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Abstract 

Background Copper homeostasis is associated with malignant biological behavior in various tumors. The excessive 
accumulation of copper can induce tumor death, which is named cuproptosis, and it is also closely related to tumor 
progression and the formation of the immune microenvironment. However, the associations of cuproptosis with 
glioblastoma (GBM) prognosis and microenvironment construction are poorly understood.

Method First, TCGA and GEO (GSE83300, GSE74187) merged datasets were used to analyze the association of 
cuproptosis-related genes (CRGs) with GBM. Then, we performed cluster analysis of CRGs in GBM from the GEO 
(GSE83300, GSE74187) and TCGA merged datasets. Subsequently, the prognostic risk model was constructed by least 
absolute shrinkage and selection operator (LASSO) according to gene expression features in CRG clusters. Next, we 
performed a series of in-depth analyses, including tumor mutational burden (TMB) analysis, cluster analysis, and GBM 
IDH status prediction. Finally, RARRES2 was identified as a target gene for GBM treatment, especially IDH wild-type 
GBM. In addition, we further analyzed the correlation of CRG clusters and RARRES2 expression with the GBM immune 
microenvironment by ESTIMATE and CIBERSORT analyses. In vitro experiments were conducted to demonstrate that 
targeting RARRES2 inhibits glioblastoma progression and macrophage infiltration, particularly IDH wild-type GBM.

Results In the present study, we demonstrated that the CRG cluster was closely related to GBM prognosis and 
immune cell infiltration. Moreover, the prognostic risk model constructed with the three genes (MMP19, G0S2, 
RARRES2) associated with the CRG clusters could well evaluate the prognosis and immune cell infiltration in GBM. 
Subsequently, after further analyzing the tumor mutational burden (TMB) in GBM, we confirmed that RARRES2 in the 
prognostic risk model could be used as a crucial gene signature to predict the prognosis, immune cell infiltration and 
IDH status of GBM patients.
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Conclusion This study fully revealed the potential clinical impact of CRGs on GBM prognosis and the microenvi-
ronment, and determined the effect of the crucial gene (RARRES2) on the prognosis and tumor microenvironment 
construction of GBM, meanwhile, our study also revealed over-expressed RARRES2 is related to the IDH satus of GBM, 
which provides a novel strategy for the treatment of GBM, particularly IDH wild-type GBM.
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Introduction
Glioblastoma (GBM) is a rare brain tumor with a high 
fatality rate; the 5-year mortality rate is more than 90% 
[1]. Even after undergoing the standard Stupp treatment 
protocol, the median survival time of GBM patients is 
less than 2 years [2]. Although various therapeutic strate-
gies, including chemoradiotherapy and immunotherapy, 
are still being developed and applied, the prognosis of 
GBM patients remains unsatisfactory [1]. In addition, 
the high heterogeneity within GBM and the lack of spe-
cific target genes are major obstacles limiting the success 
of GBM therapy. Therefore, there is an urgent need to 
explore new biomarkers and therapeutic targets for this 
refractory tumor.

Copper is a cofactor of some crucial enzymes that 
perform physiological functions [3]; its abnormal accu-
mulation produces toxic effects on organisms [4]. Peter 
Tsvetkov et  al. reported that copper ions can directly 
bind to lipoylated tricarboxylic acid cycle (TCA) pro-
teins to induce cell death, and this form of cell death 
is named cuproptosis [5]. Recently, some studies con-
firmed that the deficiency or overload of copper in the 
body is clearly associated with many diseases, such as 
hereditary diseases, Wilson’s disease (WD), Alzheimer’s 
disease (AD) and cardiovascular diseases [6]. Similarly, 
researchers have found abnormal copper metabolism 
in a variety of tumors, including breast, thyroid and 
prostate cancers [7]. Copper also promotes tumor pro-
gression by inducing epithelial–mesenchymal transi-
tion (EMT) and angiogenesis [7-9]. Moreover, copper 
homeostasis can affect tumor epigenetic modifications 
at the level of chromatin modifications and transcrip-
tion factors to favor tumor progression [10]. Recently, 
copper was shown to regulate the expression of pro-
grammed death ligand 1 (PD-L1) in tumors, which 
allows tumor cells to evade immune surveillance [11]. 
Meanwhile, some studies have identified that cop-
per controls the mitogenic signaling pathway, thereby 
promoting oncogenesis [8]. The oncogenic roles of 
copper-dependent lysyl coxidase enzymes (LOX and 
LOXL1-4) have been demonstrated in various tumors, 
including colorectal cancer, hepatocellular carcinoma 
and breast cancer [12-15]. These evidences suggest that 
abnormal copper metabolism is a major cause of tumor 

pathogenesis, and increasing evidence has recognized 
that tumor cells have a higher demand for copper rela-
tive to most other tissues, which indicates that copper 
metabolic vulnerability can be an alternative for tumor 
treatment [16]. Therefore, the in-depth exploration of 
copper metabolism in tumors may become an effective 
strategy for anticancer therapies.

Investigation of the role of copper metabolism in 
glioma progression is still in progress. Qian et al. dem-
onstrated that copper overload in astroglioma cells is 
associated with reactive oxygen species (ROS) produc-
tion [17]. Copper chelators can induce the cytotoxicity 
of copper oxide nanoparticles (CuO-NPs) by block-
ing the accumulation of copper in C6 cells [18]. Wang 
et al. reported that the copper-associated gene STEAP2 
is involved in glioma prognosis [19]. These above evi-
dences indicate that abnormal copper metabolism may 
be involved in the occurrence and development of 
glioma.

The effectiveness of traditional copper iono-
phores  and copper chelators as antitumor agents has 
been confirmed; however, these remedies lack selectiv-
ity [20]. Moreover, the existence of tumor heterogeneity 
results in different tumors having different metabolic 
characteristics [21]; thus, there may also be differ-
ences in copper metabolism in tumor cells, suggesting 
that the development of specific targets for tumor cop-
per metabolism has the potential to be a driving factor 
for the success of tumor therapy. In the present study, 
GBM patients were first divided into two subgroups 
by clustering analysis based on CRGs expression, and 
then further analysis confirmed that RARRES2 is a 
potential target for GBM treatment. We also analyzed 
the correlations of RARRES2 expression with GBM 
patient prognosis, IDH status and immune cell infiltra-
tion. Ultimately, we confirmed that RARRES2 overex-
pression was negatively correlated with GBM patient 
prognosis and that the RARRES2 expression level could 
predict the IDH status of GBM patients. Moreover, 
RARRES2 overexpression was correlated with the for-
mation of an immunosuppressive microenvironment in 
GBM patients. Therefore, these observations indicated 
that targeting RARRES2 may provide a new therapeutic 
strategy to improve GBM prognosis, particularly IDH 
wild-type GBM.
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Methods and materials
Data acquisition
The transcriptome and survival data of 168 glioblas-
toma (GBM) and 5 normal brain tissues were derived 
from The Cancer Genome Atlas (TCGA, https:// portal. 
gdc. cancer. gov/). The microarray and overall survival 
(OS)  information of 110 GBM samples were obtained 
from GSE74187 (60 GBM samples) and GSE83300 (50 
GBM samples) in the Gene Expression Omnibus (GEO, 
Home—GEO—NCBI (nih.gov)) database. The IDH sta-
tus and transcriptome data of 342 GBM samples were 
downloaded from the Chinese Glioma Genome Atlas 
(CGGA, Home | CGGA—Chinese Glioma Genome 
Atlas).

Cluster and principal component analysis (PCA)
GBM samples were grouped by cluster analysis accord-
ing to typing-related gene expression. First, the expres-
sion of typing-related genes in GBM patients was 
obtained by the R package limma, and then Consensus-
ClusterPlus in R was used to perform cluster analysis. 
PCA was performed using R packages (limma, ggplot2) 
according to the expression of typing-related genes and 
cluster data of GBM patients.

GSVA, GO, and KEGG enrichment analyses
The GBM transcriptome data were obtained from the 
TCGA and GEO databases. The cluster data of GBM 
patients were derived from cluster analysis. Then, three 
R packages (GSEABase, GSEABase, GSVA) were uti-
lized for subsequent GSVA analysis, and the heatmap of 
GSVA was drawn by R software. GO and KEGG enrich-
ment analyses were performed by R packages (cluster-
Profiler, org.Hs.eg.db, enrichplot, ggplot2).

Prognostic risk model construction
The construction of the prognostic risk model was car-
ried out using R packages (survival, caret, glmnet, sur-
vminer, and timeROC). In GBM patients, we obtained 
the expression data of prognosis-related genes as well 
as survival-related information. Least absolute shrink-
age and selection operator (LASSO) was performed to 
construct the prognostic risk model for GBM patients. 
Finally, the prognostic risk model was constructed by 
three genes (MMP19, G0S2, and RARRES2).

Immune correlation analysis
The R package ESTIMATE was used to evaluate the 
tumor microenvironment (TME) scores of each GBM 
sample, and then the correlation of the TME scores 
with the prognostic risk model and risk genes was 
graphed by the R packages reshape2 and ggpubr. The 

R package (CIBERSORT) was used to analyze the state 
of immune cell infiltration. Then, R packages (limma, 
reshape2, tidyverse, ggplot2, ggpubr and ggExtra) were 
utilized to analyze the results of CIBERSORT. The tran-
scriptome data were obtained to further determine the 
relationship between RARRES2 and immune check-
points, and the relationship was analyzed using R pack-
ages (limma, reshape2, ggplot2, ggpubr, and corrplot).

Survival prognosis, univariate Cox and receiver operating 
characteristic (ROC) analyses
First, the patients’ survival time and grouping informa-
tion were acquired. Subsequently, the R packages (sur-
vival and survminer) were used to perform survival 
prognosis analysis and to draw the diagram of the rela-
tionship between grouping and survival. R packages 
(limma and survival) were used for univariate Cox analy-
sis to assess the relationship between the expression of 
prognosis-related genes and the survival time of GBM 
patients; ultimately, the correlation of prognosis-related 
genes with survival time was acquired. To further explore 
the correlation of patient survival with grouping data, 
ROC curves were drawn by the R package (survivalROC).

Tumor mutational burden (TMB) analysis
The gene mutation information of GBM was derived 
from the TCGA database. Then, the GBM patients were 
divided into high- and low-risk subgroups according to 
the prognostic risk score. Next, the gene mutation infor-
mation of GBM patients was matched with every patient 
in the high- and low-risk subgroups. Then, the R pack-
age maftools was utilized to calculate the TMB of GBM 
patients.

Cell culture
The glioblastoma cell lines (U251 and LN229) and U937 
monocytes were obtained from the Laboratory of Neu-
rosurgery, the First Affiliated Hospital of Harbin Medical 
University. Dulbecco’s modified Eagle’s medium (DMEM; 
Gibco, USA) containing 10% fetal bovine serum (FBS 
FND500, Excell bio, Australia) was used to culture U251 
and LN229 cell lines at 37  °C in 5%  CO2. RPMI-1640 
medium (RPMI-1640; Sigma, USA) containing 10% FBS 
was used to culture U937 cells. U937 cells were induced 
to transform into macrophages with 100 ng/mL phorbol 
12-myristate 13-acetate (PMA, MCE) culture for 24 h.

MTT assay
A total of 3–4 ×  103 cells were seeded in 96-well plates 
and cultured for 24  h. Then, siRARRES2 was used to 
culture cells for 48 h; after treatment, 10 μl MTT (5 mg/
ml) was added to each well, and the cells were incubated 
at 5%  CO2 and 37  °C for 4  h. Next, the medium was 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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discarded, and 150  μl of DMSO was added. A BioTek 
ELx800 (USA) microplate reader was used to evaluate 
cell viability at 490 nm.

EdU assay
The U251 and LN229 glioma cell lines were seeded in 
6-well plates and cultured with siRARRES2 for 48  h. 
Then, an EdU assay kit (Beyotime, China) was used to 
measure the effect of siRARRES2 on glioma proliferation 
ability according to the instructions.

Colony formation assay
Glioma cells were seeded in 6-well plates and incubated 
at 5%  CO2 and 37 °C for 24 h. Next, siRARRES2 was used 
to culture glioma cells. Then, the 6-well plate was cul-
tured with DMEM containing 10% FBS; 10 days later, the 
colonies were fixed with methanol and stained with 0.1% 
crystal violet (Beyotime).

Western blotting
Protein samples were obtained from normal brain tissue 
and IDH(Mut) and IDH(WT) GBM tissues. Next, the 
BCA Protein Assay kit (Beyotime) was used to determine 
the protein concentrations. Then, the protein lysates were 
separated by SDS‒PAGE electrophoresis. Then, the pro-
teins were transferred to PVDF membranes and blocked 
in 5% skim milk followed by overnight incubation with 
primary antibodies at 4 °C. The membranes were rinsed 
and incubated with secondary antibodies for 1 h at room 
temperature. The GeneGnome XRQ Imaging System 
(Syngene, UK) was used to observe immunoreactivity. 
The following primary antibodies were used in this study: 
anti-RARRES2 (Cat#10216–1-AP Proteintech China) 
and anti-β-actin (Cat#66009–1-Ig Proteintech China).

Cell transfection and qRT‒PCR
RARRES2 siRNAs were purchased from Genial Biosys-
tems (China) and transfected into glioma cell lines using 
Lipofectamine 8000 (Cat# C0533, Beyotime, China) 
according to the manufacturer’s instructions. Next, TRI-
zol reagent (Cat#T9424, Sigma, USA) was used to collect 
the total RNA, and the Roche Transcriptor cDNA Syn-
thesis Kit (Cat#4897030001, Roche, Switzerland) was 
used to obtain cDNA. Finally, SYBR Green PCR Master 
Mix (Cat#4913914001, Roche, Switzerland) and an ABI 
Prism 7500 fast thermocycler (Applied Biosystems, CA, 
USA) were used to assess the expression of RARRES2. 
The primer sequences are listed in Table 1.

Transwell assay
U251 and LN229 cell lines were transfected with siNC/
siRARRES2 for 48 h, and the supernatants were collected; 
then, the supernatants were mixed with RPMI-1640 

at a volume ratio of 1:1 to obtain siNC-derived condi-
tioned medium (siNC CM) and siRARRES2-derived 
conditioned medium (siRARRES2 CM). Next, 1 ×  105 
macrophages were seeded in the upper chamber, and dif-
ferent CM types were added to the lower chamber for 
24  h. After culture, the upper chamber was detached, 
and then the number of infiltrating macrophages was 
assessed by Transwell assays (Cat#TCS003024: JET BIO-
FIL, China).

Statistical analysis
R version 4.2.0, Perl, and SPSS software were used for 
bioinformatics analysis, and the R packages used in the 
present study were obtained from http:// bioco nduct 
or. org/. Student’s t test or one-way analysis of variance 
(Prism software version 8.02) was used to compare the 
differences in data between groups in vitro experiments. 
P values less than 0.05 were considered statistically sig-
nificant in our research.

Results
Cuproptosis‑related genes (CRGs) are involved 
in glioblastoma
To explore the correlation of CRGs with GBM, 64 CRGs 
were obtained from published articles [22, 23] (Fig. 1A). 
Then, The Cancer Genome Atlas (TCGA) database was 
utilized to quantify the expression of CRGs in GBM. Most 
CRGs were differentially expressed in GBM (Fig.  1B), 
preliminarily suggesting that copper metabolism was 
abnormally regulated in GBM. To further confirm the 
relationship between 64 CRGs and GBM, the Gene 
Expression Omnibus (GEO) (GSE83300, GSE74187) and 
TCGA datasets were merged, and the associations of 64 
CRGs with survival and the hazard ratio (HR) in GBM 
patients were further analyzed. Ultimately, 21 CRGs 
related to survival time and 20 CRGs associated with HR 
were identified in GBM. Subsequently, further intersec-
tion analysis observations indicated that 20 CRGs were 

Table 1 Sequence of siRNA, prismer

siRNA sequence

 siNC 5′UUC UCC GAA CGU GUC ACG UTT3′

 RARRES2–si#1 5′GGA AGA AAC CCG AGU GCA ATT3′

 RARRES2–si#2 5′AGG UGG CCC UGG AGG AAU UTT3′

 RARRES2–si#3 5′CCA UAG AGA CCC AAG UUC UTT3′

Prismer sequence

 GAPDH F-5′ GCA CCG TCA AGG CTG AGA 
AC3′, R-5′TGG TGA AGA CGC CAG 
TGG A3′

 RARRES2 F-5′CAG GAG ACC AGT GTG GAG 
AG3′, R-5′CTC AGA GCC CAG TTT 
GAT GC3′

http://bioconductor.org/
http://bioconductor.org/
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significantly associated with GBM survival and HR risk 
(Fig.  1C–D, Additional file  1: Figure S1A–C). Taken 
together, these observations revealed that copper metab-
olism was closely associated with GBM prognosis, and 
the correlation warrants further investigation.

Cluster analysis of CRGs in GBM
To further elucidate the correlation of CRGs with GBM, 
the datasets merged by GEO (GSE83300, GSE74187) 
and TCGA were subjected to cluster analysis of GBM 
according to CRG expression. Finally, the GBM patients 
were divided into two subgroups (Fig. 2A). The principal 
component analysis (PCA) results showed that there was 
good demarcation between CRG cluster A and B (Addi-
tional file 2: Figure S2A). The heatmap of CRG expression 

suggested that CRG expression significantly differed 
between CRG cluster A and B (Additional file  2: Figure 
S2B). Moreover, subsequent Kaplan‒Meier survival anal-
ysis revealed that the survival time of GBM patients in 
CRG cluster A was significantly lower than that in CRG 
cluster B (Additional file  2: Figure S2C). These results 
indicated that the cluster analysis dividing GBM patients 
into two subgroups according to CRG expression has 
high accuracy in evaluating the prognosis of GBM 
patients.

To determine the differences in physiological functions 
between CRG cluster A and B, gene set variation analy-
sis (GSVA) was used to perform Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of 
CRG cluster A and B. The GSVA results suggested that 

Fig. 1 Summary of cuproptosis-related genes in GBM A The list of 64 cuproptosis-related genes (CRGs). B The expression levels of CRGs in GBM 
tissue relative to normal brain tissue in the TCGA database. C Prognostic network diagram revealing the correlation of CRGs with GBM prognosis. 
(Risk factors: high-risk genes; Favorable factors: low-risk genes; The size of the dot represents the P value) D The CRGs associated with survival and 
CRGs associated with the hazard ratio (HR) in GBM were cross-analyzed with a Venn diagram. List 1: CRGs associated with GBM survival. List 2: CRGs 
associated with the HR
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Fig. 2 Cluster analysis of cuproptosis-related genes in GBM. A The CRG cluster analysis divided the GBM patients into two subgroups (k = 2) 
according to the transcriptome of CRGs. B Gene set variation analysis (GSVA) revealed that there were distinct differences in KEGG pathway 
enrichment between CRG cluster A and B. C The correlation of immune cell infiltration with the CRG clusters. D–E GO analysis and KEGG analysis 
revealed the physiological functions and pathways affected by the differentially expressed genes between CRG cluster A and B
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immune-related pathways, including graft-versus-host 
disease, intestinal immune network, JAK-STAT signal-
ing pathway, cytokine‒cytokine receptor interaction 
and Toll-like receptor signaling pathway, were obviously 
enriched, indicating that immune-associated physiologi-
cal functions were different in groups A and B (Fig. 2B). 
Then, we further analyzed the difference in immune cell 
infiltration in CRG cluster A and B and found that there 
were significant differences in infiltrating immune cells 
between CRG cluster A and B (Fig.  2C). These results 
supported that there are differences in the immune 
response between CRG cluster A and B. To further con-
firm these differences between CRG cluster A and B, 
252 differentially expressed genes (DEGs) were screened 
between CRG cluster A and B (Additional file  2: Figure 
S2D). Then, Gene Ontology (GO) analysis and KEGG 
analysis were carried out to evaluate the physiological 
functions and pathways affected by the 252 DEGs. The 
GO results revealed that immune-related physiological 
functions, such as the humoral immune response, leuko-
cyte chemotaxis and acute inflammatory response, were 
markedly regulated by the DEGs. The KEGG analysis 
results suggested that immune-related pathways, includ-
ing the TNF signaling pathway, IL-17 signaling path-
way and NF-kappa B signaling pathway, were strongly 
affected by the DEGs (Fig. 2D–E). All of the above find-
ings further indicated that the immune response is obvi-
ously different between CRG cluster A and B.

Prognostic and molecular features of the DEGs in the CRG 
cluster
Given that 252 DEGs were identified in the above CRG 
clusters, univariate Cox analysis was performed to screen 
the genes associated with prognosis from 252 DEGs. 
Finally, 210 genes associated with GBM prognosis were 
captured (Table 2). To investigate the molecular features 
of these 210 genes, further cluster analysis results showed 
that the GBM patients could be divided into another two 
clusters (gene cluster A and gene cluster B) according to 
the expression of the 210 genes (Additional file 3: Figure 
S3A–B). Subsequent analysis showed that the progno-
sis of patients in gene cluster A was worse than that of 
patients in gene cluster B (Additional file 3: Figure S3C). 
These results again indicated that these 210 genes are 
closely involved in the prognosis of GBM patients.

Therefore, the 210 DEGs were used to establish the 
prognostic risk model. Finally, three genes (MMP19, 
G0S2, RARRES2) were screened to construct the prog-
nostic risk model in GBM by least absolute shrinkage 
and selection operator (LASSO) regression (Additional 
file 4: Figure S4A, Table 3). Then, the correlation of the 
CRG clusters and gene clusters with the risk score of 

the prognostic risk model was explored, and we found 
that the CRG clusters and gene clusters were associated 
with the risk score of the prognostic risk model (Addi-
tional file 4: Figure S4B–C). Next, the Sankey diagram 
quantified the relationship between the CRG clusters, 
gene clusters, prognostic risk score and prognostic 
results (Additional file  4: Figure S4D). Subsequently, 
the GBM patients were divided into three groups (all, 
train and test) to evaluate the accuracy and feasibil-
ity of the prognostic risk model as a predictor of GBM 
prognosis. The following analysis showed that in the 
above three groups (all, train and test), the expres-
sion of MMP19, G0S2 and RARRES2 in the high-risk 
group was higher than that in the low-risk group, and 
the risk scores of patients in the high-risk group were 
increased. Moreover, we found that the number of non-
surviving patients also increased as the patient’s risk 
score increased. Meanwhile, Kaplan‒Meier survival 
analysis suggested that the survival time of patients in 
the high-risk group was decreased compared to that 
in the low-risk group (Fig. 3A–B). The receiver operat-
ing characteristic (ROC) curve revealed that the area 
under the curve (AUC) values were all greater than 
0.7 or close to 0.7 in evaluating the survival outcome 
of GBM patients (1, 3, and 5  years) (Fig.  3C), indicat-
ing that the high expression of the three genes is associ-
ated with the poor prognosis of GBM patients. Overall, 
these findings suggested that the prognostic risk model 
established by three genes (MMP19, G0S2, RARRES2) 
can serve as a predictor of GBM prognosis.

The tumor microenvironment (TME) in high‑risk 
patients with glioblastoma was more inclined to have 
immunosuppressive phenotypes
In Fig.  2, the GSVA, GO analysis and KEGG analy-
sis results indicated that immune-related physiologi-
cal functions and pathways were markedly different in 
CRG cluster A and B. Therefore, we further investigated 
the correlations of the GBM prognostic risk model with 
TME scores and immune cell infiltration, and the obser-
vations showed that the TME scores were increased in 
the high-risk group compared with the low-risk group 
(Fig.  4A). The patient risk score was positively corre-
lated with M0 macrophage infiltration and negatively 
correlated with M1 macrophage and activated NK cell 
infiltration (Fig.  4B–D). The M0 phenotype is consid-
ered an attenuated M2 phenotype, which is associated 
with tumor immunosuppression [24]. M1 macrophages 
and activated NK cells can inhibit tumor progression 
[25, 26]. In summary, these observations indicated that 
GBM patients with high risk scores were more likely to 
have an immunosuppressive microenvironment.
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Table 2 The uniCox analysis of DRGs between A and B in CRG cluster

Id HR HR.95L HR.95H pvalue

LTF 1.063594 1.022523 1.106315 0.002151

NAMPT 1.185164 1.081909 1.298274 0.000259

CHI3L1 1.100668 1.043475 1.160995 0.000427

ABCC3 1.121298 1.04432 1.203949 0.001605

SOD2 1.133381 1.028249 1.249263 0.011708

CP 1.11934 1.034108 1.211598 0.005272

C1R 1.182455 1.062368 1.316117 0.002161

C1S 1.150388 1.041924 1.270142 0.005558

CCL2 1.139336 1.052889 1.232879 0.001195

C1RL 1.281327 1.146314 1.432243 1.28E-05

FCGR2A 1.22779 1.060353 1.421667 0.006081

CHI3L2 1.090677 1.02866 1.156432 0.003661

DPYD 1.304922 1.132344 1.503803 0.000236

ANXA1 1.221504 1.112316 1.341411 2.81E-05

CD44 1.181375 1.063384 1.312459 0.001905

NFKBIZ 1.35733 1.202622 1.531939 7.49E-07

SAA1 1.091059 1.046709 1.137289 3.85E-05

TREM1 1.1924 1.096331 1.296888 4.03E-05

PTX3 1.220903 1.131558 1.317303 2.64E-07

F13A1 1.094078 1.018782 1.174939 0.013457

MAP3K8 1.200151 1.060654 1.357995 0.003803

ICAM1 1.242385 1.108685 1.392209 0.000187

BCL3 1.305501 1.158409 1.471271 1.24E-05

VASN 1.300224 1.172577 1.441767 6.37E-07

PLAUR 1.314771 1.168368 1.47952 5.54E-06

ANXA2 1.214313 1.090873 1.351722 0.000385

BCL7A 0.813881 0.710197 0.932702 0.003056

TNFSF14 1.334853 1.16721 1.526573 2.46E-05

CD163 1.145974 1.056584 1.242927 0.001008

CSTA 1.198727 1.065704 1.348354 0.002525

BIRC3 1.291411 1.18134 1.411739 1.84E-08

TLR2 1.194512 1.047264 1.362464 0.008098

CFI 1.191548 1.077127 1.318124 0.000668

THBD 1.275986 1.138612 1.429935 2.75E-05

SOCS3 1.204485 1.09223 1.328276 0.000193

MARCO 1.123876 1.042769 1.21129 0.002244

MOXD1 1.157305 1.070507 1.251141 0.00024

CFB 1.27222 1.123177 1.44104 0.000152

S100A4 1.204281 1.075061 1.349032 0.001328

LILRB3 1.282625 1.132447 1.452718 8.94E-05

SAA2 1.14604 1.06677 1.2312 0.000193

VDR 1.374487 1.212153 1.55856 7.04E-07

IL2RA 1.121881 1.022628 1.230766 0.014957

SERPING1 1.195025 1.058392 1.349295 0.004027

HES5 0.891487 0.832897 0.954199 0.000927

STEAP3 1.236529 1.11381 1.372769 6.86E-05

GPX8 1.214231 1.099607 1.340804 0.000125

AQP9 1.159905 1.063195 1.265413 0.000839

LOX 1.241847 1.137362 1.355931 1.36E-06
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Table 2 (continued)

Id HR HR.95L HR.95H pvalue

FCGBP 1.084889 1.002582 1.173953 0.042967

CLEC5A 1.259374 1.124384 1.41057 6.70E-05

BHLHE40 1.308793 1.139558 1.50316 0.000139

LILRB2 1.186457 1.050825 1.339595 0.005773

IBSP 1.165636 1.083999 1.253421 3.52E-05

CD109 1.194975 1.056061 1.35216 0.004727

TNFAIP2 1.281658 1.146763 1.432421 1.22E-05

SERPINA1 1.145718 1.011947 1.297173 0.031758

THBS1 1.195523 1.07592 1.32842 0.000898

TYMP 1.256974 1.103401 1.431921 0.000582

EMP3 1.234035 1.103975 1.379417 0.000215

BATF 1.194857 1.049973 1.359733 0.006947

MMP19 1.272197 1.135781 1.424996 3.18E-05

CCL7 1.175929 1.082905 1.276943 0.000116

TIMP1 1.206517 1.111553 1.309594 7.17E-06

S100A10 1.137897 1.027264 1.260445 0.013308

ADAM8 1.27296 1.13467 1.428105 3.90E-05

S100A8 1.106923 1.026917 1.193162 0.007957

CLCF1 1.317452 1.161498 1.494347 1.80E-05

PLOD2 1.214787 1.077376 1.369724 0.001489

MAN1C1 1.138622 1.009837 1.283831 0.034022

STAB1 1.154321 1.012789 1.315631 0.031525

ANXA2P1 1.178977 1.04627 1.328518 0.006885

EFEMP1 1.119908 1.020958 1.228448 0.016421

ALOX5AP 1.158436 1.018964 1.316998 0.02464

CCL20 1.188585 1.084946 1.302124 0.000206

MMD2 0.842694 0.762798 0.930958 0.000758

CXCL5 1.143567 1.041149 1.25606 0.005074

MSR1 1.200286 1.054789 1.365852 0.005622

FLRT1 0.843472 0.754356 0.943116 0.002809

DUSP26 0.874459 0.800239 0.955563 0.003033

DPYSL4 0.895996 0.803904 0.998638 0.04719

S100A9 1.092888 1.010515 1.181976 0.026311

PLAU 1.18014 1.070478 1.301037 0.000873

SLITRK1 0.875191 0.793259 0.965586 0.007854

PDPN 1.188493 1.088917 1.297174 0.00011

IL6 1.179965 1.056626 1.317701 0.003306

CXCL3 1.146868 1.024458 1.283904 0.017333

GRID2 0.835011 0.758206 0.919595 0.00025

TNFRSF11B 1.243946 1.11488 1.387954 9.40E-05

C21orf62 1.130459 1.011329 1.263622 0.030909

LY96 1.175206 1.040722 1.32707 0.009223

ZDHHC22 0.826201 0.731886 0.932669 0.002021

SLC16A3 1.304344 1.145923 1.484667 5.78E-05

RARRES1 1.231426 1.114896 1.360136 4.06E-05

DDIT4L 1.171282 1.076807 1.274045 0.000229

FAM20A 1.251979 1.108332 1.414244 0.000301

CXCL2 1.188379 1.071288 1.318269 0.00111

MYBPH 1.1201 1.035716 1.211358 0.004538
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Table 2 (continued)

Id HR HR.95L HR.95H pvalue

RIPPLY2 0.806761 0.722251 0.901159 0.000143

RDH10 1.166757 1.044436 1.303404 0.006345

CXCL14 1.069651 1.006352 1.136931 0.030509

CXCL6 1.182539 1.083016 1.291207 0.000186

TDO2 1.147325 1.043715 1.261221 0.004427

LGALS3 1.200855 1.095141 1.316772 9.90E-05

MAST1 0.863938 0.767549 0.972432 0.015388

SRPX2 1.124544 1.035281 1.221503 0.005408

COL6A2 1.140745 1.055888 1.232422 0.000841

GBP1 1.126152 1.020484 1.242761 0.018112

NEU4 0.846666 0.778305 0.921031 0.000107

NKAIN1 0.881784 0.809922 0.960024 0.003725

LYZ 1.128475 1.032003 1.233965 0.008029

TAGLN 1.151788 1.01893 1.301969 0.02383

MAOB 1.177147 1.071395 1.293338 0.000684

PLA2G5 1.129388 1.024115 1.245482 0.014799

PLIN2 1.200387 1.066931 1.350535 0.002387

ANPEP 1.222744 1.102045 1.356661 0.000149

SOX8 0.843356 0.768795 0.925148 0.000309

CXCL1 1.194391 1.105366 1.290584 6.96E-06

RPRM 0.864919 0.790686 0.946122 0.001526

SERPINA5 1.201554 1.090182 1.324303 0.000216

TGFBI 1.123718 1.029512 1.226544 0.009027

FN1 1.236588 1.112112 1.374997 8.75E-05

GDAP1L1 0.84383 0.770681 0.923923 0.000242

SPOCD1 1.095753 1.010088 1.188683 0.027692

TCTEX1D1 1.118628 1.025316 1.220432 0.011652

RUNDC3A 0.867527 0.780838 0.963839 0.008154

CNTFR 0.885287 0.806479 0.971796 0.010425

CYP1B1 1.147323 1.043385 1.261616 0.004561

IGFBP3 1.122194 1.037309 1.214024 0.004069

ANGPTL4 1.153476 1.059868 1.25535 0.000945

COL8A1 1.138543 1.055896 1.227659 0.000739

ARSJ 1.17166 1.062025 1.292611 0.001575

OSM 1.134416 1.03332 1.245403 0.008092

PLEK2 1.214934 1.080747 1.365782 0.001113

SERPINE1 1.216777 1.091554 1.356365 0.000399

DLL3 0.911315 0.858977 0.966842 0.002088

GNG4 0.871284 0.782932 0.969607 0.011546

OLIG2 0.821978 0.762736 0.885821 2.80E-07

ADM 1.182667 1.08669 1.28712 0.000102

CXXC4 0.863995 0.782908 0.953479 0.003645

DLL1 0.881728 0.805222 0.965503 0.006567

GZMA 1.136681 1.017419 1.269923 0.023493

DSCAML1 0.899477 0.828596 0.976421 0.011415

SEZ6L 0.875798 0.80224 0.9561 0.003047

SPP1 1.246436 1.12775 1.377613 1.60E-05

CFH 1.22217 1.096873 1.36178 0.000278

CA12 1.0953 1.002523 1.196663 0.043824
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Table 2 (continued)

Id HR HR.95L HR.95H pvalue

HMX1 0.884398 0.818342 0.955786 0.001924

PDLIM4 1.198118 1.102772 1.301707 1.94E-05

SHD 0.888667 0.825607 0.956543 0.001672

HES6 0.843943 0.775957 0.917886 7.51E-05

SLC16A10 1.21746 1.088061 1.362247 0.000599

PTGS2 1.168318 1.056069 1.292497 0.00254

CELF3 0.906928 0.833105 0.987292 0.02412

PHACTR3 0.903629 0.830234 0.983513 0.019048

COL1A1 1.114787 1.041843 1.192838 0.001648

PCDH15 0.835282 0.753959 0.925375 0.000573

G0S2 1.198988 1.11618 1.287939 6.69E-07

SLC47A2 1.098077 1.018722 1.183614 0.0145

CCL8 1.10118 1.005207 1.206317 0.038304

LIF 1.175926 1.059129 1.305604 0.002395

EPHB1 0.902668 0.830224 0.981433 0.016439

OLIG1 0.791304 0.723712 0.865208 2.77E-07

NEUROD1 0.833776 0.756978 0.918364 0.000227

NKAIN4 0.860151 0.791549 0.934698 0.000382

MYT1 0.89705 0.81277 0.99007 0.030911

LOXL1 1.267488 1.149674 1.397375 1.92E-06

CSPG5 0.878245 0.800695 0.963307 0.005914

FMOD 1.101605 1.032516 1.175316 0.003409

COL3A1 1.098676 1.024908 1.177752 0.00796

TNFRSF12A 1.210943 1.092322 1.342446 0.000274

VIPR2 0.870821 0.794712 0.954218 0.003034

GBP3 1.154083 1.052366 1.265631 0.002333

RAB3C 0.887917 0.805644 0.978592 0.016568

DIRAS3 1.190047 1.084126 1.306316 0.000254

AEBP1 1.211556 1.112101 1.319905 1.13E-05

KCNB1 0.880635 0.797758 0.972121 0.011713

HSPA6 1.149308 1.045904 1.262936 0.003816

FREM3 0.785641 0.70131 0.880113 3.12E-05

COL5A1 1.192842 1.083028 1.31379 0.000345

C7orf57 1.123767 1.030484 1.225494 0.008312

OCIAD2 1.144323 1.046809 1.250922 0.003011

NXPH1 0.899929 0.837353 0.967182 0.004138

LUM 1.121057 1.026272 1.224597 0.011235

KLRC3 0.847093 0.767727 0.934664 0.000946

COL1A2 1.156327 1.066668 1.253522 0.00042

MMP7 1.107547 1.034637 1.185594 0.003282

CXCL13 1.110406 1.022472 1.205902 0.01285

POSTN 1.069681 1.019547 1.12228 0.005953

VSTM2B 0.914898 0.838912 0.997768 0.04438

GADD45G 0.902015 0.829584 0.98077 0.015751

ACTG2 1.13345 1.033874 1.242617 0.007585

RGS1 1.10955 1.019714 1.207301 0.015816

ATCAY 0.913822 0.837087 0.997591 0.044025

RARRES2 1.212841 1.124831 1.307737 5.15E-07

CA10 0.910068 0.848552 0.976045 0.008316
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The prognostic risk model was related to the IDH status 
of GBM patients
Next, we explored the gene mutation burden in the 
prognostic risk model to gain further insights into 
the molecular biological characteristics of the high-
risk and low-risk groups in the prognostic risk model. 
We found that the ratio of IDH mutations was zero in 
the high-risk group; in contrast, the ratio in the low-
risk group was 11%. The results indicated that the 
GBM patients in the low-risk group were more likely 
to have IDH mutations (Fig.  5A). To further identify 
the high-risk genes related to IDH status in GBM, we 
obtained the transcriptome and clinical information 
of GBM patients from the Chinese Glioma Genome 
Atlas (CGGA) database and then analyzed the differ-
ential gene expression between IDH wild-type GBM 
and IDH-mutant GBM (Additional file 5: Figure S5A-
B). Next, the highly expressed genes in IDH wild-type 
GBM were cross-analyzed with 158 high-risk genes 
among the 210 prognostic genes previously obtained 
in result 3, and 105 high-risk genes were obtained 
(Fig. 5B). Then, we determined the correlation of these 
105 risk genes with GBM IDH status, and the expres-
sion of these 105 genes was higher in IDH wild-type 
GBM than in IDH-mutant GBM (Additional file  5: 
Figure S5C). Subsequently, GO and KEGG enrich-
ment analyses were used to determine the functions 
of the 105 high-risk genes, and the results showed that 
immune-related biological processes (BPs) (cell chem-
otaxis, myeloid leukocyte migration, leukocyte chemo-
taxis and granulocyte chemotaxis) and pathways (TNF 
signaling pathway and IL-17 signaling pathway) were 

markedly regulated by these 105 genes (Fig.  5C–D). 
These results revealed that the 105 genes were closely 
involved in IDH status and immune regulation in 
GBM.

To further demonstrate the association of these 105 
genes with the IDH status and prognosis of GBM, GBM 
patients from the CGGA database were cluster ana-
lyzed according to the expression of 105 genes, and 
GBM patients were further divided into two subgroups 
(Fig. 6A). Next, the correlations of the subgroups with 
the survival time and IDH status of GBM were ana-
lyzed. We found that the survival time of subgroup B 
was shorter than that of subgroup A, and GBM in sub-
group B was more inclined to be IDH wild-type GBM 
(Additional file 5: Figure S5D, Fig. 6B–C), which is also 
consistent with the worse prognosis of IDH wild-type 
glioma than IDH-mutant glioma [27]. Meanwhile, the 
expression of 105 genes in subgroups A and B was fur-
ther analyzed, and the results showed the expression of 
105 genes in subgroup B was increased relative to sub-
group A (Additional file 5: Figure S5E). This result again 
suggested that these 105 genes were inextricably related 
to the prognosis and IDH status of GBM patients. Next, 
to identify crucial genes that influence the IDH status 
and prognosis of GBM, the 105 genes highly expressed 
in subgroup B, GBM-related genes obtained from Gen-
eCards and OMIM database and three high-risk genes 
for constructing a prognostic risk model (MMP19, 
G0S2 and RARRES2) were used for intersection analy-
sis; ultimately, RARRES2 was screened (Fig. 6D). Taken 
together, these results indicated that RARRES2 can 
serve as an indicator of GBM prognosis and IDH status.

Table 2 (continued)

Id HR HR.95L HR.95H pvalue

SMOC1 0.908219 0.852072 0.968065 0.003108

VEGFA 1.163134 1.069814 1.264595 0.000398

CCL18 1.083258 1.022405 1.147733 0.006706

TSTD1 1.11194 1.025927 1.205165 0.009792

METTL7B 1.108521 1.020878 1.203688 0.014219

BCAN 0.897478 0.834275 0.96547 0.003695

MMP9 1.163675 1.075107 1.259539 0.000175

GPR17 0.9086 0.847619 0.973969 0.00685

CA9 1.112531 1.033126 1.198038 0.004764

CA3 1.086855 1.021506 1.156385 0.008476

CXCL10 1.084947 1.002839 1.173778 0.042299

DAPL1 0.919885 0.852769 0.992282 0.030742

NR0B1 0.906163 0.8443 0.972558 0.00631

CNGA3 1.086672 1.008911 1.170428 0.028226
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Table 3 The risk scores of GBM patients in the prognostic risk model

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

TCGA-06–0171 1.093151 1 5.257944 6.966346 5.400603 1.980711 High

TCGA-32–2634 1.89863 0 2.868419 3.455889 6.365254 0.781102 Low

TCGA-12–3652 2.909589 1 2.893743 1.610738 4.446743 0.461497 Low

TCGA-32–2638 2.09863 1 3.766394 3.847878 2.5896 0.619739 Low

TCGA-06–0882 1.731507 1 2.854485 5.236664 5.766722 0.950283 Low

TCGA-06–0168 1.638356 1 3.019028 5.87246 7.406848 1.340242 High

TCGA-32–2616 0.613699 1 2.209315 5.945457 6.980835 1.079542 High

TCGA-41–2572 1.112329 1 3.233816 2.583397 3.718774 0.525547 Low

TCGA-06–0750 0.076712 1 5.135422 5.401198 7.09469 1.881494 High

TCGA-06–5859 0.380822 0 1.335037 4.561041 8.245411 0.849976 Low

TCGA-16–0846 0.326027 1 1.735178 3.035217 4.319167 0.441932 Low

TCGA-06–0178 7.345205 1 2.663793 0.440533 1.976275 0.267058 Low

TCGA-06–0211 0.986301 1 3.57368 4.454643 5.385024 0.934867 Low

TCGA-06–0139 0.991781 1 5.938662 8.37904 7.705789 3.831067 High

TCGA-06–0644 1.052055 1 5.313856 5.221879 5.90201 1.631571 High

TCGA-06–2569 0.035616 0 1.474509 4.424322 2.714162 0.421925 Low

TCGA-32–1970 1.282192 1 1.500257 6.848799 6.572587 1.012666 Low

TCGA-27–2523 1.339726 1 1.781657 5.479403 6.706372 0.884981 Low

TCGA-28–5213 0.816438 0 5.286111 7.521383 8.117673 3.076224 High

TCGA-06–0130 1.079452 1 4.796698 7.716768 4.931028 1.898215 High

TCGA-06–0125 3.967123 1 4.504572 4.421246 3.914656 0.939792 Low

TCGA-27–1835 1.775342 1 1.329017 5.868615 1.819282 0.456086 Low

TCGA-27–2524 0.632877 1 4.248445 6.546408 7.205134 1.885213 High

TCGA-27–1837 1.169863 1 2.581836 4.232985 3.446934 0.570052 Low

TCGA-41–5651 1.260274 1 2.237901 6.139437 6.769168 1.089317 High

TCGA-28–5216 1.136986 0 5.670306 4.712124 4.217682 1.311102 High

TCGA-12–5295 1.243836 1 2.174808 3.330782 5.780637 0.612894 Low

TCGA-14–0736 1.260274 1 2.738343 5.763385 5.603968 0.985002 Low

TCGA-06–2559 0.410959 1 5.090959 5.805544 7.10863 1.987676 High

TCGA-06–2558 1.041096 1 3.186766 5.095352 5.907433 1.016288 High

TCGA-76–4928 0.257534 1 4.989599 6.6577 6.131428 1.958159 High

TCGA-06–2562 1.046575 1 3.863747 7.446471 6.63257 1.85489 High

TCGA-06–5412 0.378082 1 4.989987 8.49064 5.596005 2.42853 High

TCGA-06–0646 0.479452 1 3.715486 7.033421 5.860659 1.526902 High

TCGA-15–0742 1.147945 1 2.935547 4.362418 6.689032 0.950442 Low

TCGA-19–2619 0.805479 0 3.510802 4.776556 3.924719 0.804027 Low

TCGA-12–0618 1.082192 1 2.811666 4.785979 5.799262 0.881824 Low

TCGA-32–4213 1.654795 0 4.567654 3.757583 4.628078 0.941823 Low

TCGA-32–2615 1.328767 1 4.513157 6.765201 6.241632 1.8239 High

TCGA-28–2514 0.438356 0 2.533559 5.076098 3.775761 0.670563 Low

TCGA-02–0047 1.227397 1 5.371345 5.266732 2.247593 1.041164 High

TCGA-27–2519 1.506849 1 3.603351 2.883832 5.534385 0.751935 Low

TCGA-06–0747 0.224658 1 1.648994 3.33564 2.829935 0.375541 Low

TCGA-41–2571 0.071233 1 3.662341 5.787008 6.65064 1.377321 High

TCGA-06–5414 0.747945 0 3.015062 5.983528 5.002084 1.000953 Low

TCGA-06–0645 0.479452 1 5.125399 7.90626 4.821156 2.067636 High

TCGA-06–5410 0.29589 1 4.865582 8.325993 6.737991 2.668701 High

TCGA-06–5413 0.734247 0 4.150181 5.515786 6.832703 1.500374 High

TCGA-06–1804 1.134247 1 1.301984 6.129597 7.855174 1.023532 High
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Table 3 (continued)

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

TCGA-19–5960 1.246575 1 1.278753 2.576634 9.473555 0.722938 Low

TCGA-06–0878 0.59726 0 4.817306 7.515394 6.697243 2.317601 High

TCGA-76–4927 1.465753 1 3.876466 5.34976 5.232519 1.123451 High

TCGA-19–0957 1.824658 1 4.46454 5.092389 6.086482 1.3657 High

TCGA-02–2483 1.276712 0 3.633336 3.858672 1.318864 0.512681 Low

TCGA-28–2509 0.39726 0 3.464377 5.729674 7.006543 1.36969 High

TCGA-06–2563 2.553425 0 2.115406 2.57331 2.233035 0.34154 Low

TCGA-06–0158 0.90137 1 1.780229 5.351727 4.347319 0.641046 Low

TCGA-76–4929 0.30411 1 3.807896 4.559378 8.222668 1.437131 High

TCGA-14–1402 2.671233 1 2.513508 3.888652 5.159209 0.663343 Low

TCGA-32–1982 0.389041 1 2.77067 4.766365 5.331147 0.820728 Low

TCGA-06–0686 1.183562 1 3.728717 5.510954 4.520153 1.018656 High

TCGA-06–5858 0.512329 0 3.213701 4.998163 5.989656 1.017554 High

TCGA-06–2561 1.471233 1 5.325107 4.670277 5.431919 1.41379 High

TCGA-27–1832 0.821918 1 4.932678 4.893378 7.78477 1.819509 High

TCGA-14–1825 0.635616 1 2.540316 3.040677 4.515064 0.538691 Low

TCGA-06–0238 1.109589 1 2.799472 4.621288 3.184218 0.613194 Low

TCGA-06–5856 0.312329 1 3.071021 6.284832 4.832705 1.03858 High

TCGA-06–0152 1.027397 1 3.786045 3.995332 5.114042 0.879999 Low

TCGA-06–0184 5.824658 1 2.545752 3.575637 4.840382 0.610845 Low

TCGA-06–5416 0.558904 0 1.806065 3.54771 6.956739 0.681129 Low

TCGA-06–0141 0.857534 1 5.014745 6.666301 6.77057 2.139637 High

TCGA-06–5418 0.227397 1 4.201204 6.012994 6.279101 1.525995 High

TCGA-02–2485 1.287671 0 1.419986 6.167334 6.211019 0.855186 Low

TCGA-19–1390 2.115068 1 4.001883 3.48546 4.817024 0.819761 Low

TCGA-12–5299 0.268493 1 3.656195 5.006615 6.454266 1.188642 High

TCGA-06–0138 2.019178 1 3.188797 5.309839 6.215843 1.093448 High

TCGA-26–5135 0.739726 1 3.517512 6.24963 2.817701 0.87767 Low

TCGA-06–2557 0.090411 1 2.037452 5.687983 4.15831 0.696385 Low

TCGA-08–0386 1.50137 1 2.929035 3.771394 9.023344 1.168217 High

TCGA-19–2620 0.405479 1 4.105256 4.317138 5.593634 1.053036 High

TCGA-28–5209 1.210959 0 2.028116 4.907852 5.05511 0.690944 Low

TCGA-14–1034 1.328767 1 4.093182 5.08687 5.412108 1.156065 High

GSM1912920 2.805479 1 1.830694 6.810575 6.528342 1.074226 High

GSM1912921 2.405479 1 2.911416 3.397975 2.339976 0.466358 Low

GSM1912922 0.975342 1 2.591612 3.432993 5.94971 0.695583 Low

GSM1912925 1.610959 1 3.979364 4.179839 5.947595 1.050104 High

GSM1912928 1.945205 0 4.087136 4.173429 5.774005 1.049877 High

GSM1912930 1.057534 1 2.96321 6.160099 6.058228 1.164853 High

GSM1912932 1.134247 1 4.154816 3.937574 5.417385 0.981081 Low

GSM1912939 1.093151 1 1.430111 5.211108 9.578396 1.138026 High

GSM1912945 1.517808 1 3.655826 7.036139 6.561693 1.649999 High

GSM1912946 0.854795 1 3.525116 6.867616 7.240492 1.705333 High

GSM1912947 1.542466 1 4.874994 8.830492 6.374698 2.759796 High

GSM1912949 0.073973 1 2.948701 4.93561 5.953982 0.947925 Low

GSM1912950 0.542466 1 6.031132 7.102411 6.325029 2.686464 High

GSM1912952 3.191781 0 2.780092 3.599622 4.433198 0.611817 Low

GSM1912954 2.032877 1 2.32825 5.889954 7.532912 1.178358 High

GSM1912955 1.084932 1 4.572788 6.494665 6.839715 1.91265 High



Page 15 of 28Yan et al. Cancer Cell International          (2023) 23:105  

Table 3 (continued)

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

GSM1912958 1.441096 1 4.390108 6.195699 6.629811 1.709594 High

GSM1912960 2.254795 0 4.788958 7.597871 7.575903 2.611373 High

GSM1912963 0.994521 1 5.398642 6.733762 6.063398 2.143546 High

GSM1912965 0.99726 1 3.067773 5.498776 6.183187 1.092587 High

GSM1912966 3.572603 0 1.912948 4.618217 2.756964 0.480112 Low

GSM1912968 0.39726 1 2.977263 5.510184 7.183985 1.2205 High

GSM1912970 1.553425 1 2.099074 5.683673 7.897202 1.138723 High

GSM1912971 1.134247 1 2.911141 0.884141 2.929987 0.340787 Low

GSM1912972 1.175342 1 5.029757 3.951088 2.896275 0.857937 Low

GSM1912974 0.39726 0 2.552213 5.507256 6.39405 1.006755 Low

GSM1912978 0.70411 1 4.43662 6.070272 8.660262 2.196885 High

GSM1912979 1.624658 1 3.012997 1.422667 2.500343 0.358288 Low

GSM2198607 3.510411 0 2.110133 3.78593 4.238317 0.532272 Low

GSM2198608 1.029863 1 5.055892 6.800586 6.771693 2.204203 High

GSM2198612 3.802192 1 2.681909 2.951886 7.353389 0.787979 Low

GSM2198613 2.599726 0 2.546214 2.350088 3.8287 0.443849 Low

GSM2198614 0.367397 1 3.861435 3.390743 4.832304 0.78548 Low

GSM2198616 1.496712 1 3.91811 7.626207 6.350951 1.861113 High

GSM2198617 3.523562 0 2.391019 4.294238 1.386963 0.424278 Low

GSM2198618 1.034795 1 2.301708 5.955583 6.274419 1.007323 Low

GSM2198619 2.870137 0 1.861793 5.898183 6.128213 0.891965 Low

GSM2198622 0.535068 1 4.332713 7.106829 7.33233 2.127892 High

GSM2198624 2.767397 1 2.418207 6.008797 5.876457 0.989473 Low

GSM2198628 0.656712 1 3.203528 6.34114 5.123024 1.118625 High

GSM2198629 1.070137 1 4.330042 5.665603 6.071302 1.447366 High

GSM2198630 2.942466 1 2.787766 3.359308 6.357249 0.755584 Low

GSM2198632 2.134521 0 2.476014 0.605496 0.463415 0.216798 Low

GSM2198637 0.759452 1 3.500749 4.54496 6.782593 1.116497 High

GSM2198638 1.248493 1 4.259012 4.56213 4.930605 1.03819 High

GSM2198640 0.756986 0 1.712949 4.581533 5.457475 0.646623 Low

GSM2198644 1.483562 1 3.311276 4.693484 3.229273 0.695751 Low

GSM2198645 1.60274 1 2.095265 1.147195 1.383477 0.244552 Low

GSM2198646 1.875616 0 4.23043 3.138715 3.109843 0.655449 Low

GSM2198650 0.810411 1 3.866019 5.0162 4.259695 0.939716 Low

GSM2198651 1.762192 0 3.099012 5.179137 7.692367 1.270204 High

GSM2198653 0.913151 1 2.298002 4.43304 6.79479 0.849966 Low

GSM2198654 1.043014 1 3.188 5.461357 5.416113 1.010169 Low

TCGA-12–1597 1.849315 1 2.186274 1.969769 3.983131 0.395235 Low

TCGA-28–2513 0.608219 0 5.137413 4.509862 5.982129 1.421706 High

TCGA-27–2521 1.39726 1 2.005268 0.48931 1.131281 0.209767 Low

TCGA-28–5208 1.490411 1 2.943648 10.10117 3.937988 1.627282 High

TCGA-06–2567 0.364384 1 3.041452 5.474321 8.674746 1.489607 High

TCGA-06–0744 3.906849 1 1.514921 2.300705 5.24318 0.423603 Low

TCGA-14–0817 0.449315 1 1.917228 5.362063 7.715324 1.0181 High

TCGA-12–3650 0.912329 1 2.286315 3.677263 4.183514 0.539664 Low

TCGA-27–1830 0.421918 1 6.291398 5.015188 4.4853 1.623864 High

TCGA-14–0871 2.410959 1 2.629518 6.678992 6.198826 1.196821 High

TCGA-06–0190 0.868493 1 5.459093 6.76027 7.923659 2.767477 High

TCGA-27–1834 3.378082 1 1.69332 3.535773 7.085436 0.674728 Low
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Table 3 (continued)

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

TCGA-06–5417 0.424658 0 2.145936 1.884773 2.637664 0.325458 Low

TCGA-76–4931 0.764384 1 2.964901 5.418043 5.669295 0.988264 Low

TCGA-02–2486 1.693151 1 3.454163 4.701774 5.519866 0.963354 Low

TCGA-14–0789 0.936986 1 6.858069 7.328512 6.9293 3.587243 High

TCGA-14–0790 1.147945 1 1.385504 7.661381 5.247436 0.945572 Low

TCGA-28–5220 1.063014 1 1.183853 4.62801 7.414018 0.747478 Low

TCGA-14–2554 1.457534 1 2.83108 4.203483 6.23191 0.855255 Low

TCGA-06–5408 0.978082 1 3.305313 5.407219 6.781843 1.22368 High

TCGA-06–2570 2.624658 0 3.515613 7.253666 1.609355 0.877829 Low

TCGA-28–1753 0.10137 0 5.7929 4.062634 4.839389 1.318086 High

TCGA-06–2565 1.386301 1 2.141692 1.926503 1.264424 0.274449 Low

TCGA-16–1045 2.419178 1 3.874499 5.669397 4.857678 1.124606 High

TCGA-28–5218 0.430137 1 5.277428 2.209443 10.34081 1.793667 High

TCGA-26–5139 0.131507 0 4.451947 7.040126 5.795932 1.774182 High

TCGA-02–0055 0.208219 1 6.099075 6.57385 9.136727 3.601341 High

TCGA-19–2629 2.019178 1 2.753908 0.667879 1.925469 0.280174 Low

TCGA-06–0743 2.2 1 3.247555 4.704367 5.951324 0.974556 Low

TCGA-06–0157 0.265753 1 2.48334 6.313622 6.074644 1.078898 High

TCGA-12–0616 1.227397 1 2.457011 4.658015 5.850852 0.806749 Low

TCGA-12–0821 0.884932 1 3.406533 4.705513 4.849884 0.875629 Low

TCGA-06–0174 0.268493 1 2.788784 5.394205 6.22081 1.017723 High

TCGA-27–1831 1.383562 1 2.711537 4.725571 5.361975 0.808509 Low

TCGA-06–5411 0.69589 1 2.986565 4.996717 4.168212 0.767335 Low

TCGA-06–2564 0.49589 0 4.73285 5.041383 5.480878 1.327729 High

TCGA-76–4926 0.378082 1 4.351308 3.619629 5.856106 1.030337 High

TCGA-06–0132 2.112329 1 4.123515 5.220026 5.188131 1.154206 High

TCGA-14–0781 0.079452 1 5.826159 4.138316 4.992684 1.369788 High

TCGA-14–0787 0.186301 1 3.271925 4.64413 5.177498 0.8789 Low

TCGA-19–4065 0.586301 0 5.219292 5.653903 5.050949 1.532876 High

TCGA-26–5133 1.238356 0 1.73209 -0.1141 2.477816 0.214175 Low

TCGA-14–1823 1.487671 1 3.253994 6.81314 6.672335 1.483742 High

TCGA-06–0129 2.805479 1 2.502882 0.488865 0.722764 0.221382 Low

TCGA-27–2528 1.315068 1 3.4055 1.192174 6.289661 0.611085 Low

TCGA-26–1442 2.610959 0 1.277298 0.425429 1.859642 0.195181 Low

TCGA-28–5215 0.917808 1 4.846651 4.527773 6.040312 1.349808 High

TCGA-32–1980 0.09863 1 2.754472 5.275392 5.752582 0.934092 Low

TCGA-76–4932 3.994521 1 4.354102 7.121781 7.411618 2.164481 High

TCGA-28–5207 0.939726 1 1.797938 3.69735 7.667878 0.762302 Low

TCGA-06–0210 0.616438 1 5.540655 6.474261 5.371312 1.942368 High

TCGA-32–5222 1.60274 1 2.806682 7.42242 4.077159 1.062561 High

TCGA-06–0749 0.224658 1 1.562071 4.599853 5.100253 0.599786 Low

TCGA-19–2625 0.339726 1 3.912006 4.612753 5.983637 1.111993 High

TCGA-06–0219 0.060274 1 2.434164 4.135398 4.297547 0.606738 Low

TCGA-12–3653 1.210959 1 1.5325 3.094678 5.351349 0.487536 Low

TCGA-26–5132 0.783562 0 2.804655 4.902885 9.059932 1.361795 High

TCGA-06–0187 2.268493 1 3.788407 5.84864 6.799583 1.456028 High

TCGA-26–5136 1.580822 1 2.675159 5.210606 9.313883 1.435248 High

TCGA-41–3915 0.986301 1 5.431622 5.353637 5.92566 1.712819 High

TCGA-19–1787 1.054795 1 2.402762 3.485713 7.541523 0.826009 Low
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Table 3 (continued)

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

TCGA-15–1444 4.210959 1 2.694033 2.842073 2.531157 0.418606 Low

TCGA-32–2632 0.736986 1 1.930266 6.638636 7.318591 1.1824 High

TCGA-41–4097 0.016438 1 3.914091 4.340023 4.790876 0.915281 Low

TCGA-27–2526 0.238356 1 2.581937 4.383693 8.460494 1.10958 High

TCGA-06–0649 0.175342 1 4.230896 4.000131 6.1064 1.099837 High

TCGA-28–5204 1.243836 1 2.449252 4.603214 7.41854 0.976348 Low

TCGA-06–0745 0.654795 1 3.375788 6.593571 7.761982 1.692597 High

TCGA-19–1389 0.386301 1 5.675585 4.851391 8.210834 2.237623 High

TCGA-06–0156 0.487671 1 4.795289 6.791279 7.176161 2.1926 High

TCGA-26–5134 0.457534 0 2.667793 5.187708 5.780076 0.907779 Low

TCGA-19–2624 0.013699 1 3.259533 6.214481 4.271663 0.995335 Low

TCGA-14–1829 0.59726 0 4.298785 4.120227 6.561969 1.205218 High

TCGA-28–1747 0.210959 1 2.055726 2.059711 3.676457 0.374729 Low

TCGA-06–0221 1.652055 1 1.868871 1.276958 3.181742 0.299363 Low

TCGA-76–4925 0.4 1 2.826366 4.72911 5.25423 0.817674 Low

TCGA-12–0619 2.909589 1 4.286767 6.208226 6.05404 1.5563 High

GSM1912923 1.8 1 4.431954 5.573979 6.904562 1.622782 High

GSM1912924 0.515068 1 4.014005 5.93201 7.336437 1.658047 High

GSM1912926 3.380822 0 3.010001 4.434134 3.027478 0.610692 Low

GSM1912927 1.054795 1 4.046538 6.466724 3.488958 1.107618 High

GSM1912929 0.479452 1 2.127435 3.556856 5.347846 0.594429 Low

GSM1912931 1.147945 1 3.636654 6.189381 6.596977 1.447851 High

GSM1912933 1.531507 0 1.403147 2.617943 2.91452 0.32232 Low

GSM1912934 3.558904 0 3.276137 4.129284 4.898722 0.783768 Low

GSM1912935 3.854795 1 2.906828 3.558769 7.580976 0.935122 Low

GSM1912936 1.90137 0 4.061133 2.819912 3.069636 0.59862 Low

GSM1912937 0.443836 1 3.607403 2.885273 3.471926 0.577881 Low

GSM1912938 1.753425 1 5.17788 5.062455 4.792617 1.341245 High

GSM1912940 3.005479 0 2.650914 1.174042 3.131316 0.34597 Low

GSM1912941 0.693151 1 4.130245 6.448752 7.248996 1.820818 High

GSM1912942 1.131507 1 3.125673 2.474634 4.527826 0.560146 Low

GSM1912943 2.219178 1 0.979432 4.874464 6.071487 0.625844 Low

GSM1912944 0.890411 1 5.412774 7.230583 6.609518 2.490334 High

GSM1912948 2.632877 0 3.561262 3.068681 3.512546 0.591769 Low

GSM1912951 1.547945 1 1.649167 2.387261 3.016009 0.332088 Low

GSM1912953 0.780822 1 2.984786 5.176914 3.532154 0.726992 Low

GSM1912956 1.380822 1 2.83709 4.820981 2.800975 0.606993 Low

GSM1912957 1.517808 1 4.705658 5.639276 5.91122 1.530211 High

GSM1912959 1.956164 1 5.400761 5.145598 5.929805 1.648495 High

GSM1912961 2.164384 0 2.168335 1.524771 2.431426 0.301219 Low

GSM1912962 1.460274 1 3.408818 5.994417 7.493211 1.500939 High

GSM1912964 1.128767 1 3.612666 6.39079 7.092988 1.583636 High

GSM1912967 1.246575 1 1.772777 6.736841 7.036804 1.119613 High

GSM1912969 1.6 1 5.430521 7.534953 7.101216 2.79091 High

GSM1912973 1.789041 0 3.408094 3.994307 4.646355 0.764374 Low

GSM1912975 0.857534 1 2.811731 4.519818 7.984166 1.119748 High

GSM1912976 2.635616 0 1.250159 1.636214 4.282281 0.319309 Low

GSM1912977 2.263014 1 2.394929 5.39298 6.383525 0.955119 Low

GSM2198606 1.421096 1 4.570737 5.746551 6.112411 1.551122 High
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RARRES2 may act as a therapeutic target for GBM, 
especially IDH wild‑type GBM
To further confirm the possibility of RARRES2 as a tar-
get for GBM treatment, we analyzed the relationship 
between RARRES2 expression and GBM survival time. 
The Kaplan‒Meier survival analysis results indicated that 
the expression of RARRES2 was negatively correlated 
with the survival time of GBM (Fig. 7A). The subsequent 
ROC analysis showed that the AUC value was greater 
than or equal to 0.7, suggesting that RARRES2 can serve 
as a predictor of GBM patient prognosis (1, 3, and 5 years) 
(Fig.  7B). Next, we evaluated the accuracy of RARRES2 
expression in predicting IDH status in GBM. The ROC 
analysis results showed that the AUC was 0.895, indicat-
ing that patients with high expression of RARRES2 tend 
to have IDH wild-type GBM (Fig. 7C). Specific immune 
cell infiltration is the key barrier of immunotherapy in 
a variety of tumors [28-31]; therefore, the correlation of 
RARRES2 expression with the immune microenviron-
ment was further explored. The results revealed that the 
expression of RARRES2 is positively correlated with the 
TME score in GBM, and high RARRES2 expression can 
recruit M0 macrophages to infiltrate the GBM microen-
vironment. We also found that RARRES2 expression was 

positively correlated with the expression of most check-
points, such as PD-L1 (CD274) (Fig.  7D–F Additional 
file  5: Figure S5F). These observations suggested that 
RARRES2 expression was closely related to prognosis, 
IDH status and the formation of an immunosuppressive 
microenvironment in GBM.

Next, we explored the effects of targeting RARRES2 
on GBM. siRNA was used to knockdown RARRES2 in 
U251 and LN229 glioma cell lines, and the efficiency 
of gene knockout was shown in Additional file 5: Fig-
ure S5G. The proliferation ability of GBM (U251 
and LN229) cells treated with RARRES2 siRNA was 
detected by EdU assay, and we found that RARRES2 
siRNA treatment decreased the green fluorescence 
intensity, suggesting that the proliferation ability of 
GBM cells was inhibited by siRARRES2 (Fig.  8A–B). 
Moreover, a colony formation assay was performed 
to detect the effects of siRARRES2 on GBM, and the 
results showed that siRARRES2 also had an inhibitory 
effect on GBM colony formation ability (Fig.  8C–D). 
Subsequently, the MTT results showed that RARRES2 
knockdown significantly reduced GBM (U251 and 
LN229) cell viability (Fig. 8E). These results indicated 
that targeting RARRES2 exerts an antitumor effect on 

Table 3 (continued)

Id Futime Fustat MMP19 G0S2 RARRES2 RiskScore Risk

GSM2198609 0.683836 1 4.533149 5.937674 6.854804 1.743168 High

GSM2198610 1.116164 1 2.189965 2.78151 4.074096 0.453787 Low

GSM2198611 2.1 1 5.46253 6.188348 6.364033 2.075477 High

GSM2198615 1.367671 1 2.712125 3.478948 5.355207 0.666081 Low

GSM2198620 1.343014 1 2.462854 2.967024 6.015604 0.634939 Low

GSM2198621 1.089041 1 3.987406 5.413493 1.020061 0.677067 Low

GSM2198623 0.877808 1 5.352616 6.784499 6.014362 2.125907 High

GSM2198625 0.961644 1 1.888849 3.280106 5.40386 0.545089 Low

GSM2198626 2.232329 1 2.287111 4.831587 5.722276 0.786118 Low

GSM2198627 1.807397 0 3.603757 2.100834 4.53022 0.58568 Low

GSM2198631 1.132603 1 4.245437 5.702667 6.227342 1.458501 High

GSM2198633 1.578082 1 5.594837 7.073561 6.836694 2.60159 High

GSM2198634 1.44 1 3.411277 5.433868 7.177962 1.322344 High

GSM2198635 1.431781 1 1.83475 4.35874 6.039353 0.690817 Low

GSM2198636 1.296986 0 2.834183 3.369504 8.108181 0.956639 Low

GSM2198639 3.488219 0 1.598831 4.057856 4.845939 0.538023 Low

GSM2198641 1.52137 1 5.450526 8.78245 6.642274 3.205886 High

GSM2198642 1.527123 1 1.993787 2.720358 2.927427 0.372136 Low

GSM2198643 0.980548 1 4.995782 6.19433 5.485087 1.679881 High

GSM2198647 0.507945 1 3.206289 5.358787 6.97393 1.218752 High

GSM2198648 0.908219 1 2.772583 3.093856 7.123068 0.79736 Low

GSM2198649 1.596986 1 5.824394 9.012817 8.956505 4.841324 High

GSM2198652 2.610411 1 1.776214 5.270479 6.949823 0.88294 Low

GSM2198655 0.77589 1 5.929805 8.388817 7.118578 3.551943 High
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GBM. To further assess the correlation of RARRES2 
expression with IDH status in GBM, Western blot-
ting results showed that the relative protein level of 
RARRES2 in IDH wild-type GBM patients was higher 

than that in IDH-mutant GBM patients (Fig.  8F). 
These results and those shown in 7C fully demon-
strated that the expression level of RARRES2 was cor-
related with GBM IDH status. To demonstrate that 

Fig. 3 Prognostic risk model establishment and evaluation. A The prognostic risk model revealed the correlations of the prognostic risk score 
with survival status and prognostic gene expression in all, training and test subgroups. B Kaplan‒Meier survival analysis revealed the correlation of 
the prognostic risk score with GBM patient survival time in all, training and test subgroups. C ROC analysis to predict the survival rates at 1, 3, and 
5 years according to the prognostic risk score in all, training and test subgroups



Page 20 of 28Yan et al. Cancer Cell International          (2023) 23:105 

RARRES2 expression was associated with macrophage 
infiltration in GBM, Transwell experiments further 
verified that the coculture of glioma cell lines (U251 
and LN229) in which RARRES2 was knocked down 
with macrophages could significantly reduce mac-
rophage infiltration (Fig. 8G–H).

Taken together, the above results indicate that 
RARRES2 is associated with GBM prognosis and IDH 
status, and RARRES2 can serve as an immunotherapy 
target for GBM treatment, especially IDH wild-type 
GBM.

Discussion
Mounting evidences have confirmed that the copper 
signaling pathway is associated with the biological behav-
iors of malignancy, including angiogenesis, metastasis, 
and proliferation. However, more mechanistic studies 
are still needed to link copper metabolism to copper-
dependent disease vulnerability, particularly in cancer, 
which will help translate basic research on copper chem-
istry and biology into potential clinical therapies [7]. The 
proposed mode of cuproptosis systematically elucidates 
the relationships between copper metabolism and cell 

Fig. 4 Prognostic risk score was related to TME scores and immune cell infiltration. A The prognostic risk score was positively correlated with the 
TME score. B–D The prognostic risk score was positively correlated with M0 macrophages infiltration; the prognostic risk score was negatively 
correlated with M1 macrophages and activated NK cells infiltration
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death and mitochondrial disorders [5]; moreover, the 
conception provides a theoretical foundation for explor-
ing the role of CRGs in tumors. Given that the effect of 
cuproptosis in GBM is poorly understood, in the present 
study, 64 CRGs were screened for systematic research. 
After subsequent in-depth analysis, the GBM prognos-
tic risk model was finally constructed with three genes 
(MMP19, G0S2 and RARRES2). Finally, we confirmed 
that RARRES2 related to CRG clusters could be used as 

a crucial target gene for GBM prognosis evaluation, IDH 
status prediction and immunotherapy.

Under normal conditions, copper homeostasis can 
maintain the normal operation of various biological pro-
cesses [32]. Dysregulation of copper homeostasis can 
induce cell death, which is called cuproptosis [5]. Cop-
per metabolism is dynamic in a variety of tumors. For 
example, abnormal copper accumulation may promote 
the transformation of malignant biological behaviors 

Fig. 5 Correlation analysis of the prognostic risk model with IDH status of GBM patients. A The waterfall plot revealed the difference in tumor 
mutational burden between the high- and low-risk groups. B The highly expressed genes in IDH wild-type GBM and 158 prognostic high-risk 
genes were cross-analyzed with a Venn diagram; finally, we obtained 105 high-risk genes. List 1: 158 prognostic high-risk genes in GBM. List 2: 
Highly expressed genes in IDH wild-type GBM. C–D GO and KEGG analyses revealed the physiological functions and pathways affected by the 105 
high-risk genes obtained from intersection analysis
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in hepatocellular carcinoma [33]; moreover, to support 
unrestricted proliferation, cancer cells, such as lung, oral, 
and thyroid cancers, have a stronger need for copper 

than healthy cells [7]. However, it is not clear whether 
copper metabolism is also abnormally regulated in GBM 
cells, and studies have confirmed that changes in copper 

Fig. 6 Cluster analysis was used to obtain the target genes associated with GBM IDH status. A Cluster analysis divided the GBM patients into 
two subgroups (k = 2) according to the transcriptome of 105 high-risk genes. B–C Chi-square tests were performed for subgroups A and B. D The 
genes in list 1, list 2 and list 3 were utilized for intersection analysis with a Venn diagram. List 1: 105 genes highly expressed in subgroup B; list 2: 
GBM-related genes obtained from the GeneCards and OMIM databases; list 3: high-risk genes used to construct the prognostic risk model
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Fig. 7 RARRES2 was associated with GBM prognosis, IDH status and immune cell infiltration. A Kaplan‒Meier survival analysis revealed the 
correlation of RARRES2 expression with GBM patient survival. B ROC analysis to predict the survival rates at 1, 3, and 5 years according to RARRES2 
expression. C The ROC curve revealed the accuracy of predicting GBM IDH status by RARRES2 expression. D RARRES2 expression in GBM was 
positively correlated with the TME score. E–F RARRES2 expression in GBM was positively correlated with M0 macrophage infiltration
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transcription levels are important for tumor progression 
[34]. Therefore, the expression of CRGs was analyzed in 
our study, and the results confirmed that the expression 
of CRGs significantly differed between GBM and normal 
brain tissues. Further combined analysis of the TCGA 
and GEO databases suggested that CRGs were differen-
tially expressed in GBM and correlated with the progno-
sis of GBM patients. In addition, research has reported 
abnormal regulation of copper metabolism in tumor 
tissues relative to healthy tissues [22]. Together, these 
evidences confirmed that copper metabolism was abnor-
mally regulated in GBM.

Given the abnormal expression of CRGs in GBM, 
GBM was clustered into CRG cluster A and B, and 
then 210 genes related to the prognosis of GBM were 
screened from the CRG clusters. Next, 210 genes were 
further analyzed by cluster analysis, LASSO regression 
and Cox analysis. Ultimately, the prognostic risk model 
was established, which was composed of MMP19, G0S2 
and RARRES2. MMP19 (matrix metallopeptidase 19), 
a relatively new member of the MMP family, is highly 
expressed in non-small cell lung cancer (NSCLC) and 
is associated with NSCLC progression [35]. In gallblad-
der carcinoma (GBC), MMP19 can stabilize the epithe-
lial–mesenchymal transition (EMT) by increasing Axl 
expression [36]. G0S2 (G0/G1 switch 2) is upregulated 
and related to radiotherapy resistance in GBM [37]. 
RARRES2 (retinoic acid receptor responder 2) has dif-
ferent expression patterns in different tumors; for exam-
ple, in acute myeloid leukemia (AML) and breast cancer, 
RARRES2 expression is downregulated [38]; however, 
RARRES2 is overexpressed in oral squamous cell carci-
noma, and the overexpression of RARRES2 is associated 
with angiogenesis and poor prognosis of tumors [39]. In 
brief, all three key genes are closely related to tumor pro-
gression. Further analysis of the prognostic risk model 
showed that the GBM patients in the high-risk group 
had higher expression of three (MMP19, G0S2 and 
RARRES2), higher risk scores and shorter survival times. 
The correlation analysis of CRG clusters, gene clusters, 
and prognostic factor risk scores and ROC analysis indi-
cated that the constructed scoring system has an accurate 
predictive ability for GBM prognosis.

In neuroblastoma, elevated intracellular copper con-
centrations can regulate the expression of PD-L1, thereby 

causing tumor immune evasion [11]. Moreover, copper 
has a strong regulatory effect on immune processes [40]. 
In addition, the infiltration of immune cells is considered 
an indicator of poor prognosis in glioma [24]. There-
fore, further research on the correlation of CRG clus-
ters with the immune microenvironment could enhance 
the understanding of anti-GBM immunotherapy and 
provide guidance for the development of new immuno-
therapeutic targets in GBM. In the present research, we 
conducted GO and KEGG enrichment analyses on the 
DEGs in the CRG clusters, and found that the differen-
tially expressed genes obtained from CRG clusters can 
significantly affect immune-related functions and path-
ways in GBM. Further correlation analysis between the 
prognostic risk model and immune microenvironment 
showed that the TME score of GBM patients in the high-
risk subgroup was significantly higher than that of GBM 
patients in the low-risk subgroup. Moreover, patient risk 
scores were negatively correlated with M1 macrophage 
and activated NK cell infiltration and positively corre-
lated with M0 macrophage infiltration. M1 macrophages 
can produce proinflammatory factors, which are thought 
to be associated with tumor suppression [25]. The M0 
phenotype is considered the attenuated M2 phenotype, 
while the M2 phenotype is considered associated with 
tumor angiogenesis and the formation of a tumor immu-
nosuppressive microenvironment [24]. Activated NK 
cells can restrain tumor growth and spread [26]; there-
fore, these immune cells are involved in the formation of 
the tumor immune microenvironment and tumor pro-
gression. Considering the above correlations between 
the CRG clusters and prognostic characteristic genes and 
the immune microenvironment, the findings further sug-
gested that the CRG clusters are closely related to the for-
mation of an immunosuppressive microenvironment and 
prognosis in GBM.

TMB can help predict the therapeutic response to 
immunotherapy [41]. The prognostic risk model con-
structed in our study was also associated with immune 
cell infiltration, the formation of TME and GBM prog-
nosis; therefore, TMB was further evaluated in the prog-
nostic risk model, and we found that patients in the 
high-risk subgroup tended to have IDH wild-type GBM, 
which is consistent with the worse prognosis of patients 
with IDH wild-type gliomas [27]. To further screen the 

Fig. 8 Targeting RARRES2 inhibits GBM progression and immune cell infiltration. A–B U251 and LN229 glioma cells were treated with siRARRES2 
for 48 h. The EdU assay was used to detect glioma cell proliferation ability (bar: 100 µm). C–D U251 and LN229 glioma cells were treated with 
siRARRES2 for 48 h, and a colony formation assay was used to detect the colony formation ability of glioma cells. E U251 and LN229 glioma cells 
were treated with siRARRES2 for 48 h, and MTT assays were used to detect glioma cell viability. F The relative protein expression of RARRES2 in 
normal brain tissue and IDH (Mut) and IDH (WT) GBM tissues was assessed by Western blotting. Normal: normal brain tissue. IDH(Mut): IDH-mutant 
GBM tissue. IDH(WT): IDH wild-type GBM tissue. G–H The conditioned media was used to culture macrophages for 48 h, and the invasion ability of 
macrophages was analyzed by transwell assay (bar: 50 µm). Error bars: mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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crucial genes affecting the prognosis and IDH status 
of GBM in the prognostic risk model, in-depth analysis 
was performed, and the results of survival analysis and 
ROC analysis also confirmed that abnormal RARRES2 
overexpression was associated with the poor prognosis 
of GBM patients. The results of ROC analysis suggested 
that the expression of RARRES2 had high accuracy in 
predicting IDH status (AUC = 0.895) in GBM. Moreover, 
we further evaluated the therapeutic value of targeting 
RARRES2 in GBM and the ability of RARRES2 to predict 
GBM IDH status. The results indicated that RARRES2 
knockdown can significantly reduce GBM cell viabil-
ity and proliferation activity, and the protein expression 
level of RARRES2 was significantly correlated with IDH 
status in GBM patients. Although RARRES2 has differ-
ent expression patterns in different tumors, RARRES2 
can promote GBM mesenchymal properties by inhibit-
ing the ubiquitin‒proteasome degradation of CMKLR1 
[42], which indicates that RARRES2 can support tumor 
progression in GBM. Our results also demonstrated that 
the expression of RARRES2 in GBM was positively cor-
related with TME scores and M0 macrophage infiltration 
and positively correlated with the expression of immune 
checkpoints, such as PD-L1 (CD274). Moreover, the 
subsequent transwell assay showed that targeting GBM 
RARRES2 could decrease macrophage infiltration, which 
also suggested that RARRES2 was associated with the 
formation of an immunosuppressive microenvironment 
in GBM. Overall, RARRES2 is likely to be a target of IDH 
wild-type GBM immunotherapy.

The innovativeness of this study is mainly that we 
innovatively found that abnormal copper metabolism 
is associated with the IDH status in GBM through 
various analysis methods, including tumor mutational 
burden analysis, intersection analysis, and prognos-
tic risk model construction. The high-risk group of 
GBM patients in the prognostic risk model tended to 
have IDH wild-type GBM and was more prone to have 
immunosuppressive phenotypes. Meanwhile, given 
that IDH wild-type GBM patients have a worse prog-
nosis and lack of effective therapeutic strategies, the 
correlations among copper metabolism, IDH status 
and the immune microenvironment in GBM were fur-
ther analyzed comprehensively, and the observations 
revealed that RARRES2 expression is different in GBM 
CRG clusters. Further studies showed that abnormal 
RARRES2 expression is correlated with IDH status 
and immune cell infiltration in GBM patients. Finally, 
we speculate that RARRES2 obtained from GBM CRG 
clusters may be a target of immunotherapy for IDH 
wild-type GBM patients. This study is a further expan-
sion of previous articles on copper metabolism in GBM 

as well as on RARRES2, which provides a new strategy 
for the individualized therapy of IDH wild-type GBM 
patients. However, our study still has some limita-
tions. First, the experimental data were derived from 
public databases, which inevitably leads to data devia-
tion. Second, more clinical pathological specimens 
and experiments are needed to verify the expression 
and physiological functions of target genes in vivo and 
in vitro, which is our direction for future research.

In summary, we established a prognostic risk model 
for GBM patients through a comprehensive and in-
depth analysis of CRG clusters and confirmed that the 
prognostic risk model is related to the prognosis, TMB, 
and immune microenvironment of GBM patients. 
Moreover, further analysis and experiments confirmed 
that RARRES2 could serve as a novel target for GBM 
immunotherapy, particularly in IDH wild-type GBM.
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