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aggregation, and release of platelet-derived substances 
in circulation, and promote thrombocytosis via influ-
ence megakaryopoiesis in bone marrow (Fig. 1). During 
the bidirectional tumor-platelet interactions, platelets 
systematically and locally respond to cancer, as well con-
stantly absorb and enrich free proteins, nucleic acids, 
vesicles and particles [3, 4], leading to the alterations in 
their RNA and proteomics expression profiles [5, 6], thus 
termed “tumor educated platelets” (TEPs) [2].

The changes of TEPs profile represent a massive, con-
centrated biorepository of tumor-derived and bioactive 
molecules, indicating the potential of TEPs as specific 
biomarkers for cancer. Due to the short lifespan and the 
structure of platelet membrane, tumor-specified bio-
sources and biomolecules are enriched in TEPs and pro-
tected from circulating RNAase and other enzymes, thus 
contents in TEP are capable to reflect tumor bioactivity 
up-to-date, intensive, and dynamically, playing the cru-
cial roles in cancer detection and progression monitor-
ing including colorectal carcinoma (CRC), glioblastoma, 
non–small cell lung cancer (NSCLC), prostate cancer, 

Introduction
Platelets, the most abundant anucleate cells except red 
blood cells in the circulation, originate from megakaryo-
cytes in the bone marrow with a short average lifespan 
of 7 days [1]. Besides its role in hemostasis, platelets also 
play an important role in tumorigenesis and tumor pro-
gression [2]. Platelets stimulate tumor angiogenesis and 
vascular remodeling, protect CTCs from shear forces and 
evade immune surveillance, and recruit stromal cells to 
facilitate the establishment of metastatic niches and pro-
mote the metastasis. On the other point of view, tumor 
can also “educate” platelets. It induces platelet activation, 
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Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-
specific substances in the circulation during their life span, thus called “Tumor Educated Platelets” (TEPs). The 
alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism 
of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in 
platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation 
at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development 
and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets 
interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules 
related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
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and etc. Platelet lacks a nucleus; no genomic DNA is 
available for transcription of new RNA molecules. 
Quantification of platelet RNA demonstrates approxi-
mately ~ 2.2 fentogram of RNA in one single platelet, but 
20–40 times in younger, reticulated platelet [7, 8], indi-
cating a variety of RNA regulatory biological processes, 
such as RNA splicing.

RNA splicing in TEPs can be induced by external sig-
nals (such as platelet surface receptor activation), or in 
response to signals released by tumor microenviron-
ment, resulting in highly dynamic mRNA repertoires 
with potential tumor diagnostic applications [9]. Platelets 
contain many proteins associated with the spliceosome 
and small nuclear RNAs (snRNAs) to form small nuclear 
ribonucleoproteins (snRNPs) [10, 11]. SnRNAs including 
U1, U2, U4, U5, U6 are not merely the basal factors ubiq-
uitously expressed in all cells since they are required for 
the guidance of pre-mRNA splicing [12], whereas they 
are extremely variable across a wide range of biologi-
cal conditions [13]. The endogenous alterations in TEP 
snRNAs can modulate alternative splicing [14], thereby 
contributing to the alternation of TEP mRNA profile 
significantly. Although TEP mRNA has been well-rec-
ognized as the promising biomarkers for liquid biopsy in 
various tumors in recent years [15], it is generally unin-
formed about the regulation of TEP alternative splicing 
and its role in cancer diagnostics. This review systemati-
cally expounds the bidirectional tumor-platelet interac-
tions, especially the tumor induced alternative splicing 
in TEP, and further explores whether molecules related 
to alternative splicing such as snRNAs can serve as novel 
biomarkers for cancer diagnostics.

The interactions between platelets and tumor
Tumor cells changes platelets
Structure basis of tumor-platelet direct interactions
Direct surface receptor binding and extracellular protein-
mediated receptor bridging were the structure basis of 
tumor-platelet interactions [16–18] (Fig.  2). Numerous 
studies have investigated the targeting direct molecule 
contacts, including platelet GPIIb-IIIa (also called αIIbβ3 
integrin)-plasma fibrinogen or fibronectin - tumor αVβ3 
integrin [19–21]; platelet GPIbα - tumor Von Willebrand 
Factor (vWF) [22–24]; platelet GPVI - tumor fibrin and/
or subendothelial collagen [25, 26]; platelet α6β1 integ-
rin-tumor ADAM9 [27]; platelet acid sphingomyelinase 
(Asm) – tumor α6β1 integrin [28, 29]; platelet CLEC-
2-tumor podoplanin [30–32]; and platelet P-selectin-
tumor P-selectin ligand [33–35]. These platelet receptors 
and their ligands mediate tumor growth, metastasis and 
direct tumor-platelet interactions.

Tumor cells induced aggregation
Additionally, tumors can induce platelet aggregation by 
directly interacting with platelets. Once tumor cells leave 
the primary tumor site and enter the blood circulation, 
they directly lead to platelet activation and aggregation, 
whereby platelets protect tumor cells from immune 
cell-induced cell death [36], a phenomenon known as 
“Tumor cell-induced platelet aggregation (TCIPA) [37, 
38] " (Fig. 2). In this way, TCIPA can trigger platelets to 
release a large amount of pro-tumorigenic factors to fuel 
tumor growth [39]. Current studies have suggested that 
TCIPA mainly works through the following pathways: (i) 
tumor cell-platelets interactions result in the formation 
of small amounts of thrombin, which may trigger platelet 

Fig. 1 The crosstalk between cancer and platelets. Tumor educates platelets: tumor can induce platelet activation, aggregation, and release of plate-
let-derived substances in circulation, and promote thrombocytosis via influencing megakaryopoiesis in bone marrow; Platelets support tumor growth 
and metastasis: platelets stimulate tumor angiogenesis and vascular remodeling, protect CTCs from shear forces and evade immune surveillance, and 
recruit stromal cells to facilitate the establishment of metastatic niches and promote the metastasis (MKP: megakaryocyte progenitor; MK: megakaryo-
cyte; HSC: Hematopoietic stem cells)
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activation and aggregation, (ii) fibrinogen binding to inte-
grin αIIbβ3 and fibrin formation can mediate platelet 
aggregation, and (iii) tumor cells cause some ATP/ADP 
to be released from dense granules, and the release of 
ADP stimulates P2Y12 receptors that are necessary for 
platelet aggregation [37, 40].

Tumor cells promote thrombocytosis
As early as the 19th century, studies first reported the 
relationship between thrombocytosis and tumors, which 
was common in tumor patients [41], whereas the interac-
tion of platelets and cancer cells formed a positive feed-
back cascade to potentiate the effect. It was reported the 
increased platelet count was associated with poor overall 
and/or progression-free survival and revealed as predic-
tors of a variety of cancers [42, 43], including lung cancer 
[44], ovarian cancer [45], gastric cancer [41], colorectal 
cancer (CRC) [46] and breast cancer (BrCa) [47]. Platelet 
count might also be an effective biomarker for monitor-
ing disease recurrence and predicting treatment response 
in patients with epithelial ovarian cancer (EOC) [48], and 
rectal cancer [49]. Meanwhile, other platelet-associated 
clinical laboratory indexes including platelet to lym-
phocyte ratio (PLR) [50–53], platelet distribution width 
to platelet count ratio [54, 55], platelet to albumin ratio 
[56], and red cell distribution width to platelet count ratio 
[57] were also associated with poor progression and were 
shown to predict of a variety of cancers, as summarized 
in Table 1.

Several evidence had revealed the main molecular 
mechanisms of thrombocytosis (Fig.  3), including (i) 
tumor cells secret thrombopoietin (TPO), or interleu-
kin-6 (IL-6) which can accelerate TPO production in the 
liver. TPO in turn stimulates thrombopoiesis in bone 

marrow [45]; (ii) TPO can stimulate differentiation, pro-
liferation and maturation of megakaryocytes; (iii) tumor 
cells can accelerate platelet destruction and then induce 
compensatory thrombocytopenia; and (iv) malnutrition, 
chronic blood loss from tumor depletion, and myelopro-
liferative diseases can also cause thrombocytosis [58].

Tumor cells promote production of platelet-derived 
substances
Moreover, cancer patients also present with increased 
expression levels of platelet-derived substances in the cir-
culation, including CD40 ligand (CD40L) [59], P-selectin 
[60], tissue factor (TF) [61] and platelet-derived mic-
roparticles (PMPs) [62, 63]. The platelet activation mark-
ers CD40L and P-selectin play immunosuppressive effect 
and are used as indicators of disease progression in 
cancer or cancer-associated venous thromboembolism 
(VTE) patients [64–66]. It has been shown that aggres-
sive tumors are correlated with higher levels of platelet 
microparticles. For example, miRNA-223 delivered by 
platelet-derived microparticles is significantly increased 
in patients with NSCLC. Tumors also induce platelet 
degranulation and phenotype changes in cancer patients 
by increasing the secretion of pro-angiogenic proteins, 
such as vascular endothelial growth factor (VEGF). Alto-
gether, these studies have demonstrated cancer-activated 
platelets induce a procoagulant environment, providing 
early biomarkers for cancer screening (Table 1).

Platelets support tumor growth and metastasis
Platelets stimulate tumor angiogenesis and vascular 
remodeling
Platelets stimulate tumor angiogenesis through mul-
tiple mechanisms, resulting from the complex interplay 

Fig. 2 Structure basis of tumor-platelet interaction and molecular mechanisms of TCIPA. Direct surface receptor binding and extracellular protein-
mediated receptor bridging are the structure basis of tumor-platelet interactions (left); The interactions trigger platelet activation and degranulation, in 
turn aggregation (TCIPA) dependent on GPIIb-IIIa and fibrin network (right)
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between cancer cells and platelets in regulating tumor 
neovascularization [67]. This intercellular communica-
tion depended on the secretion of platelet α-granules, 
the treasure trove of the angiogenic factors in the tumor 
microenvironment containing VEGF and cytokines [68, 
69]. In addition, the important angiogenic agents such as 
fibroblast growth factor (FGF), platelet-derived growth 
factor (PDGF) and PMPs also affect angiogenesis and 
indirectly enhance vessel formation [67, 69]. Thus, as an 
important source of angiogenesis-related factors in cir-
culation, platelets act as “first responders” across the full 
spectrum of cancer progression, they and their products 
stimulate stroma release, promoting angiogenesis and 
chemotaxis [70].

In addition to regulating angiogenesis, platelets can 
also regulate vascular integrity, relying on the secretion of 
angiopoietin-1 (ANGPT1) and serotonin of α-granules, 
thereby promoting endothelial integrity and barrier func-
tion in primary tumors [71, 72]. While angiopoietin-2 
(ANGPT2) secreted by VEGF activated endothelium 
could inhibit ANGPT1 competitively and destabilize ves-
sel assembly [73]. Therefore, the stability of tumor vessel 
depends on the balance between the tumor and platelet-
derived granules. In lymphatic vessels, platelets main-
tained the stability of blood-lymphatic system to support 
angiogenesis and tumor growth [74, 75]. Platelets might 

also reduce immune cells infiltration by regulating vascu-
lar integrity, reducing tissue damage by protecting tumor 
cells from assault of natural killer cells (NK cells) [76, 77]. 
Thus, platelets exhibit pro-tumorigenic functions, which 
directly or indirectly promote tumor growth by regulat-
ing tumor angiogenesis and vascular integrity.

Platelets support tumor invasion and metastasis
Invasion and metastasis are important features of tumor-
igenesis and development, and platelets also play an 
important role in this process. As the first cell to encoun-
ter tumor cells, it interferes with immune system surveil-
lance to protect circulating tumor cells [78]. Upon the 
migration and colonization of invasive tumor cells in the 
blood, platelets can improve their survival and support 
metastatic dissemination [77]. Platelet-derived TGF-β 
is complexed with glycoprotein A repetitions predomi-
nant (GARP) protein to induce both NK cells and T cells 
anergy [79], while thrombin involved in platelet-bound 
GARP cleavage and the liberation of active TGF-β sup-
ports cancer immune evasion [80].

Furthermore, platelet-tumor interactions support the 
occurrence of epithelial-mesenchymal transformation 
(EMT)-like events and metastasis [81]. Platelets release 
EMT inducers and growth factors to shift epithelial-
like phenotype to mesenchymal-like phenotype [82, 83]. 

Table 1 Platelet-associated clinical laboratory indexes as prognostic biomarkers of tumors
Clinical Laboratory Indexes Functions Tumor types References
platelet count predicting prognosis NSCLC, lung, gastric, ovarian, breast, colorectal cancers, hypopha-

ryngeal squamous cell carcinoma, esophageal squamous cell cancer 
(ESCC), renal cell carcinoma

[41, 42, 44, 46, 47, 
151, 152, 153, 154, 
155, 156]

monitoring the disease recurrence and 
predicting treatment response

EOC, rectal cancer [48, 49]

predicting lymph node metastasis NSCLC [157]

PLR predicting prognosis NSCLC, lung, breast, gastric, bladder, metastatic colorectal cancers [50, 51, 52, 53, 158]

monitoring the disease recurrence and 
predicting treatment response

TNBC [159]

predicting survival outcomes rectal, cervical cancers [160]

predicting lymph node metastasis breast cancer [161]

platelet distri-
bution width 
to platelet 
count ratio

predicting prognosis breast, serous ovarian cancer [54, 55]

platelet to 
albumin ratio

predicting prognosis NSCLC [56]

red cell distri-
bution width 
to platelet 
count ratio

predicting prognosis breast cancer [57]

PMPs predicting prognosis breast cancer, epithelial ovarian cancer [162, 163]

predicting survival outcomes prostate cancer [164]

CD40L predicting prognosis gastric cancer, colorectal cancer [65, 165]

predicting survival outcomes cancer-associated VTE [59, 166]

P-selectin predicting prognosis colorectal cancer, cancer-associated VTE [60, 66, 167, 168)

TF predicting prognosis cancer-associated VTE [61, 169, 170]
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Subsequently, platelet-associated cell adhesion molecules 
(CAMs), including integrin, P-selectin, immunoglobulin 
superfamily (IgSF) member glycoprotein VI (GPVI), etc. 
[26, 84, 85], can mediate adhesion and communication 
between platelets and the extracellular matrix (ECM) 
and among platelets to promote tumor metastasis [86]. 
Finally, tumor-platelet agglomerates support intravas-
cular arrest of cancer cells via P-selectin, accelerating 
extravasation to distant organs [87]. In the process, plate-
let-secreted chemokines (like CXCL5 and CXCL7) [88], 
growth factors (like VEGF, PDGF, and TGF-β)[89], and 
PMPs-derived miRNA [90] support the proliferation, for-
mation of pre-metastatic nitch and seeding of metastatic 
tumor cells. Therefore, platelets play a key role in tumor 
cells proliferation progression, anoikis resistance, extrav-
asation and metastatic seeding.

To sum up, platelets are involved in the whole pro-
cess of tumorigenesis and tumor development (Fig.  1). 
Benefit from their closed membrane structure, plate-
lets can completely preserve the biological information 
of tumor sources and isolate bioactive molecules in the 
circulation. For these reasons, the substances carried by 

platelets have great potential to become tumor biomark-
ers (Tables 2 and 3).

Alterations and mechanisms of platelet RNA 
profiles in tumor
Platelet mRNA expression profiles can serve as tumor 
biomarkers
mRNA is the most studied type of RNA in platelets, 
about one-third of all human genes (~ 5000–9000 genes) 
mRNAs have been identified within platelets [91, 92]. 
Previous studies have illuminated the diagnostic value of 
platelet mRNA signatures as the non-invasive biomarkers 
for predicting tumorigenesis and monitoring tumor pro-
gression, including CRC [93], lung cancer [94], NSCLC 
[95], prostate cancer [96], liver cancer (hepatocellular 
carcinoma, HCC) [97] and etc.

Best et al. prospectively isolated, amplified, and 
sequenced TEP mRNA profile between healthy donors 
and cancer patient platelets, 5,003 differentials were 
identified. Using this readout, they were able to distin-
guish patients with localized and metastatic tumors 
from healthy individuals with 96% accuracy [2]. Using 

Fig. 3 Mechanisms of cancer-associated thrombocytosis. Primary tumor cells secret TPO, or IL-6 which can accelerate TPO production in the liver. TPO 
can stimulate differentiation, proliferation and maturation of megakaryocytes in the bone marrow, as well as platelet production (TPO: thrombopoietin; 
IL-6: interleukin-6; MKP: megakaryocyte progenitor; MK: megakaryocyte)
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the R language WGCNA package, platelet RNA pro-
files of CRC patients and healthy donors were screened 
for potential biomarkers for cancer diagnostics. It was 
found that TIMP1 mRNA in platelets increased for 
tumor patients, possessing the promising diagnostic 
performance much higher than CEA and CA199 [93]; 
Besides, platelet ITGA2B levels were significantly higher 
in NSCLC patients than in all controls, and the combina-
tion of ITGA2B, CEA and stage could predict the overall 
survival [98]; A similar phenomenon was observed in a 
pan-cancer study, where platelets mRNA expression pro-
files were significantly different between tumor patients 
and healthy volunteers. Platelet profiles were not only 
suitable for cancer diagnosis, but also correctly identi-
fied the primary origins of pan-cancer. In many cases, 
they could accurately predict tumor gene mutation sta-
tus, including MET, HER2, KRAS, EGFR or PIK3CA 
mutations [99]. Calverley et al. also demonstrated that 
they could distinguish patients with HER2 amplified, 
PIK3CA mutant or triple-negative BrCa (TNBC) and 
NSCLC patients with MET overexpression, although the 
low levels of these mutant biomarkers needed to be con-
sidered [99]. Our previous study also demonstrated sig-
nificant changes in platelet mRNA expression profiles in 
lung cancer patients [100]. A total of 1306 mRNAs with 
the differential expression were identified, among which 
MAX, MTURN, UQCRH and HLA-B were significantly 
upregulated and correlated with ‘‘favorable’’ first chemo-
therapy response, thus providing a noninvasive marker to 
predict first chemotherapy response.

Splicing is the major regulatory mechanism for TEP mRNA 
expression
Although mature platelets are anucleate, they still retain 
endogenous pre-mRNAs inherited from the transcrip-
tion of nuclear DNA in the megakaryocyte as well exploit 
functional spliceosome [101]. Once activated by exter-
nal signals, such as activation of platelet surface recep-
tors and lipopolysaccharide-mediated platelet activation, 
these transcripts can be specifically spliced into mature 
mRNA and translated into thousands of different pro-
teins [102]. RNA splicing is closely related to changes in 
platelet mRNA profiles, and analysis demonstrated that 
pre-mRNA splicing might occur during platelet acti-
vation [103]. For example, interleukin-1β (IL-1β) was 
spliced into mature mRNA transcripts, resulting in the 
synthesis of IL-1b proteins in response to cellular activa-
tion in quiescent platelets [101, 104, 105].

Aberrant RNA splicing is an underlying highly con-
served process, occurring in > 95% of human multi-exon 
genes [106]. A Pan-Cancer study have found an aver-
age of 20% more alternative splicing in tumors than in 
corresponding healthy tissues [107]. Platelets may also 
undergo queue-specific splice events in response to 
signals released by cancer cells and tumor microenvi-
ronment [102]. The specific splice events can provide 
platelets with a highly dynamic mRNA repertoire in 
patients with different types and organs of tumors, with 
potential applicability to cancer diagnosis and tumor ori-
gin tracking [95, 99]. Previous research detected the dif-
ferential expression of spliced RNAs in NSCLC patients 
based on the intron-spanning read count analysis. They 
identified 1,625 spliced platelet genes with significantly 

Table 2 TEP RNA families in various tumors
RNA families TEP biomarkers Functions Tumor types References
messenger RNA (mRNA) ITGA2B, EGFRvIII, PCA3, MAX, MTURN, HLA-B, 

ACIN1, TIMP1, TPM3, AKT, PI3K, RhoA, CTNNB1, 
SPINK1

tumor diagnosis NSCLC, prostate, lung, colon, 
breast cancer, glioblastoma, HCC

[93, 98, 100, 
171, 172, 173, 
174, 175, 176]

KLK2, KLK3, FOLH1, NPY, MAX, MTURN and HLA-B predicting treat-
ment response

prostate, lung cancer [96, 100]

microRNA (miRNA) miR-34c-3p, miR-18a-5p tumor diagnosis nasopharyngeal carcinoma 
(NPC)

[177]

small nuclear RNA (snRNA) U1, U2, U5 tumor diagnosis lung cancer [134]

small nucleolar RNA 
(snoRNA)

SNORD55 tumor diagnosis NSCLC [178]

circular RNA (circRNA) circNRIP1 tumor diagnosis NSCLC [179]

long noncoding (lncRNA) lincGTF2H2-1, RP3-466P172, and lnc-ST8SIA4-12 tumor diagnosis lung cancer [180]

antisense RNA (asRNA) MAGI2-AS3 and ZFAS1 tumor diagnosis NSCLC [172]

Table 3 TEP-derived proteins in various tumors
TEP-derived proteins Functions Tumor types References
VEGF, PDGF, PF4, TSP1 and TGF-β1 tumor diagnosis colon, breast cancer [181, 182]

PDGF, TGF-β1 predicting prognosis HCC [97]

EML4-ALK rearrangements predicting treatment response NSCLC [183]

platelet proteome tumor diagnosis pancreas, ovarian cancer [184, 185]
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different spliced levels (698 genes with enhanced splic-
ing in platelets of NSCLC patients and 927 genes with 
decreased splicing in platelets of NSCLC patients). 
The most significantly enriched spliced RNAs in TEPs 
included CFL1, ACOT7, and ARPC1B, whereas DDX5, 
RPS5, and EEF1B2 were decreased [95]. Therefore, a 
large number of changes in platelet splicing behavior 
during platelet activation are undoubtedly one of the 
main reasons for the changes in platelet mRNA expres-
sion profiles (Fig. 4).

TEP snRNAs as novel biomarker in cancer detection
snRNPs dominate RNA splicing
Chemical reactions of pre-mRNA splicing in platelets 
occur only after the pre-mRNA assembles into the func-
tional spliceosome, a multi-component complex termed 
as snRNPs composed of U1, U2, U4, U5, U6 snRNAs and 

their associated protein components [10, 11], including 
a protein-only NineTeen Complex (NTC) and a number 
of accessory proteins [108, 109]. It has been shown that 
platelets contain many spliceosome-associated proteins, 
including U1 70 K, U2AF, SRm160, SMN, and SF2/ASF 
[7], as well as snRNAs, which direct the accurate removal 
of intronic sequences from pre-mRNAs.

During spliceosome assembly, snRNAs and splic-
ing factors recognize and interact with the pre-mRNA 
consensus sequences, facilitating and specifying the 
transesterification reactions [110]. Their main process 
in the spliceosome complex is that U1 and U2 snRNPs 
are responsible for recognizing the 5′ splice site and 
branchpoint upstream of the 3′ splice site, and U4/U6.U5 
tri-snRNP is added to the spliceosome before rearrange-
ments, guiding U6 snRNP to catalyze the actual splicing 
reaction [13, 111]. In addition to U1, U2, U4, U5, and 

Fig. 4 Platelets exploit a functional spliceosome for pre-mRNA splicing. Megakaryocytes sort distinctive RNA molecules into proplatelets during 
thrombopoiesis. Pre-mRNAs contain exons and introns and are processed by U snRNPs that make up the spliceosome. Platelet spliceosomes alternatively 
excise introns from pre-mRNA, yielding a mature message that is translated into protein
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U6 snRNPs (major), other minor spliceosome snRNP 
species (U11, U12, U4atac, U5atac and U6atac) are also 
involved in splicing a minor class of introns [112, 113]. 
Eventually, introns are removed, and protein-coding 
segments known as exons are spliced together to form 
mRNAs [114, 115]. It was previously thought that spli-
ceosome components were only present in nucleated 
cells [116], but later it was reported that anucleate plate-
lets also exploit the functional spliceosome inherited 
from megakaryocytes during thrombopoiesis [101]. 
More Importantly, snRNAs are not merely the basal fac-
tors ubiquitously expressed in all cells [12], whereas they 
are extremely variable across a wide range of biological 
conditions [13].

Alternation of snRNAs regulate alternative splicing in 
cancer
Recently, snRNPs have been shown to act as regulatory 
molecules to mediate cancer processes through alterna-
tive splicing [117, 118]. It can directly or indirectly affect 
too many molecular targets, thereby regulating cis-acting 
elements, transacting factors, or pre-mRNA transcrip-
tion at multiple levels [119]. In particular, endogenous 
variation at snRNA levels leads to widespread differences 
in alternative splicing. Studies have shown that snRNA 
dysregulation shapes the transcriptome of breast can-
cer [13], exhibiting subtype-specific dependence on the 
abundance of different snRNAs [120, 121]. For example, 
the HER2 subtype shows high levels of U1 and U5A, 
while triple-negative samples have high abundance of U6 
or relatively low levels of U2 and U5A [122].

SnRNAs can also be subject to somatic mutations in 
addition to aberrant expression, which can alter the nor-
mal splicing process to drive heredity, dysplasia, and even 
tumorigenesis and cancer progression [123, 124]. For 
example, aberrant U1 snRNA (A > C somatic mutation at 
the third base of U1) has been reported in several tumor 
types, generating novel splice junctions and altering the 
splicing pattern of multiple genes.

Alternation of platelet snRNAs
Multiple hypotheses exist regarding the source and 
mechanism of platelet snRNAs alterations. One hypoth-
esis supposes RNA expression patterns are fluid through-
out megakaryocyte development and platelet biogenesis 
[125, 126]. Alterations of platelet snRNAs are caused by 
RNA differential sorting mechanism of megakaryocytes 
[127]. In addition, an alternative source mechanism has 
recently been discussed, namely the ability of extracel-
lular vehicles (EVs) to transmit snRNAs horizontally [9]. 
Circulating platelets can capture and store tumor-derived 
EVs from the periphery, and then obtain characteristic 
biological information, which is one of the main mecha-
nisms of TEP.

It has recently been shown that megakaryocytes selec-
tively sort RNAs into platelets rather than randomly, 
allowing only a fraction of RNAs transferred into plate-
lets. This observation is supported by a recent study 
describing how megakaryocytes preferentially sorted 
matrix metalloproteases (MMPs) and their tissue inhibi-
tors into platelets [127]. Nevertheless, the sorting mech-
anisms appear largely unknown [128]. Few studies have 
expounded whether changes in the megakaryocyte envi-
ronment would alter the types and amounts of RNA sort-
ing to platelets [129].

EVs also have the ability to transmit information to 
platelets horizontally [99]. EVs are membrane-separated 
subcellular particles containing a variety of biologi-
cally active molecules. They are the main messengers of 
local and systemic intercellular biological information 
exchange [130], and contain nearly all types of non-pro-
tein-coding RNAs (ncRNAs), which can be transferred 
horizontally between cells regulating gene expression 
and the malignant phenotype in recipient cells, [131]. The 
results of deep RNA sequencing showed that the propor-
tion of snRNAs was 25%, accounting for the majority of 
all short ncRNAs in cells, among which 11% in microves-
icles (MVs), and 20% in exosomes [132]. While another 
study confirmed that the expression level of snRNA 
RNU6-1 was significantly increased in serum EVs of neu-
roblastoma patients [133]. Our previous research also 
reported that TEP U1, U2 and U5 levels were closely cor-
related between platelet and paired exosomes, indicating 
that snRNAs might be released from tumors to educate 
platelets through EVs [134].

Alterations of snRNAs as cancer biomarker
As shown in Table  4, alterations of snRNAs have been 
reported in multiple tumors. It was reported in the 1102-
case research that three differential snRNAs includ-
ing RNU1-106 P, RNU6-850 P, and RNU6-529 P were 
found in pan-adenocarcinomas of the esophagus, stom-
ach, colon, and rectum digestive tract, with potential as 
the biomarkers for diagnosis and progression monitor-
ing for cancer [135]. Moreover, U2 is one of the most 
highly-expressed in blood and widely-studied snRNAs 
as a potential tumor marker [136]. Fragments derived 
from U2 snRNA (RNU2-1f) were differentially expressed 
in a variety of tumors, with the upregulation not only in 
serum [137–141] but also in cerebrospinal fluid [142], 
serving as the potential diagnostic biomarker. It also acts 
as the prognostic factor. Its relatively high expression of 
serum RNU2-1f was closely related to shorter median 
survival in lung cancer patients [137] and a high risk of 
recurrence and poor prognosis in ovarian cancer [139] 
(Table 4).

In the previous experiment, we validated whether TEP 
snRNAs served as the potential biomarkers for lung 
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cancer [134]. TEP U1, U2 and U5 levels were significantly 
decreased in lung cancer patients, possessing the favor-
able diagnostic efficiency, especially in early lung can-
cer. Moreover, their downregulation was correlated with 
lung cancer progression. It was coincided with previous 
reports, 99% of differential mRNAs in TEP of untreated 
lung cancer patients were down-regulated [143]. This 
might also explain the accumulation of a large number 
of immature reticulated platelets in the blood of NSCLC 
patients and the down-regulation of splicing function 
blocked the maturation of reticulated platelets [95].

Conclusion and perspective
The bidirectional tumor-platelet interactions are recip-
rocal and complicated, during which the platelets are 
educated by tumor and derived bio-substance, and 
empowered with the potential to identify surrogate bio-
marker signatures to detect cancer. Multiple studies have 
shown that platelet-based biomarkers (e.g., count, vol-
ume, RNA profile and protein profile) are incorporated 
into liquid biopsy platforms [144]. As the liquid biopsy 
tool, platelets are easily isolated and counted and are the 
second most abundant cell in circulation, thus making 
them more attractive for clinical applications [2]. More-
over, platelets occupies the short life span (average of 7 
days), and more importantly, splicing activity and rapid 
protein translation, thereby the contents in TEPs are 
dynamic and transient in response to external stimuli, 
providing the opportunity to potentially serve as a prom-
ising diagnostic, prognostic, and therapeutic tool that 
enables high specificity and sensitivity in the search for 
new ways to fight against malignancies [145].

The unique benefits of TEP for cancer detection are 
exciting, nevertheless, some limitations should be taken 
into consideration. It has been reported that the same 
RNA plays different roles between cells and platelets, 
indicating different splicing mechanisms in platelets from 
those in cells [119]. It has been observed that cancer cells 
disrupt normal alternative splicing events to generate 
specialized splicing isoforms that affect cell function and 

control cell proliferation and tumorigenesis [146–148]. 
Although TEPs as a novel biosource for cancer diagnos-
tics are widely recognized, it is generally uninformed 
about the mechanisms how conformational and composi-
tional changes within the spliceosome determine splicing 
outcomes [109], which urgently needs further investiga-
tion to enable extended and more optimal diagnostics. 
Besides, there is still a large gap between biomarker dis-
covery and clinical validation and implementation. The 
simplified, low-cost and standardized methodologies 
must be developed. For example, the most commonly 
used method of platelet isolation is low-speed cen-
trifugation, but the protocols quite differ from different 
researches and laboratories [149]. Therefore, consensus 
on methods for TEP research of normalization, sample 
collection, and processing is essential and imperative. 
Another critical point for the TEP clinical implementa-
tion would be to perform clinical utility studies. A dedi-
cated, well-powered, blinded, and population-targeted 
prospective clinical trial based on TEP platform should 
be further pursued as other types of liquid biopsies to 
ensure the clinical value of platelet-related biomarkers 
including RNA splicing signatures [150]. Collectively, 
we believe that TEP RNA repertoire and RNA process-
ing machineries including snRNAs will be widely used in 
cancer diagnosis, treatment and prognosis monitoring in 
future, bringing great progress to the cancer diagnostics 
and treatment and warrant further research.
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