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Abstract 

Purpose Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardio‑
toxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate 
the doxorubicin‑induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silib‑
inin against the doxorubicin‑induced cardiotoxicity were systematically reviewed.

Methods In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all 
relevant studies on “the role of silymarin/silibinin against doxorubicin‑induced cardiotoxicity” in different electronic 
databases up to June 2022. Sixty‑one articles were obtained and screened based on the predefined inclusion and 
exclusion criteria. Thirteen eligible papers were finally included in this review.

Results According to the echocardiographic and electrocardiographic findings, the doxorubicin‑treated groups pre‑
sented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional 
shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormali‑
ties were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led 
to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin 
co‑administration could mitigate these induced alterations (for most of the cases).

Conclusion According to the findings, it was found that the co‑administration of silymarin/silibinin alleviates the 
doxorubicin‑induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti‑
inflammatory, anti‑apoptotic activities, and other mechanisms.
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Introduction
Cancer, known as an uncontrolled growth of cells, is one 
of the leading causes of death in the world [1–3]. Among 
current mainstay treatments for cancer include surgery, 
chemotherapy, and radiotherapy [4–6]. Cancer chemo-
therapy is the application of drug(s) to cancer patients 
[7]. Advancements in chemotherapeutic drug discovery 
have resulted in a remarkable increase in survivorship for 
cancer patients [8]. However, a number of chemothera-
peutic drugs cause adverse effects such as cardiovascular 
toxicity that may be devastating and life-threatening to 
cancer patients [9].

Anthracyclines are a class of chemotherapeutic agents 
that are administered in adult and pediatric patients for 
treating different cancers [10]. Doxorubicin (also known 
as Adriamycin) is the most common anthracycline 
which is widely used to treat different malignant tumors, 
including acute leukemia, lymphomas, ovarian, testicular, 
lung, thyroid, breast cancers, and so on [11–15]. Despite 
its potency, the doxorubicin-associated toxicity on vari-
ous body organs (particularly the heart) limits its clinical 
use [16, 17]. Cardiotoxicity is defined as the deterioration 
of ejection fraction by more than ten percent in asymp-
tomatic cases with a final ejection fraction of less than 
fifty-five percent or a reduction in ejection fraction of at 
least five percent in symptomatic cases with a final ejec-
tion fraction of less than fifty-five percent [18, 19]. Clini-
cally, doxorubicin-induced cardiotoxicity is characterized 
by a decrease in the left ventricular ejection fraction, 
aberrant arrhythmias, and congestive heart failure as well 
as an increment in the ventricular wall thickness, which 
can lead to death [10, 20, 21]. This chemotherapeu-
tic drug acutely and chronically causes cardiac adverse 
effects through induction of oxidative stress, apoptosis 
and inflammation, mitochondrial dysfunction, inhibi-
tion of nucleic acids, and other mechanisms [22–24]. 
Fortunately, previous studies have reported that the use 
of combination chemotherapy could alleviate the doxoru-
bicin-induced cardiotoxicity [25, 26]; as the doxorubicin 
co-administration with other agents having chemopro-
tective capabilities can enhance the therapeutic efficacy 
of doxorubicin and mitigate different toxicity to normal 
cells/tissues at the same time [27, 28].

The use of herbal plants and their derivatives in 
order to alleviate the chemotherapy-associated toxicity 
(chemo-protectors) or increase the sensitivity of tumoral 
cells to chemotherapeutic drugs (chemo-sensitizers) has 
attracted much attention. Silymarin is a polyphenolic 
flavonoid mixture extracted from the seeds of Silybum 
marianum [29]. It is noteworthy that the standardized 
extract of this herbal agent contains various flavonolig-
nans of silybin A, silybin B, silychristin A, silychristin B, 
isosilybin A, isosilybin B, and silydianin (approximately 

65–80%), fatty acids and polyphenolic compounds 
(approximately 20–35%), and small amounts of flavo-
noids [30]. Silibinin is also a 50:50 ratio of silybin A and 
silybin B. It has been confirmed that silibinin is the major 
bioactive component of silymarin. [31, 32]. Moreover, it 
was shown that silymarin is one of the best pharmacolog-
ically characterized plant extracts because it is non-toxic 
and without side effects even at relatively high physiolog-
ical dose values which can be used for treating different 
diseases [33, 34]. In this regard, silymarin has been used 
as a natural remedy for nervous system, kidney, prostate, 
lung, liver diseases, etc. [35, 36]. Among the protective 
activities of silymarin can point to antifibrotic, immu-
nomodulatory, membrane‐stabilizing [37, 38], antioxi-
dant [39], anti-apoptotic [40], and anti-inflammatory [41] 
properties. The antitumoral effects of this herbal agent 
have been assessed in some tumors such as lung, liver, 
cervical, breast, bladder, skin, and prostate cancers [42–
49]. The different mechanisms for the antitumor activi-
ties of silymarin have been reported by previous studies 
[38, 45, 46, 50–54].

To the best of our knowledge, this study is the first 
systematic review regarding the cardioprotective poten-
tials of silymarin/silibinin, as an adjuvant, against the 
doxorubicin-induced cardiac adverse effects. In this 
regard, it was tried to answer the following issues: (a) 
How does doxorubicin cause cardiotoxicity? (b) What 
are the underlying mechanisms of cardiac adverse effects 
induced by this chemotherapeutic agent? (c) What is 
the role of silymarin/silibinin against the doxorubicin-
induced cardiotoxicity? (d) What are the cardioprotective 
mechanisms of silymarin/silibinin against the doxoru-
bicin-induced cardiac adverse effects?

Methods
We performed a comprehensive and systematic search in 
accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guideline 
[55]. In this study, we also used a PICO framework [55] 
for structuring the review process:

• Participants (P): patients/animals with cardiac com-
plications from doxorubicin (for clinical studies/
in-vivo experiments) and/or cardiac cells injured by 
doxorubicin (for in-vitro experiments)

• Intervention (I): cardiac cells/patients/animals 
treated with silymarin/silibinin plus doxorubicin

• Comparison (C): cardiac cells/animals/patients 
treated with doxorubicin

• Outcomes (O): there were two main outcomes: (1) 
the cardiac adverse effects induced by doxorubicin in 
the cardiac cells/tissue than the control groups and 
(2) the changes resulted in the cardiac cells/tissue 
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following silymarin/silibinin plus doxorubicin than 
doxorubicin alone

Search strategy
A systematic search was carried out for obtaining all rel-
evant scientific papers on “the cardioprotective effects of 
silymarin/silibinin against the doxorubicin-induced car-
diotoxicity” in different electronic databases of Scopus, 
PubMed, and Web of Science up to June 2022 using the 
keywords “Silymarin” OR “Milk thistle” OR “Carduus 
marianus” OR “Silybum” OR “Silybum marianum” OR 
“Carsil” OR “Silibinin” OR “silybin” OR “Legalon” OR 
“Marian thistle” OR “Karsil” OR “Blessed milk thistle” 
OR “Scotch thistle” OR “Mary thistle” OR “variegated 
thistle” OR “Saint Mary’s thistle” OR “Mediterranean 
milk thistle” AND “Doxorubicin” OR “Adriamycin” AND 
“Cardiac” OR “Heart” OR “Cardiomyopathy” OR “Cardi-
opathy” OR “Cardiac Toxicity” OR “Cardiac Toxicities” 
OR “Cardiopathic” OR “Arrhythmias” OR “Myocardium” 
OR “Cardiotoxicity” OR “Myocardial” OR “Myocyte" OR 
“Cardiomyocyte” in the title, abstract or keywords.

Study selection process
We initially selected all studies based on the study objec-
tive (the role of silymarin/silibinin against the doxoru-
bicin-induced cardiotoxicity) in the title and abstract. In 
the next stage, the full-text papers with (a) English lan-
guage, (b) adequate findings, (c) no restriction on pub-
lication year, and (d) no restriction in publications with 
in-vivo, in-vitro, or clinical studies were included in the 
present systematic review. Additionally, we excluded not 
related papers, book chapters, review papers, case stud-
ies, letters to the editors, posters, editorials, and oral 
presentations from the current study.

Data extraction
Each eligible paper was independently investigated by 
two authors (MS and ZHJ). When there was a discrep-
ancy between these two authors, it was resolved by con-
sulting the third author (BF). The following data were 
then extracted for each eligible study: (a) author name 
and publication year, (b) models (clinical study, in-vivo 
experiment or/and in-vitro experiment), (c) dosage, pro-
tocol of usage, and administration route of doxorubicin, 
(d) outcomes obtained from doxorubicin administration 
on the cardiac cells/tissue, (e) dosage, protocol of usage, 
and administration route of silymarin/silibinin, and (f ) 
findings obtained from silymarin/silibinin co-administra-
tion on the doxorubicin-induced cardiotoxicity.

Results
Literature search and screening
We obtained sixty-one papers up to June 2022. After 
removing the duplicate studies (n = 29), thirty-two 
studies were screened in their titles and abstracts. 
Fourteen studies were then excluded and eighteen 
remaining studies were qualified for assessment of their 
full texts. Thirteen studies were finally included in this 
review. The selection process of the study is also shown 
in Fig. 1. Furthermore, the findings extracted from thir-
teen eligible studies are summarized in Table 1. 

The cardioprotective potentials of silymarin/silibinin 
on the doxorubicin‑induced cardiac adverse effects
Cell survival and mortality
In an in-vitro experiment by Ortona et  al. [56], car-
diac cells (AC16 cell line) were treated with 1  μM 
doxorubicin for 72  h, and it was observed that car-
diac cell survival following the chemotherapeutic drug 
administration was significantly lower than that of the 
untreated cells. In contrast, the findings showed that 
pretreated with 100 μM silibinin for 48 h could protect 
the cardiac cells against doxorubicin-induced reduction 
in cell survival [56].

Two in  vivo experiments revealed that the mortality 
rate in the doxorubicin-treated rats/mice was higher 
than that in the control groups [57, 58]. However, the 
use of silymarin remarkably reduced the doxorubicin-
induced mortality rate [57]. Patel et al. reported that a 
single dose of 60 mg/kg doxorubicin caused 55% death 
in mice, while the silymarin co-administration (16 mg/
kg/day, for 14 days) decreased lethality induced by dox-
orubicin from 55 to 9% [57].

Body weight and heart weight changes
The results of in-vivo studies showed that the body 
weight and heart weight of mice/rats treated with dox-
orubicin were lower than those of the control groups 
[57–60]. A significant accumulation of ascites, pericar-
dial, pleural, and peritoneal fluids in the animals treated 
with doxorubicin in comparison with the untreated 
group was also found [58]. Other findings indicated 
that the silymarin co-administration could restore the 
body weight and heart weight of doxorubicin-treated 
mice/rats [57–60].

Electrocardiography (ECG) changes
In an in-vivo experiment, it was observed that doxoru-
bicin-treated rats had several ECG changes consisting 
of bradycardia and prolongation of QT and QRS inter-
val. However, these ECG abnormalities were obviously 
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improved in the animals receiving silymarin plus doxo-
rubicin [58].

In a clinical study, the echocardiographic examina-
tions of children with acute lymphoblastic leukemia 
were obtained before and after doxorubicin treatment 
alone and in combination with silymarin. According 
to the findings, a significant reduction in ejection frac-
tion, tissue Doppler peak mitral annulus systolic veloc-
ity, and fractional shortening of the cancer patients 
were observed following doxorubicin administration. 
Moreover, the cancer patients receiving silymarin plus 

doxorubicin showed a significant increase in these 
parameters evaluating systolic function compared to the 
doxorubicin group alone [61].

Biochemical changes
The findings obtained from some studies showed that 
the doxorubicin administration could induce bio-
chemical changes in the cardiac cells/tissue, as listed 
in Table  1. Briefly, it was shown that the lactate dehy-
drogenase (LDH), creatine kinase, aspartate ami-
notransferase (AST), creatine phosphokinase (CPK), 

Fig. 1 PRISMA flow diagram illustrating the selection process of studies
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troponin-I, creatine kinase-myocardial band (CK-
MB), reactive oxygen species (ROS), malondialde-
hyde (MDA), thiobarbituric acid reactive substances 
(TBARS), nitrite, nitric oxide, hydrogen peroxide 
 (H2O2), inducible nitric oxide synthase (iNOS), cas-
pase-3, tumor necrosis factor-alpha (TNF-α), nuclear 
factor erythroid 2-related factor 2 (Nrf2), vascular 
endothelial growth factor A (VEGF-A), plasma choles-
terol, total lipids, total cholesterol, triglycerides, low-
density lipoprotein-cholesterol (LDL-c), triglyceride/
high-density lipoprotein (TG/HDL), LDL/HDL, and 
C-reactive protein levels significantly elevated in the 
doxorubicin-treated groups than the untreated/control 
groups [56–66]. Additionally, the glutathione peroxi-
dase (GPx), glutathione (GSH), superoxide dismutase 
(SOD), catalase, peroxidase, glutathione reductase, 
gamma-glutamyl transferase (γ-GT), glutathione-S-
transferase (GST), HDL-c, and interleukin-10 (IL-10) 
levels significantly decreased following the doxoru-
bicin treatment than the untreated/control groups [60, 
64–66].

Other results also indicated that, for most of the cases, 
the silymarin/silibinin co-administration could alleviate 
the doxorubicin-induced biochemical alterations in the 
cardiac cells/tissue [34, 56–67].

Histological and ultrastructural changes
The histopathological and ultrastructural examinations 
of heart sections of the doxorubicin-treated mice/rats 
indicated the following tissue changes: necrotic mus-
cle fibers, hypertrophy of muscle fibers, wide spaces 
between muscle fibers, cytoplasmic vacuole formation, 
highly eosinophilic cytoplasm, disturbance in cardiac 
trabeculae, interstitial edema, mild hyperemia, vascular 
congestion, myofibrillar disorganizations, infiltration of 
inflammatory cells, increase in number of focal necro-
sis and fibrosis (%), disintegration and dilatation of sar-
coplasmic reticulum, vesiculated rough endoplasmic 
reticulum, eosinophilic degeneration, distorted blood 
capillaries, severe hemorrhage, retrogressive lacerations 
in muscle fibers, degenerated cardiac myocytes with 
small deeply stained pyknotic nuclei and vacuolated cyto-
plasm, thickening of coronary artery wall, degenerated 
cardiac myocytes with irregular corrugated thick base-
ment membrane, cardiac myocytes with small shrunken 
fragmented nucleus, cardiac myocytes with wide inter-
cellular space containing many fibroblasts and collage 
fibers, and so on [58–60, 62–66].

It was also observed that the silymarin/silibinin co-
administration could mitigate the doxorubicin-induced 
histological/ultrastructural changes in the cardiac tissue 
[58–60, 62–66].

Discussion
In the current study, the effects of doxorubicin therapy 
alone and in combination with silymarin/silibinin on 
normal cardiac cells/tissue are reviewed and the findings 
extracted from the eligible studies are summarily pre-
sented in Table  1. Furthermore, some of the important 
effects of doxorubicin alone and silymarin/silibinin plus 
doxorubicin on the cardiac cell are shown in Fig. 2.

The cardiac insult, myocardial infarction, and tissue 
ischemia can be detected by estimation of recognized 
cardiac marker enzymes, including cholesterol, creatine 
kinase, CPK, CK-MB, LDH, and AST present in the 
serum [68, 69]; hence, the activity assessment of these 
enzymes is important for prediction of cardiac dam-
age. Some studies have reported that the doxorubicin 
administration significantly elevated the serum activities 
of these heart damage-associated enzymes, which were 
released from the damaged cardiac cells [57–60, 62, 64, 
65]. It was reported that the increased serum level of 
troponin I shortly following chemotherapy can be con-
sidered as a powerful predictor for ventricular dysfunc-
tion and poor cardiac outcome [61, 70, 71]. Nevertheless, 
the co-administration of silymarin/silibinin could reduce 
the elevated serum levels of heart damage-associated 
enzymes (cholesterol, creatine kinase, CPK, CK-MB, 
LDH, and AST) and cardiac troponin I in the doxoru-
bicin-treated groups [57–62, 64, 65].

It has been also shown that the doxorubicin admin-
istration might affect hematological parameters such 
as induction of anemia, reduction of platelet numbers, 
increase of lymphocyte numbers, decrease of hemo-
globin concentration, etc. [60, 72, 73]. In a study by Afsar 
et al. it was reported that the silymarin co-administration 
resulted in a significant improvement in the hematologi-
cal parameters of doxorubicin-treated rats [60].

Cardiac adverse effects are closely related to oxida-
tive stress caused by excessive free radicals (such as 
ROS), lipid peroxidation (LPO), and antioxidant deple-
tion [74]. The semiquinone form of doxorubicin is able 
to interact with molecular oxygen for ROS generation 
in cardiac cells [59]. The doxorubicin-generated ROS 
attack the cell macromolecules (such as DNA, RNA, 
and lysosome), leading to the malfunction of the heart 
tissue [75–79]. Moreover, the doxorubicin administra-
tion causes LPO, an interaction between doxorubicin-
generated free radicals and unsaturated fatty acids 
normally in membrane lipids [57, 80, 81]. The TBARS 
and MDA levels have been reported to be a cred-
ible marker of LPO; in this regard, some studies have 
reported that the doxorubicin administration increased 
the TBARS and MDA levels of cardiac cells/tissue 
[60, 62, 66, 82]. Furthermore, the antioxidant endog-
enous system (including SOD, peroxidase, catalase, 
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glutathione reductase, GSH, GPx, γ-GT, GST) provides 
defense against the oxidative damage through neutral-
izing additional free radicals [60, 83–85]; nevertheless, 
it was revealed that these endogenous antioxidant lev-
els decreased in the doxorubicin-treated cardiac cells/
tissue [58, 60, 64, 66, 82, 86–93]. The  H2O2 level also 

increased in rats treated with doxorubicin [60]. Addi-
tionally, there is normally a low amount of nitric oxide 
in the cardiac cells [23]. It was reported that the nitric 
oxide level of cardiac cells increased following doxoru-
bicin treatment and this free radical has notable roles 
in cellular signaling during pathological processes [94, 

Fig. 2 The molecular mechanisms of cardiac damage induced by doxorubicin. The doxorubicin administration leads to induction of oxidative 
damage, mitochondria damage, apoptosis, inflammation, and other mechanisms in the cardiac cell. In contrast, the silymarin/silibinin 
co‑administration, through an opposite pattern, alleviates the doxorubicin‑induced cardiac cell injury. ↓decreased by doxorubicin; ↑increased by 
doxorubicin; MDA, malondialdehyde; TBARS, thiobarbituric acid reactive substances; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; 
GR, glutathione reductase; GSH, glutathione; GPx, glutathione peroxidase; γ‑GT, gamma‑glutamyl transferase; GST, glutathione‑S‑transferase; NO, 
nitric oxide; ROS, reactive oxygen species; NF‑κB, nuclear factor kappa B; IL, interleukin; iNOS, inducible nitric oxide synthase; TNF‑α, tumor necrosis 
factor‑alpha; TGF‑β, transforming growth factor‑beta; COX‑2, cyclooxygenase‑2; BAX, Bcl‑2‑associated X protein; AIF, apoptosis‑inducing factor; PARP, 
poly (ADP‑ribose) polymerase
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95]. The superoxide anion  (O2
−) produced from an oxy-

gen molecule following doxorubicin treatment highly 
interacts with nitric oxide, which can produce perox-
ynitrite  (ONOO−) [96]. Moreover, the  ONOO− can 
turn to other reactive nitrogen species (RNS), includ-
ing  NO2

−,  NO3
−,  OH−, and  CO3

− [23]. The mitochon-
dria injury following doxorubicin via mitochondria 
ROS production has been reported previously [56, 97]. 
Doxorubicin has also a high binding affinity to cardi-
olipin in the inner mitochondria membrane, directly 
leading to the electron transport chain disturbance, 
which causes excessive ROS and RNS [98–100]. It has 
been shown that silymarin through its antioxidant 
effects can inhibit oxidative stress by scavenging free 
radicals and increasing cellular antioxidant defense 
mechanisms [101–105]. Moreover, silymarin is able to 
decrease LPO and its anti-lipoperoxidation activity can 
be due to the presence of taxifolin and the ability of its 
polyphenols to bind transition metals and quench ROS 
[34]. Furthermore, the increased levels of oxidative 
stress markers (MDA, TBARS, nitric oxide, and  H2O2) 
and the reduced levels of antioxidant markers (SOD, 
peroxidase, catalase, glutathione reductase, GSH, GPx, 
γ-GT, GST) in the doxorubicin-exposed cardiac cells 
was reversed by the silymarin/silibinin co-adminis-
tration [34, 60, 62–64, 66]. It was also shown that the 
co-treatment of silibinin reduced mitochondrial ROS 
generation, mitochondria membrane depolarization, 
and cytoskeleton changes associated with doxorubicin 
in cardiomyocytes [56].

Doxorubicin also stimulates apoptosis via both intrinsic 
and extrinsic pathways [106, 107]. This chemotherapeu-
tic agent leads to excess oxidative stress and mitochon-
drial damage, triggering apoptotic cell death [108–111]. 
Some important mediators involved in the apoptotic pro-
cess are p53, B-cell lymphoma-extra large (Bcl-xL), Bcl-
2, BAX, cleaved poly (ADP-ribose) polymerase (PARP), 
caspase enzymes, and so on [23, 112–117]. Some studies 
have reported that doxorubicin chemotherapy upregu-
lates BAX, cleaved caspase-3, cleaved caspase-9, and p53 
expressions and downregulates Bcl-2 and Bcl-xL expres-
sions in the cardiac cells [75–77, 118–124]. These find-
ings indicate that the cells are moving toward apoptotic 
cell death. It has been also reported that doxorubicin 
via activation of c-Jun N-terminal kinase (JNK) and p38 
mitogen-activated protein kinases (MAPKs) pathways 
can trigger cardiac apoptosis [125]. The anti-apoptotic 
effects of silymarin/silibinin have been reported in pre-
vious studies. In this regard, it was shown that silymarin 
is able to prevent the release of cytochrome c, thereby 
inhibiting the activation of caspases [126, 127]. Addition-
ally, the silymarin/silibinin treatment increased the Bcl-2 
and Bcl-xL levels and decreased the BAX, p53, JNK and 

p38 MAPKs, PARP, and caspase-3 levels in the cells [29, 
56, 57, 64, 105, 128–131].

The cancer chemotherapy may trigger an inflammatory 
process [132], leading to the incidence of various adverse 
effects following this therapeutic modality [133]. Some 
studies have reported that the cancer chemotherapy with 
doxorubicin can cause cardiac inflammation [89, 90, 134, 
135]. The inflammatory process is positively correlated 
with oxidative stress in cardiotoxicity [74]. It has been 
reported that doxorubicin-induced oxidative stress can 
activate lysosomal enzymes, leading to the promotion 
of cardiac inflammation [23]. According to the findings 
obtained from some studies, it was indicated that doxo-
rubicin treatment led to an increase in the production 
of pro-inflammatory mediators (iNOS, COX-2, TGF-β, 
IL-1β, IL-6, IL-18, NF-κB, and TNF-α) and a reduction 
in IL-10 level (an anti-inflammatory cytokine) of cardiac 
cells [64, 66, 75, 82, 120, 122, 135]. Previous studies have 
reported that silymarin/silibinin can be a promising anti‐
inflammatory agent. It was shown that the use of silyma-
rin/silibinin could reduce the inflammation via decreased 
levels of iNOS, COX-2, TGF-β, IL-1β, IL-6, IL-18, and 
TNF-α along with an increased level of IL-10 in different 
cells/tissues [64, 66, 128, 136–141]. Moreover, the anti-
inflammatory effects of silymarin can mainly be because 
of inhibiting the NF-κB nuclear translocation/activation, 
resulting in preventing the aggregation of inflammatory 
cells as well as decreasing the expression of inflamma-
tory cytokines and other certain inflammatory media-
tors [105, 128, 131, 142–144]. In addition, the histological 
findings represented in this systematic review exhibited 
that the doxorubicin-induced cardiac inflammation is 
mitigated by the silymarin/silibinin co-administration 
[58, 60, 62–65].

Perspective of future research and limitations
Although the doxorubicin chemotherapy is commonly 
applied for treating the cancer patients, its cardiotoxic 
adverse effects limit the clinical application of this chem-
otherapeutic agent. According to the data presented in 
this systematic review, it was shown that silymarin/sili-
binin can be an effective cardioprotective agent against 
the doxorubicin-induced cardiotoxicity. This herbal agent 
exerts the cardioprotective activities via the antioxidant, 
anti-apoptotic, anti-inflammatory effects, and other 
mechanisms. In addition to its chemo-protective effects, 
silymarin/silibinin can be used as a chemosensitizing 
agent on cancerous cells, mitigating the chemotherapy-
induced adverse effects via reduction of the chemother-
apy dose in the cancer patients.

Despite its remarkable beneficial effects, it has been 
reported that silymarin has very low water solubility 
and poor oral absorption. A number of researchers have 
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overcome these biopharmaceutical drawbacks by using 
various structural modification strategies [145–147] 
and have introduced novel derivatives and analogues 
for silymarin [148–156]. Furthermore, the therapeutic/
protective efficacy of novel derivatives/analogues has 
been investigated on tumor/normal cells [148, 150, 157, 
158]. Other researchers have reported that the loading 
of silymarin into a delivery system improves its bioavail-
ability; hence, they developed various formulation-based 
approaches such as solid lipid nanoparticles, mesoporous 
silica nanoparticles, biodegradable polymeric micelles, 
nanoemulsions, amorphous solid dispersions, nanosus-
pensions, and liposomes [159–165]. Some studies have 
assessed the therapeutic/protective effects of silymarin 
delivery systems on tumor/normal cells [166–170]. In 
view of the above, evaluating the potential cardioprotec-
tive potentials of the analogues/derivatives and the deliv-
ery systems of silymarin/silibinin against cardiotoxicity 
induced by chemotherapy drugs (especially doxorubicin) 
is suggested.

Since the data represented in this study are mostly 
based on in vitro and in vivo experiments, suggesting the 
use of silymarin/silibinin (as a potential cardioprotective 
agent) in the cancer patients for alleviating the cardiac 
adverse effects induced by doxorubicin or other chemo-
therapy drugs requires further clinical studies. Moreo-
ver, another point that should be evaluated with more 
extensive studies on the current topic is to provide more 
details on the type of cancer, the dose and frequency of 
administration of the drugs.

Conclusion
The findings reveal that the doxorubicin chemotherapy 
could induce echocardiographic, biochemical, and histo-
logical alterations in the cardiac cells/tissue which caused 
cardiotoxicity. Other results showed that the silymarin/
silibinin co-administration could alleviate the doxoru-
bicin-mediated cardiac adverse effects. Mechanically, 
the silymarin/silibinin exerts its cardioprotective effects 
via the antioxidant, anti-apoptotic, anti-inflammatory 
effects, and other mechanisms.
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