All 
cells were cultured at 37  °C and the plates were placed 
in a CO2 incubator in which the gas composition was 95 
vol% air and 5 vol% CO2.

CCK8 assay
Cell viability was measured by Cell Counting Kit-8 assay 
(CCK-8) according to the manufacturer’s instructions. 
Cells were seeded in 96-well culture plates (Nest, Bio-
technology) at a density of 2 × 104 cells /well. A series of 
agents including mitochondrial respiration inhibitors 
(antimycin A and TTFA) and mitochondrial energy met-
abolic substrate (Dimethyl fumarate) was administered in 
combination with erastin to cells for 36 h at 37 °C. Then 
the supernatant was replaced with CCK8-containing 
medium for additional 2 h and assayed for cell viability by 
measuring the absorbance at 450  nm. Each experiment 
was repeated three times.

Fluorescent probes staining
BGC823 cells (700,000 per well) were placed in 6-well 
plates with indicated treatment. The culture solution was 
discarded, then cells were stained with BODIPY (4 µM). 
DAPI was used for nuclear staining. After staining in the 
incubator for 30 min, Cells were washed three times with 
PBS to remove excess BODIPY and subsequently viewed 
and captured under a confocal microscope.

Statistical Analysis
T-test was used to perform differential analysis between 
STAD and corresponding normal tissues. Correla-
tion coefficients between the TME-infiltrating immune 
cells and the expression of MRCCGs were calculated by 
Spearman and differential expression analyses. Analysis 
of Variance (ANOVA) and the Kruskal-Wallis test were 
used to compare differences between the three groups. 
Univariate regression analyses were utilized to calcu-
late the hazard ratios (HR) for MRCCGs and MRCCGs 
-related genes. Kaplan–Meier method was utilized to 
perform survival curves for the prognostic analysis and 

the log-rank test was used to determine the significance 
of the differences. The differences in immune subtypes 
proportion between high MG score and low MG score 
groups were calculated by chi-square test. All statistical 
analyses were performed with R version 4.1.0. In the vitro 
experiment, differences between the two groups were 
assessed with Student’s t-test and comparisons among 
multi groups were evaluated by the analysis of variance 
(ANOVA) using GraphPad Prism version 5.0. The value 
of P < 0.05 was considered statistically significant.

Results
Genetic and transcriptional alterations of differential 
MRCCGs in STAD
This study included 96 MRCCGs, including 41 CI, 4 CII, 
9 CIII, 23 CIV, and 19 CV genes. Among them, 24 MRC-
CGs with different expressions were selected for further 
differential analysis. The heat map in Fig. 1A depicts the 
differences of 24 MRCCGs between STAD and normal 
tissues. Figure 1B shows the 24 differential MRCCGs, of 
which only 6 genes were upregulated and 18 genes were 
downregulated in the STAD group. To determine the 
genetic alterations in RNA levels of MRCCGs in STAD, 
we assessed the prevalence of mutations in these 24 dif-
ferently expressed MRCCGs. We found that the overall 
mutation rate of all genes is relatively low in the STAD 
genome (Fig.  1C). Next, we explored the somatic copy 
number alterations in these MRCCGs and discovered 
prevalent copy number alterations in all 24 MRCCGs. 
Among them, SURF1, COX6C, NDUFC2, and NDUFC1 
had widespread copy number variation (CNV) gain, 
whereas UQCRC1, COX7C, COX15, and NDUFB8 
showed CNV loss (Fig. 1D). Consistently, MRCCGs with 
a higher mutation rate (NDUFA9, UQCRC1, UQCRC2, 
COX4I1, NDUFS7, COX7B, or COX15) were found to 
have a higher frequency of CNV loss than CNV gain. 
Figure  1E depicts a copy number circle diagram, which 
shows the CNV mutation locations of each MRCCG on 
the chromosomes.

We further analyzed the OS (overall survival) of 
patients with STAD based on the expression of the 
MRCCGs. The patients were divided into high- and low-
expression groups according to the median expression of 
these genes. The results showed that most MRCCGs had 
a strong correlation with the survival outcome of STAD 
patients (Fig. S1). Collectively, the results of our analysis 
showed a significant difference in the genetic landscape 
of MRCCGs, and its expression level was correlated with 
the OS of STAD patients, indicating the latent function of 
MRCCGs in STAD oncogenesis.

Identification of MRCCGs patterns in STAD
To fully understand the gene expression patterns of 
MRCCGs in STAD, 806 patients from two cohorts 
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(TCGA-STAD and GSE84437) were integrated into our 
study for further analysis. The prognosis network dia-
gram showed that most MRCCGs were positively corre-
lated, with only negative correlations between COX7A1 
and UQCRC1, COX5B, COX4I1, NDUFA9, SCO1, and 
COX15 (Fig. 2A). To further explore the expression char-
acteristics of MRCCGs in STAD, we used a consensus 
clustering algorithm to categorize patients with STAD 
based on the expression profiles of MRCCGs. Notably, 

our results showed that k = 3 appeared to be the optimal 
selection for sorting the entire cohort into MRCCG pat-
terns A, B, and C (Fig.  2B, Fig. S2). The PCA revealed 
significant differences in the transcriptome profiles of 
the three patterns (Fig.  2C). Survival analysis of the 
MRCCG patterns showed a longer OS in patients with 
pattern A than patients with the other two MRCCG pat-
terns (log-rank test, p = 0.022; Fig.  2D). Furthermore, a 
comparison of the clinicopathological features of the 

Fig. 1 Genetic landscape and alterations of MRCCGs in STAD.
(A) The heatmap of the expression distributions of the 24 differential MRCCGs between normal and tumor samples. Red or blue represents upregulation 
and downregulation, respectively. (B) Box plot displaying the expression distributions of MRCCGs crosstalk between normal and tumor samples. Red or 
blue dots represent tumor and normal samples, respectively. (C) Mutation frequency of the 24 different expressed mitochondrial complex genes of STAD 
patients in the TCGA-STAD and GSE84437 cohorts. (D) Frequencies of CNV gain, loss, and non-CNV among MRCCGs. The abscissa was the MRCCGs, and 
the ordinate was the mutation frequency. Red represents an increase in copy number, and green represents the loss of copy number. (E) Locations of CNV 
alterations of MRCCGs on 24 chromosomes. The *** represents p < 0.001, ** represents p < 0.01, * represents p < 0.05

 



Page 6 of 21Yang et al. Cancer Cell International           (2023) 23:69 

Fig. 2 MRCCGs patterns and clinicopathological characteristics
(A) Interactions among MRCCGs in STAD. The line connecting the MRCCGs represents their interactions, with the line thickness indicating the strength of 
the association between MRCCGs. The size of each circle indicates the different significance of each gene. Blue and pink represent negative and positive 
correlations, respectively. Favorable factors are indicated in green, and risk factors are indicated in purple. (B) Consensus matrix heatmap defining three 
clusters (k = 3) and their correlation area. (C) PCA analysis shows a remarkable difference in transcriptomes among the three patterns. (D) Kaplan–Meier 
curves of the overall survival in the TCGA-STAD and GSE84437 cohorts. (E) Heat map showing differences in clinicopathologic features and expression 
levels of MRCCGs between the three distinct patterns. STAD, stomach adenocarcinoma; MRCCGs, mitochondrial respiratory chain complexes genes; PCA, 
principal components analysis
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different patterns demonstrated remarkable differences 
in MRCCG expression and clinicopathological character-
istics (Fig. 2E). Cluster A was enriched with the highest 
MRCCG expression, whereas cluster B displayed the low-
est MRCCG expression.

Characteristics of TME and biological processes under 
different MRCCG patterns
GSVA was used to investigate the differences in the bio-
logical functions of different MRCCG patterns. As shown 
in Fig.  3A–C, we observed differences in the functional 
pathways between different MRCCG patterns. Pattern 
A was significantly enriched in central nervous system 
diseases, such as Huntington’s disease and Parkinson’s 
disease, and energy metabolism pathways, such as oxida-
tive phosphorylation. Pattern B was mainly concentrated 
in the cell cycle, DNA replication, mismatch repair, and 
base excision repair pathways. Pattern C was associated 
with focal adhesion, melanogenesis, vascular smooth 
muscle contraction, and ECM receptor interaction path-
ways. To investigate the role of MRCCGs in the TME of 
STAD, we assessed the correlations between the three 
patterns and 23 human immune cell subsets using the 
CIBERSORT algorithm. The three MRCCG patterns 
showed significantly different infiltration characteristics 
of the TME cells (Fig. 4A). The infiltration levels of acti-
vated CD4+ T cells, CD8+ T cells, gamma delta T cells, 
neutrophils, and type 17 helper T cells were significantly 
higher in pattern A than those in patterns B and C, while 
activated B cells, plasmacytoid, follicular helper T cells, 
type 1 helper T cells, natural killer (NK) T cells, NK cells, 
macrophages, mast cells, immature dendritic cells, eosin-
ophils, MDSCs, and regulatory T cells (Tregs) were sig-
nificantly higher in pattern C. These results suggest that 
the three categorized MRCCG patterns have significantly 
different biological characteristics and immune infiltra-
tion patterns, which could discriminate the prognosis of 
STAD patients.

Identification of gene subtypes based on DEGs
To further investigate the biological behavior of the 
three MRCCG patterns identified above, we identified 
1175 pattern-related DEGs using the R package “limma” 
(Fig. 4B) and performed a functional enrichment analysis. 
GO enrichment analysis (Fig. 4C) showed that the differ-
entially expressed genes were mainly enriched in biologi-
cal processes including the cell cycle, DNA replication, 
and mitochondrial translation. The cellular components 
of the DEGs were significantly enriched in the mitochon-
drial inner membrane and the mitochondrial matrix. In 
parallel, these DEGs were mainly involved in the molecu-
lar functions of DNA helicase activity and catalytic activ-
ity of DNA. KEGG analysis indicated enrichment of the 
cell cycle and carbon metabolism pathways (Fig.  4D), 

suggesting that DEGs among the MRCCG subtypes play 
a vital role in the energy metabolism of the TME. We 
then conducted a univariate Cox regression analysis to 
identify the prognostic value of pattern-related DEGs and 
screened out 555 prognostic DEGs (p < 0.05) that were 
used in the subsequent analysis. A consensus cluster-
ing algorithm was used to divide the patients into three 
gene subtypes based on the prognostic DEGs, namely, 
gene cluster 1–3 (Fig. S3). The heat map of relationships 
between clinicopathological features and gene subtypes 
showed that the expression of most prognostic-related 
genes was higher in gene cluster 3 and lower in gene 
cluster 2 (Fig. 4E). In addition, a survival analysis showed 
that patients in gene cluster 3 had the worst prognosis, 
whereas patients in cluster 2 had a favorable progno-
sis (log-rank test, p < 0.001; Fig. 4F). Moreover, the three 
gene cluster subtypes showed significant differences in 
the expression of MRCCGs, consistent with the results of 
the three MRCCG patterns (Fig. 5A). Interestingly, TME-
related-genes also differentially expressed in the three 
gene cluster subtypes (Fig. S5).

Construction of the prognostic MG score
To quantify MRCCG patterns in individual STAD 
patients, we constructed an MG score model based on 
subtype-related DEGs. The alluvial diagram comprehen-
sively showed the flow of MG score fraction construc-
tion (Fig. 5B). We observed a significant difference in MG 
scores between MRCCG patterns and gene subtypes. 
Compared with patterns A and B, MRCCG pattern C had 
a significantly higher MG score (Fig.  5D). Similarly, the 
MG score of gene subtype 3 was the highest, whereas that 
of subtype 2 was the lowest, implying that the high MG 
score group had a poor prognosis (Fig. 5E). Overall, these 
results indicate that the three computational methods of 
classification have a high degree of coincidence. To inves-
tigate the potential effect of the MG score on immune 
regulation of TME, an immune correlation analysis was 
conducted between the MG score and immune cells. The 
result showed that the MG score was significantly posi-
tively correlated with activated B cells, mast cells, and 
plasmacytoid dendritic cells, whereas it was negatively 
correlated with activated CD4+ T cells (Fig. 5C).

To elucidate the effect of the MG score on clinical 
characteristics, we explored the correlation between the 
MG score and different clinical features (e.g., age, sex, 
histological grade, pathological stage, and TNM stage) 
(Fig.  6A). We observed that the clinical characteristics 
significantly differed between the high-MG and low- MG 
score groups. Moreover, the survival analysis in patients 
with T1–2 or T3–4 stage showed that the prognosis of 
patients in the high MG score group was poorer than 
patients in the low MG score group (p < 0.05) (Fig. 6B-C). 
Kaplan–Meier survival curves revealed that patients with 
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Fig. 3 Biological characteristics of MRCCG patterns
(A) GSVA analyzed the differences between functional pathways in MRCCGs pattern A and B. Blue represents the MRCCGs pattern A, and orange repre-
sents the MRCCGs pattern B. (B) GSVA analyzed the differences between functional pathways in MRCCGs pattern B and C. Orange represents the MRCCGs 
pattern A, and red represents the MRCCGs pattern C. (C) GSVA analyzed the differences between functional pathways in MRCCGs pattern A and C. Blue 
represents the MRCCGs pattern B, and red represents the MRCCGs pattern C. The *** represents p < 0.001, ** represents p < 0.01 and ns represents no 
significance. GSVA, gene set variation analysis
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Fig. 4 Identification of gene subtypes based on DEGs.
(A) The differential expression analysis of 23 immune cells among three MRCCG patterns. (B) The number of unique and shared DEGs from different 
comparisons is revealed in a Venn diagram. (C-D) GO and KEGG enrichment analyses of DEGs among three MRCCG patterns. (E) Relationships between 
clinicopathologic features and the three gene subtypes. (F) Kaplan–Meier curves of the three gene subtypes (log-rank tests, p < 0.001). Blue represents 
gene cluster 1, orange represents gene cluster 2, and red represents gene cluster 3. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes
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Fig. 5 Identification of the gene subtypes and construction of MG score
(A) Differences in the expression of 24 MCCRGs among the three gene subtypes. (B) Alluvial diagram of subtype distributions in groups with different 
MG scores and survival outcomes. (C) The correlation analysis between the MG score and immune cells, with red representing positive correlation and 
blue representing negative correlation. (D) Difference analysis of the MG score in the MRCCG patterns. (E) Difference analysis of the MG score in the gene 
subtypes

 



Page 11 of 21Yang et al. Cancer Cell International           (2023) 23:69 

low MG scores had a significantly favorable OS com-
pared to those with high scores (log-rank test, p < 0.001; 
Fig. 6D). Collectively, these results indicate that the MG 
score can predict the survival probabilities of patients 
with STAD.

Evaluation of tumor somatic mutations between the high- 
and low- MG score groups
Increasing evidence suggests that patients with a high 
tumor mutation burden (TMB) may benefit from immu-
notherapy because of the various neoantigens [29]. We 

Fig. 6 Identification of the clinical characteristics and predicting the STAD progression
(A) Differences in clinicopathologic features of high-and low-MG score groups of STAD from the TCGA cohort. (B) Kaplan-Meier analysis of survival rate in 
patients with T1-2 between high-MG score group and low-MG score group in TCGA cohort. (C) Kaplan-Meier analysis of survival rate in patients with T3-4 
between high-MG score group and low-MG score group in TCGA cohort. (D) Kaplan–Meier analysis of the prognosis between the high-MG score group 
and low-MG score group (log-rank tests, p-value < 0.001).
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determined the optimal cutoff value of TMB (cutoff 
value = 0.68) by using the minimum p -value method, 
and divided the patients into a high TMB group (n = 320) 
and a low TMB group (n = 42). As shown in Fig.  7A, 
TMB was relatively higher in the low MG score group 
(Wilcoxon rank-sum test, p = 6.9e-09), indicating that 
patients in the low MG score group might benefit from 
immunotherapy. A Spearman correlation analysis dem-
onstrated that the MG score was negatively associated 
with TMB (R = -0.58, p = 2.2e-16) (Fig. 7B C). As shown 
in Fig.  7F, when the MG score was integrated with the 
TMB, the survival curves demonstrated that patients in 
the low TMB group and the high MG score group had 
the worst prognosis. We then analyzed the variations in 
the distribution of somatic mutations between the two 
MG score groups in STAD patients. The results showed 
that patients with a low MG score had relatively higher 
frequencies than those in the high MG score group, with 
mutation frequencies of 98.33% and 86.09%, respec-
tively (Fig. 7D-E), implying that the low MG score group 
might benefit from immunotherapy. The top ten mutated 
genes in the low MG score groups were TTN, MUC16, 
ARID1A, LRP1B, TP53, ZFHX4, PIK3CA, KMT2D, FAT4 
and OBSCN successively. While the top ten mutated 
genes in the high MG score groups were TTN, TP53, 
MUC16, LRP1B, SYNE1, ARID1A, FLG, CSMD3, FAT4 
and PCLO. Patients with low MG scores had markedly 
higher frequencies of TTN, MUC16, and ARID1A muta-
tions than those with high MG scores.

Relationship of MG score with microsatellite instability 
(MSI) and microsatellite stable (MSS) index
Mounting evidence suggests that high microsatellite 
instability (MSI-H) tumors are less responsive to con-
ventional chemotherapy but can benefit from immuno-
therapy [30, 31]. Correlation analyses revealed that the 
low MG score group tended to have more MSI-H status, 
whereas the high MG score group tended to have more 
MSS status (Fig.  8A-B). Immune checkpoint inhibitors 
(ICIs) are generally used as therapeutic antitumor agents. 
However, tumor heterogeneity is a non-negligible factor 
that potentially limits the efficacy of immunotherapy [32]. 
Subsequently, we explored the expression of immune 
checkpoints in the high and low MG score groups. An 
analysis of immunotherapy scores showed that ICI ther-
apy, represented by the PD-1/PD-L1 inhibitor, played an 
important role in antitumor therapy. PD-L1 expression 
was significantly increased in the low MG score group 
(p = 0.0058) and was negatively associated with the MG 
score (p = 2.8e-06) (Fig. 8C and D). But PD-1 expression 
levels and correlations did not show any significance 
between the high and low MG score groups (Fig. 8E F). 
Moreover, Fig.  8G  J showed that CTLA-4 negative and 
PD-1 negative therapies had different effects on the high 

and low MG score groups (p = 0.027). These results sug-
gest that the low MG score group was more sensitive to 
ICI therapy.

Immune analysis of MG score
To investigate the association between the MG score and 
the abundance of infiltrating immune cells, we performed 
an immune correlation analysis. We first observed that 
the distribution of immune cells was noticeably differ-
ent between the two groups (Fig. 9A). Patients in the high 
MG score group had a higher enrichment of B cells, CD4 
memory resting cells, Tregs, activated NK cells, mono-
cytes, and resting mast cells than patients in the low MG 
score group, whereas patients in the low MG score group 
were enriched in activated CD4 memory T cells, follicu-
lar helper T cells, resting NK cells, and macrophage M1 
(Fig. 9B). In addition, the MG score was closely associated 
with the different immune functions. High MG scores 
were closely correlated with B cells, iDCs, mast cells, 
MHC class I, neutrophils, pDCs, type I IFN response and 
type II IFN response (Fig. 9C). The therapeutic effect of a 
tumor is strongly correlated with its immune status, also 
known as the TME. To further understand the interac-
tion between STAD and its intratumoral immune states, 
we compared four ‘‘immune subtypes” (C1, C2, C3, and 
C4) between the high MG score group and low MG score 
group [33]. C1 (wound healing) is characterized by the 
high expression of angiogenic genes and a high prolifera-
tion rate. C2 (IFN-gamma dominant) has the highest M1/
M2 macrophage polarization and shows a high prolifera-
tion rate, which may suppress an evolving type I immune 
response. C3 (inflammatory) is characterized by elevated 
TH17 and TH1 genes and lower tumor cell proliferation. 
C4 (lymphocyte-depleted) displays a more prominent 
macrophage signature, with TH1 suppression and high 
M2 response [33]. As shown in Fig. 9D, the four immune 
subtypes were significantly different between the low and 
high MG score groups (p < 0.05). Notably, the low-MG 
score group was mainly scattered in C2, implying that 
this group had higher levels of malignancy.

MRCCGs is indispensable for ferroptosis
Ferroptosis is a form of regulated cell death that is char-
acterized by iron overload, leading to the accumulation 
of lethal levels of lipid hydroperoxides [34]. Emerging 
evidence shows the potential of triggering ferroptosis for 
cancer therapy [35]. Our previous work has found that 
achieving ferroptosis via ferroptosis-inducing drugs is 
effective in many cancers [36–39]. Moreover, our recent 
studies demonstrated that inhibition of mitochondrial 
ETC (electron transport chain) attenuates ferroptotic 
cell death [40]. In this study, heatmaps of expression dif-
ferences in ferroptosis genes among MRCCGs patterns 
were presented (Fig S4). The result demonstrated that 
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Fig. 7 Evaluation of the MG score and tumor somatic mutation
(A) Stratified analysis of the MG score for STAD patients by TMB. (B) Spearman correlation analysis of the MG score and TMB. (C) Correlations between MG 
score and TMB calculated by CIBERSORT algorithm. (D-E) The waterfall plot of somatic mutation features established with high and low MG scores. Each 
column represented an individual patient. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each gene. The 
right barplot showed the proportion of each variant type. (F) Survival analysis among three groups of STAD patients who were layered according to both 
MG-Scores and TMB (log-rank tests, p-value < 0.001). TMB, tumor mutation burden.
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ferroptosis genes were highly expressed in MRCCGs pat-
tern A and tended to have a better prognosis, which is in 
line with MRCCGs. Additionally, we wondered whether 
the MG score could predict the sensitivity to ferroptosis 
inducing therapy. To validate the above hypothesis, we 

next employed mitochondrial metabolism inhibitors and 
mitochondrial energy metabolic substrate in subsequent 
experiments. The results indicated that cell viability was 
rescued in BGC823 cells treated with the mitochondrial 
respiration inhibitors (Fig. 10A-B). However, cell viability 

Fig. 8 Comprehensive analysis of the prognostic value according to MG Scores. (A-B) Relationships between MG score and MSI. (C) Stratified analy-
sis of the MG score for STAD patients by PD-L1 (D) Correlations between MG score and PD-L1 expression. (E) Stratified analysis of the MG scores for STAD 
patients by PD-1. (F) Correlations between MG score and PD-1 expression. (G) Differential analysis for low MG score group and high MG score group in 
CTLA-4 negative and PD-1 negative therapy. (H) Differential analysis for low-MG score group and high-MG score group in anti-PD-1 immunotherapy. (I) 
Differential analysis for low MG score group and high MG score group in anti-CTLA-4 immunotherapy. (J) Differential analysis for low MG score group and 
high MG score in anti-PD-1 combined with CTLA-4 immunotherapy. MSI, microsatellite instability; MSS, microsatellite stable.
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Fig. 9 Comprehensive analysis of immune-related functions between the two MG groups. (A) Barplot shows the different infiltration abundance 
of immune infiltrating cells in the two groups. (B) The differential expression analysis of immune cells among high MG score and low MG score groups. 
(C) Immune function analysis of high MG score and low MG score groups. (D) The difference in four immune subtypes between high MG score and low 
MG score groups. The *** represents p < 0.001, ** represents p < 0.01, * represents p < 0.05 and ns represents no significance
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Fig. 10 MRCCGs are indispensable for ferroptosis. The BGC823 cells were exposed to erastin in the presence or absence of TTFA, Antimycin A, or 
Dimethyl fumarate, then cell viability was measured by CCK8 assay (A-C), and intracellular lipid ROS labeled with BODIPY was detected by confocal laser 
microscopy (D-E).
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was dose-dependently decreased with the addition of 
mitochondrial metabolism substrate (Fig. 10C). We also 
detected lipid ROS, which serves as a potent ferropto-
sis marker. Similarly, accumulated lipid ROS declined 
in the mitochondrial metabolism inhibitor group, while 
increased in the mitochondrial metabolism substrate 
group (Fig.  10D-E). Collectively, these results indicate 
that MRCCGs play a vital role in ferroptotic cell death 
induced by erastin.

Discussion
STAD is a highly heterogeneous disease affected by mul-
tiple genetic and environmental factors, which poses a 
series of challenges to both accurate diagnosis and per-
sonalized therapy in STAD [30]. Mitochondrial dys-
function is a common cause of cancer initiation and 
progression and the mitochondrial electron respiratory 
chain is often involved in carcinogenesis [31]. Accumu-
lating evidence has shown that single or multiple com-
plexes of the mitochondrial electron respiratory chain 
play a crucial role in the prognosis of STAD [15, 22, 
41]. Moreover, tumor progression relies not only on the 
proliferation of cancer cells themselves but also on the 
interaction with the components of the TME [42]. Mito-
chondrial metabolic, hypoxic, and oxidative stresses are 
the environmental stress phenotypes in the TME and are 
considered additional hallmarks of cancer [43]. Determi-
nation of the role of MRCCGs in TME cell infiltration is 
helpful to understand the mechanism of the TME anti-
tumor immune response. Therefore, the combination of 
TME cell infiltration characteristics in different MRC-
CGs subtypes will increase the understanding of the 
TME antitumor immune response of STAD.

In the present study, we revealed global alterations 
in MRCCGs at the transcriptional and genetic levels in 
STAD. We classified three distinct molecular patterns 
based on the expression of 24 MRCCGs using the con-
sensus clustering analysis. The clustering analysis of gene 
expression profiles is a crucial research topic for cancer 
subtype diagnosis, which is beneficial for providing more 
precise treatments for cancer patients [44]. Herein, we 
applied this efficient method to explore the gene patterns 
of STAD. Compare to MRCCG pattern B and C, pattern 
A had better clinicopathological features and a favor-
able prognosis. Additionally, the STAD MRCCG patterns 
were also characterized based on significant cellular and 
energy metabolism, including oxidative phosphorylation, 
citrate cycle, tricarboxylic acid cycle, and glyoxylate and 
dicarboxylate metabolism pathways. TME characteris-
tics also significantly differed among the three patterns. 
Furthermore, we identified three distinct gene subtypes 
based on DEGs by applying an intersection analysis. 
Notably, DEGs were mainly involved in energy metabo-
lism and affected the growth and proliferation of tumor 

cells. Additionally, we found that the clinicopathological 
characteristics and TME features were also significantly 
different among the three gene subtypes. Thus, these 
findings indicated that MRCCGs might serve as a predic-
tor for evaluating the clinical outcome of STAD. More 
importantly, we established a robust and effective scor-
ing system to quantify MRCCG patterns and validated 
its predictive ability for the clinical prognosis of patients 
with STAD. Similarly, the gene subtypes 2 characterized 
by cellular energy metabolism showed lower MG score, 
indicating that the MG score may have the ability to eval-
uate the clinical outcome in STAD. Meaningfully, the low 
MG score group was correlated with increased MSI-H 
status, TMB, and PD-L1 expression, indicating they can 
benefit from immunotherapies. Altogether, this scoring 
system can be used for prognosis stratification in patients 
with STAD, will assist in better understanding the molec-
ular mechanism of STAD, and will provide new insight 
for targeted therapies.

The mitochondrial electron respiratory chain can be 
considered a target for the treatment of tumors, espe-
cially renal cancer [11, 45, 46]. However, some studies 
discovered that the development of gastric cancer is asso-
ciated with higher complex I and complex II expressions 
[15, 16]. To fully understand the underlying mechanism 
of the mitochondrial electron respiratory chain complex 
in the occurrence and development of STAD, we investi-
gated 96 genes of the mitochondrial electron respiratory 
chain complex in STAD and screened out 24 genes which 
were differentially expressed between STAD and nor-
mal tissues. Previous studies have shown that NDUFC2 
is associated with a worse prognosis in breast cancer and 
serves as an acute coronary syndrome biomarker, as well 
as a target for new therapeutic strategies [47, 48]. Simi-
larly, UQCRC1 is a potential prognostic biomarker and 
therapeutic target for PDAC. UQCRC1 overexpression 
results in increased OXPHOS and ATP production, and 
promotes cell proliferation through the ATP/P2Y2-RTK/
AKT axis [49]. Targeting NDUFC1 could be a potential 
approach in the treatment of gastric cancer. NDUFC1 
overexpression was found to be related to more serious 
tumor infiltration, higher risk of lymphatic metastasis, 
whereas NDUFC1 downregulation promoted the inhibi-
tory effects on cell proliferation and migration via the 
PI3K/Akt pathway [50].

Patients with unresectable and/or metastatic gastric 
cancers generally require systemic therapy. Chemo-
therapy remains the standard therapy for most patients 
[51] and immunotherapy has been proven effective in 
STAD patients with specific molecular subtypes [52, 53]. 
Recent studies have shown that TME plays a crucial role 
in STAD tumorigenesis and progression, and outcomes 
vary according to the different molecular types of STAD 
[54]. Therefore, obtaining knowledge of the TME helps 
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to understand the immunotherapy response in STAD. 
To fully understand the relationship between distinct 
MRCCG patterns and TME cell infiltration characteris-
tics in STAD, we performed immune correlation analyses. 
A previous study has shown that STAD is characterized 
by immune cell infiltration containing granulocytes, 
macrophages, and T lymphocytes [55]. Consistently, we 
found that the characteristics of TME immune cell infil-
tration also differed significantly among the three gene 
subtypes, mainly including activated B cells, activated 
CD4+ T cells, activated CD8+ T cells, NK cells, and mac-
rophage cells. These results suggested that the three gene 
subtypes have a very important significance in shaping 
different TME landscapes. To further characterize intra-
tumoral immune states of the STAD, we compared four 
immune signature sets between the high and low MG 
score groups, which were classified by major immunoge-
nomics methods across 33 cancers analyzed based on the 
TCGA database [56]. These four categories (C1, C2, C3, 
and C4) represent characteristics of the TME that largely 
spurned traditional cancer classifications to create new 
groups and suggested that specific treatment approaches 
may be independent of different cancer subtypes [56]. 
Significantly, C2 (IFN-γ dominant), which is predomi-
nantly characterized by a macrophage signature and high 
proliferation rate, was principally expressed in the low 
MG score group, with a proportion of 63%. This result 
indicates that patients in the low MG score group may 
have a certain connection with macrophages and a higher 
degree of malignancy than those in the high MG score 
group. Meaningfully, tumor-associated macrophages are 
among the most abundant immune cells in the TME [57]. 
Macrophages promote antitumor responses by killing 
tumor cells or indirectly recruiting and activating cyto-
toxic T cells and NK cells in the initial stages of tumor 
development; they can promote tumor progression, 
metastasis, and resistance to therapy. Hence, targeting 
macrophages in cancer cells is a promising therapeutic 
strategy for cancer [58]. Accordingly, we believe that it is 
well justified to target macrophages could be a potential 
treatment for the low MG score group of STAD patients, 
which requires further validation.

A recent study demonstrated that a high tumor muta-
tion burden (TMB-H) has been proposed as a predictive 
biomarker for response to immune checkpoint inhibi-
tors (ICIs) [59]. The PD-1 evoked the immune check-
point response of T cells, resulting in tumor cells capable 
of evading immune surveillance and being sensitive to 
immunotherapy [60]. Patients with metastatic cancers 
probably got a favorable clinical response to ICI, and 
TMB was used to predict clinical response to ICI in sev-
eral cancer types [61]. Similar findings suggested that 
the survival outcomes of patients with H-TMB were cor-
related with ICI outcomes and had higher responsivity 

with anti-PD-1, anti-PD-L1, or anti-CTLA4 therapy 
across diverse solid tumors [62]. In the present study, we 
observed that TMB and MG score were strongly corre-
lated. In addition, the low MG score group is correlated 
with higher TMB and had a favorable prognosis. Anti-
PD-L1 therapy has recently been used to treat STAD with 
higher expression of PD-L1 [63]. Similarly, we discovered 
higher expression levels of PD-L1 in the low MG score 
group, demonstrating low MG score group may obtain 
therapeutic effects in anti-PD-L1 treatment. MSI-H has 
recently been approved by the Food and Drug Admin-
istration as a genetic test to select patients for immuno-
therapy targeting PD-1 and/or CTLA-4 in many cancer 
types [64]. Currently, MSI-H status and PD-L1 expression 
are the only established biomarkers associated with the 
efficacy of certain therapies in patients with advanced-
stage gastric and gastroesophageal junction (G/GEJ) can-
cers [65]. Moreover, a secondary post hoc analysis of the 
MAGIC trial depicted that compared with patients who 
had MSI-L tumors, those who had MSI-H tumors had 
improved survival with surgery alone and inferior sur-
vival with perioperative chemotherapy plus surgery [66]. 
In addition, MSI-high gastric cancer was associated with 
longer OS and obtained a benefit from ICI therapy while 
lacking benefit with perioperative or adjuvant chemo-
therapy. Consistently, the proportion of patients in the 
low MG score group has a higher percentage of MSI-H 
status compared to the patients in high MG score group, 
implying they have a favorable prognosis. Collectively, 
these results confirm that it’s a good choice for choosing 
MRCCGs as a predictive biomarker.

Ferroptosis is a newly identified programmed cell 
death, typically characterized by free iron overload and 
lethal phospholipid peroxide generation. Increasing 
evidence has demonstrated that inducing ferroptosis 
represents a promising therapeutic strategy that prefer-
entially targets iron-rich cancer cells such as HCC [67, 
68], NSCLC [69], PDAC [70], leukemia [38] and GC [71, 
72], and provides insights into reversing drug resistance 
in cancers. The mitochondrial electron transport chain is 
responsible for ATP production. Recent studies provided 
evidence that mitochondrial electron transport plays 
indispensable role in the regulation of ferroptosis [73]. 
In this study, the expression of ferroptosis-related genes 
was higher in MRCCGs pattern A. Moreover, our vitro 
experiments show that inhibition of electron transport 
train protects tumor cells against the onset of ferroptosis, 
while added mitochondrial energy metabolic substrate 
promotes ferroptosis. These results reveal that MRCCGs-
based subtyping and genotyping could be helpful in sen-
sitivity prediction to ferroptosis-based therapy. Recently, 
targeting MRCCG is evolved as a new therapy to impede 
the progression of several cancers over the past decades 
[74]. Therefore, combinational therapy of conventional 
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cytotoxic drugs with MRCCG inhibitor drugs may be an 
effective regime for combating cancer.

In its clinical and practical applications, our study has 
its highlights. First, the MG score may be used to assess 
MRCCGs patterns and corresponding TME cell infiltra-
tion characteristics in individual STAD patients to fur-
ther define the immune phenotype of STAD. Second, 
the MG score may be used as an independent prognostic 
biomarker for patients with SATD. Finally, the MG score 
may predict the efficacy of immunotherapy in STAD 
patients, allowing for the identification of STAD most 
likely to benefit from immunotherapy, which providing 
new insights into individualized treatment of patients 
with STAD.

Conclusions
In the present study, we comprehensively elucidate a 
new scoring system based on 24 MRCCGs by which 
they affect the TME, clinicopathological characteristics 
and prognosis. We also determined immunotherapies 
response and its therapeutic liability for high MG score 
and low MG score groups. These findings highlighted the 
significant clinical applications that MRCCGs could be 
potential biomarkers for STAD and provided a new per-
spective on developing personalized immune therapeutic 
strategies for STAD patients.
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