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Abstract 

Background Cytotoxic anticancer drugs widely used in cancer chemotherapy have some limitations, such as the 
development of side effects and drug resistance. Furthermore, monotherapy is often less effective against hetero-
geneous cancer tissues. Combination therapies of cytotoxic anticancer drugs with molecularly targeted drugs have 
been pursued to solve such fundamental problems. Nanvuranlat (JPH203 or KYT-0353), an inhibitor for L-type amino 
acid transporter 1 (LAT1; SLC7A5), has novel mechanisms of action to suppress the cancer cell proliferation and tumor 
growth by inhibiting the transport of large neutral amino acids into cancer cells. This study investigated the potential 
of the combined use of nanvuranlat and cytotoxic anticancer drugs.

Methods The combination effects of cytotoxic anticancer drugs and nanvuranlat on cell growth were examined by 
a water-soluble tetrazolium salt assay in two-dimensional cultures of pancreatic and biliary tract cancer cell lines. To 
elucidate the pharmacological mechanisms underlying the combination of gemcitabine and nanvuranlat, we investi-
gated apoptotic cell death and cell cycle by flow cytometry. The phosphorylation levels of amino acid-related signal-
ing pathways were analyzed by Western blot. Furthermore, growth inhibition was examined in cancer cell spheroids.

Results All the tested seven types of cytotoxic anticancer drugs combined with nanvuranlat significantly inhibited 
the cell growth of pancreatic cancer MIA PaCa-2 cells compared to their single treatment. Among them, the com-
bined effects of gemcitabine and nanvuranlat were relatively high and confirmed in multiple pancreatic and biliary 
tract cell lines in two-dimensional cultures. The growth inhibitory effects were suggested to be additive but not syn-
ergistic under the tested conditions. Gemcitabine generally induced cell cycle arrest at the S phase and apoptotic cell 
death, while nanvuranlat induced cell cycle arrest at the G0/G1 phase and affected amino acid-related mTORC1 and 
GAAC signaling pathways. In combination, each anticancer drug basically exerted its own pharmacological activities, 
although gemcitabine more strongly influenced the cell cycle than nanvuranlat. The combination effects of growth 
inhibition were also verified in cancer cell spheroids.
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Conclusions Our study demonstrates the potential of first-in-class LAT1 inhibitor nanvuranlat as a concomitant drug 
with cytotoxic anticancer drugs, especially gemcitabine, on pancreatic and biliary tract cancers.

Keywords Amino acid transporter, LAT1, SLC7A5, Large neutral amino acids, Essential amino acids, Molecularly 
targeted drugs, Cancer chemotherapy, Combination therapy, Cytotoxic anticancer drugs, Gemcitabine

Background
Conventional cytotoxic anticancer drugs are commonly 
used in current standard cancer chemotherapies. How-
ever, the development of adverse effects is inherently dif-
ficult to avoid in their clinical use [1, 2]. As they target 
nucleic acids or proteins involved in nucleic acid syn-
thesis, DNA replication, transcription, and cell division, 
cytotoxic anticancer drugs inevitably damage normal 
proliferating cells besides cancer cells. In addition, drug 
resistance and tumor heterogeneity often limit the effi-
cacy of monochemotherapies [3]. More effective thera-
peutic strategies have been continuously pursued to 
overcome such limitations. Those include the combined 
use of multiple cytotoxic anticancer drugs or cytotoxic 
anticancer drugs with molecularly targeted drugs.

Pancreatic and biliary tract cancers are the most 
aggressive malignancies with poor prognoses [4–6]. 
Due to the asymptomatic nature of the diseases at early 
stages, most patients are diagnosed at advanced stages 
that are not eligible for surgical resection. Gemcitabine 
(GEM), classified as an antimetabolite, is commonly used 
for drug treatments of these cancers [4–6]. The first-line 
therapies for unresectable or metastatic diseases include 
GEM-based combined therapies, i.e., GEM with nab-
paclitaxel or erlotinib for pancreatic cancer [4, 5, 7, 8] 
and GEM with cisplatin or S-1 (tegafur, gimeracil, and 
oteracil potassium), or both, for biliary tract cancer [6, 
9, 10]. However, these current therapies often develop 
dose-limiting myelosuppression (such as leukopenia, 
neutropenia, and thrombopenia), achieving only modest 
life-prolonging effects [4–6].

Cancer cells exhibit an increased uptake of amino acids 
as nutrients to satisfy their enhanced metabolic demands 
for rapid growth and proliferation. Furthermore, recent 
studies revealed the functional aspects of amino acids 
as signaling molecules. Especially, amino acids such as 
leucine are essential to activate mechanistic target of 
rapamycin complex 1 (mTORC1), a Ser/Thr-protein 
kinase complex that plays pivotal roles in regulating cell 
survival, growth, and proliferation and is often dysregu-
lated in cancers [11–13]. L-type amino acid transporter 
1 (LAT1; SLC7A5) [14], which preferentially transports 
large neutral amino acids, including most of the essential 
amino acids, is known to be upregulated in various types 
of cancers [14, 15]. The high expression level of LAT1 
is associated with the poor prognosis of patients with 

multiple cancer types, including pancreatic and biliary 
tract cancers [16–18]. Due to its pathological function 
in cancer, LAT1 has been regarded as a rational target of 
molecularly targeted drugs.

Nanvuranlat (JPH203 or KYT-0353, abbreviated as 
NANV) is a LAT1-selective high-affinity inhibitor devel-
oped as the first-in-class anticancer agent [19, 20]. The 
anticancer effects of NANV have been well-proven pre-
clinically against cancer cells from various organs in vitro 
[19, 21–30] and in vivo [19, 24, 25, 27, 31–33]. Consist-
ent with the predominant contribution of LAT1 in sup-
plying cancer cells with essential amino acids, including 
leucine, treatment with NANV reduces mTORC1 activity 
in cancer cells [21–24, 26, 27, 29–31, 33]. We have pre-
viously characterized the anticancer effects of NANV 
on pancreatic and biliary tract cancer cell lines [29, 30]. 
Inhibition of LAT1 with NANV suppressed the uptake of 
all the eight primary substrates of LAT1 into cancer cells 
and inhibited the mTORC1 pathway, resulting in a global 
suppression of protein synthesis [30]. Proteomics and 
phosphoproteomics revealed decreased phosphorylation 
of CDK1 and CDK2 [29] by NANV as possible regula-
tors involved in the cell cycle arrest at the G0/G1 phase 
caused by the inhibition of LAT1 [25, 29, 33]. The first 
randomized phase II clinical trial of NANV monother-
apy against pretreated, advanced, and refractory biliary 
tract cancers demonstrated a significant improvement 
in progression-free survival compared to placebo con-
trol (UMIN000034080) [34]. Notably, the safety profile of 
NANV was confirmed to be comparable to that of a pla-
cebo without developing any severe adverse events that 
lead to discontinuation, dose reduction, or death.

Because NANV targets the cancer cell-specific mol-
ecule LAT1, its combinational use with cytotoxic anti-
cancer drugs may enhance the treatment efficacy while 
mitigating the risk of leading adverse effects and resist-
ance [20]. We have previously shown that 2-aminobicy-
clo-(2,2,1)-heptane-2-carboxylic acid (BCH), a classical 
inhibitor of system L amino acid transporters including 
LAT1, in combination with the platinum drug cisplatin 
suppresses the growth of a head and neck squamous cell 
carcinoma cell line more strongly than by their single 
treatment [35]. However, due to its limited affinity and 
selectivity to LAT1, BCH was not further developed as 
an anticancer drug. It is still open to question whether 
the new anticancer drug NANV exhibits enhanced 
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anticancer activity in combination with cytotoxic anti-
cancer drugs or not.

In the present study, we first tested the combinations 
of NANV with seven distinct types of cytotoxic anti-
cancer drugs to inhibit the growth of pancreatic cancer 
MIA PaCa-2 cells. NANV showed significantly enhanced 
growth inhibitory effects with all the tested drugs, where 
a relatively strong enhancement of growth inhibition 
was obtained in combination with GEM. The combined 
effects were also verified in multiple pancreatic and bil-
iary tract cancer cell lines. We performed analyses of 
apoptosis, cell cycle, and phosphorylation of amino acid-
related signaling proteins to elucidate the pharmacologi-
cal mechanisms underlying the combined effects. Finally, 
the significant combined effects of GEM and NANV 
were verified in cancer cell spheroid cultures. This study 
reveals the potential of LAT1 inhibitor NANV as a con-
comitant drug with GEM to treat malignant pancreatic 
and biliary tract cancers.

Methods
Anticancer drugs
5-Fluorouracil (5-FU, Wako), 7-ethyl-10-hydroxycampto-
thecin (an active metabolite of irinotecan) (SN-38, Sell-
eck), paclitaxel (TXL, Wako), and nanvuranlat (NANV, 
J-Pharma Co., Ltd.) were dissolved in DMSO. Gemcit-
abine hydrochloride (GEM, Wako), oxaliplatin (L-OHP, 
Wako), and doxorubicin hydrochloride (DXR, Wako) 
were dissolved in water. For all the tested drug concentra-
tions, a constant volume of 333-fold drug stock solutions 
was added to the medium. Cyclophosphamide monohy-
drate (CPA, Wako) was directly dissolved in the medium.

Cell culture
Pancreatic cancer HPAC (CRL-2119; ATCC), MIA 
PaCa-2 (JCRB0070; JCRB), PANC-1 (CRL-1469; ATCC), 
and SUIT-2 (JCRB1094; JCRB) cells and biliary tract can-
cer HuCCT1 (JCRB0425; JCRB), KKU-055 (JCRB1551; 
JCRB), KKU-100 (JCRB1568; JCRB), and KKU-213 
(JCRB1557; JCRB) cells were cultured in RPMI-1640 
supplemented with 10% FBS and 100 units/mL penicil-
lin-100 µg/mL streptomycin. Cells were maintained in a 
humidified incubator at 37 °C supplied with 5%  CO2.

Cell growth assay
Cells were seeded at 1.0 ×  103 cells/well in 96-well plates 
(100 µL of medium/well). After 24  h of culture, the 
medium was replaced with a fresh medium contain-
ing the indicated concentrations of cytotoxic antican-
cer drug or NANV, or both. After 72 h of treatment, cell 
growth was measured by Cell Counting Kit-8 (Dojindo). 
Combined effects of drugs on cell growth were evalu-
ated by the combination index (CI) based on the Bliss 

independence model using the following equation: CI 
=  (EA+EB −  EAEB)/EAB, where  EA and  EB represent the 
observed growth inhibition by drug A and B, respec-
tively, and  EAB by drug A combined with drug B. When 
CI is under, above, or equal to 1, the combined effects 
was judged as synergistic, antagonistic, or additive, 
respectively.

Apoptosis assay
Cells were seeded at 3.0 ×  104 cells/well in 6 well plates 
(3 mL of medium/well). After 24  h, the medium was 
replaced with a fresh medium containing GEM or 
NANV, or both. After 72  h of incubation, apoptosis 
was analyzed by Muse™ Cell Analyzer (Millipore) using 
Muse™ Annexin V and Dead Cell kit. Annexin V and 
Dead Cell kit. Apoptotic rate (%) was expressed as the 
sum of the percentages of early (Annexin V-positive/7-
AAD-negative) and late (Annexin V-positive/7-AAD-
positive) apoptotic cells.

Cell cycle analysis
Cells were seeded at 4.5 ×  105 cells/dish in 100 mm dishes 
containing 15 mL of medium and cultured for 48 h. Then, 
the cells were incubated for 24  h with a fresh medium 
containing GEM or NANV, or both. Cell cycle analysis 
was performed by Muse™ Cell Analyzer (Millipore) using 
Muse™ Cell Cycle kit.

Western blot
Cells were seeded at 4.5 ×  105 cells/dish in 100 mm dishes 
containing 15 mL of medium and cultured for 48 h. Then, 
the cells were incubated for 24  h with a fresh medium 
containing GEM or NANV, or both. Western blot was 
performed as described previously [30]. Primary anti-
bodies used are as follows: anti-β-actin (66009-1-Ig) from 
Proteintech; anti-phospho-Ser240/244-S6 ribosomal 
protein (5364), anti-S6 ribosomal protein (2217), anti-
phospho-Ser51-eIF2α (3398), anti-eIF2α (5324), anti-
phospho-Thr37/46-4EBP1 (2855), and anti-4EBP1 (9452) 
from Cell Signaling Technology.

Spheroid culture
Cells were seeded in 96-well clear round bottom ultra-
low attachment microplates (Corning, 7007) at 1.0 ×  103 
cells in 100 µL/well of the medium. After centrifugation 
at 300×g for 10  min at 25  °C to sediment the cells, 100 
µL of medium containing 10% (v/v) Matrigel (Falcon, 
354230) was added to each well. Then the cells were cul-
tured in a humidified incubator at 37 °C supplied with 5% 
 CO2 to induce spheroid formation. After incubation for 
72 h, 100 µL of the medium was replaced by 100 µL of a 
fresh medium containing either GEM or NANV, or both, 
at twice the final concentration (Day 0). On Day 3 and 5, 
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100 µL of the medium was replaced by 100 µL of a fresh 
medium containing the drug(s) at the indicated final con-
centrations. Bright-field images of spheroids were taken 
every 24 h by microscope (Leica, DMi1, MC120 HD). The 
projected area of spheroids was calculated using ImageJ 
software (NIH).

Data reproducibility and statistical analysis
All the experiments were repeated at least twice to 
ensure the reproducibility of the results. Statistical analy-
ses were performed with GraphPad Prism9 (GraphPad 
software). Differences were considered significant when 
p-values were < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, ns, not significant.

Results
Inhibition of pancreatic cancer MIA PaCa‑2 cell 
growth by combinations of cytotoxic anticancer drugs 
and nanvuranlat
We selected seven types of cytotoxic anticancer drugs 
with different mechanisms of action to test the antiprolif-
erative effects in combination with NANV (Table 1). An 
active metabolite of irinotecan, SN-38, was used for the 
assay instead of irinotecan. The concentration-dependent 
inhibitory effects of each anticancer drug on cell growth 
were first confirmed in pancreatic cancer MIA PaCa-2 
cells (Fig.  1A). The  IC50 values of each drug under the 
experimental condition were determined to be as fol-
lows: 5-FU, 2.61 µmol/L; GEM, 14.70 nmol/L; L-OHP, 
0.59 µmol/L; CPA, 0.62 mmol/L; SN-38, 2.33 nmol/L; 
DXR, 20.01 nmol/L; TXL, 2.27 nmol/L; and NANV, 1.87 
µmol/L.

We next investigated the growth inhibitory effects by 
combinations of cytotoxic anticancer drugs and NANV 
in MIA PaCa-2 cells. We set the experimental conditions 
so that a considerably high growth inhibition is achieved 
for evaluating the therapeutic potentials of the combina-
tions. We also intended to select drug concentrations at 
which each of them exhibits discernible, but not saturated, 
pharmacological activities, allowing us to investigate the 

molecular mechanisms underlying the observed com-
bination effects. Therefore, each drug was added to the 
medium at the concentration that inhibits cell growth by 
about 50% relative to untreated control cells. As shown in 
Fig. 1B, all the cytotoxic anticancer drugs combined with 
NANV suppressed cell growth significantly more strongly 
than their single treatment. Combination indices based 
on the Bliss independence model were nearly 1 for all the 
combinations, suggesting mostly additive but not synergis-
tic effects [36, 37]. Relatively high enhancements of the cell 
growth inhibition were observed with GEM, CPA, SN-38, 
and DXR in combination with NANV. These results dem-
onstrate the potential of LAT1 inhibitor NANV as a con-
comitant drug with various cytotoxic anticancer drugs.

Inhibition of cell growth of multiple pancreatic and biliary 
tract cancer cell lines by the combination of gemcitabine 
and nanvuranlat
GEM is the most commonly used anticancer agent in the 
current standard chemotherapy for advanced pancre-
atic and biliary tract cancers [4–6]. The favorable combi-
national effects of GEM and NANV on MIA PaCa-2 cell 
growth (Fig. 1B) prompted us to evaluate this combination 
in multiple pancreatic and biliary tract cancer cell lines. 
For this purpose, we selected three more pancreatic cancer 
cell lines (HPAC, PANC-1, and SUIT-2 cells) and four bil-
iary tract cancer cell lines (HuCCT1, KKU-055, KKU-100, 
and KKU-213 cells). After confirming the concentration-
dependent inhibition of cell growth by single treatments 
with GEM or NANV in each cell line (data not shown), 
the combined treatment was tested at the drug concentra-
tions that inhibit the cell growth by about 50% relative to 
untreated control cells. The results revealed that the treat-
ment of GEM in combination with NANV in all the tested 
cell lines exhibits significantly higher inhibitory effects on 
cell growth than every single treatment (Fig. 2).

In a previous study on head and neck squamous cell 
carcinoma cells, we reported the influence of the order 
of treatments with cisplatin and BCH, a canonical LAT1 
inhibitor, on their combined effects. Pre-treatment of cells 

Table 1 Cytotoxic anticancer drugs used in this study

Classification Drug

Antimetabolite (fluorinated pyrimidine, pyrimidine antagonist) 5-Fluorouracil (5-FU)

Antimetabolite (cytidine, pyrimidine antagonist) Gemcitabine (GEM)

Platinum-based drug Oxaliplatin (L-OHP)

Alkylating drug Cyclophosphamide (CPA)

Topoisomerase-inhibiting drug (topoisomerase I) Irinotecan (SN-38: metabo-
lite of irinotecan)

Topoisomerase-inhibiting drug (topoisomerase II) Doxorubicin (DXR)

Microtubule inhibitor Paclitaxel (TXL)
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Fig. 1 Inhibition of cell growth by single or combined treatment with cytotoxic anticancer drugs and nanvuranlat. MIA PaCa-2 cells were 
treated with drugs for 72 h. Cell growth was measured by Cell Counting Kit-8 (WST-8). Data were normalized by untreated controls and shown as 
mean ± SD (n = 8, technical replicates in a single experiment). A Concentration-dependent cell growth inhibition by single treatment with seven 
cytotoxic anticancer drugs and nanvuranlat (NANV). B Growth of MIA PaCa-2 cells treated with cytotoxic anticancer drugs or NANV, or both. Drugs 
were used at following concentrations: 5-FU, 3.5 µmol/L; GEM, 13 nmol/L; L-OHP, 2 µmol/L; CPA, 2.5 mmol/L; SN-38. 2.7 µmol/L; DXR, 20 nmol/L; TXL, 
2.3 µmol/L; and NANV, 3 µmol/L. Statistical significance was evaluated by one-way ANOVA followed by Tukey’s post-test. Combination indices (CI) 
were calculated based on the Bills independence model
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with cisplatin followed by BCH drastically enhanced the 
growth inhibitory effects compared to the reversed order 
of treatments [35]. Therefore, we evaluated the poten-
tial impact of the treatment order with GEM and NANV 
in MIA PaCa-2 and KKU-055 cells (Additional file 1: Fig. 
S1). The growth inhibition was significantly enhanced by 
sequential treatments of GEM and NANV compared to 
every single treatment in both cell lines, regardless of their 
order, while the growth inhibitory effects were inferior to 
the continuous and simultaneous treatment of GEM and 
NANV.

Effects of the combination of gemcitabine and nanvuranlat 
on apoptosis
Apoptosis is associated with the anticancer activity of 
GEM [38]. To explore the molecular mechanisms under-
lying the combined effects of GEM and NANV on the 
growth of pancreatic and biliary tract cancer cells, we 
analyzed the induction of apoptosis in MIA PaCa-2, 
SUIT-2, KKU-055, and KKU-100 cells (Fig.  3). Experi-
ments were performed using the same concentrations of 
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Fig. 2 Inhibition of cell growth by single or combined treatment with gemcitabine and nanvuranlat in multiple pancreatic and biliary tract cancer 
cell lines. Pancreatic cancer (HPAC, PANC-1, and SUIT-2) and biliary tract cancer (HuCCT1, KKU-055, KKU-100, and KKU-213) cells were treated with 
GEM or NANV, or both, for 72 h. Cell growth was measured by Cell Counting Kit-8 (WST-8). Data were normalized by untreated controls and shown 
as mean ± SD (n = 8, technical replicates in a single experiment). Cells were treated with drugs at following concentrations: HPAC cells (GEM, 10 
nmol/L; NANV, 6 µmol/L), PANC-1 cells (GEM, 150 nmol/L; NANV, 30 µmol/L), SUIT-2 cells (GEM, 3 nmol/L; NANV, 12 µmol/L), HuCCT1 cells (GEM, 20 
nmol/L; NANV, 1.3 µmol/L), KKU-055 cells (GEM, 10 nmol/L; NANV, 0.9 µmol/L), KKU-100 cells (GEM, 6.5 nmol/L; NANV, 8 µmol/L), and KKU-213 cells 
(GEM, 40 nmol/L; NANV, 7 µmol/L). Statistical significance was evaluated by one-way ANOVA followed by Tukey’s post-test. Combination indices (CI) 
were calculated based on the Bills independence model
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GEM and NANV as that used for the cell growth inhi-
bition assays. In SUIT-2, KKU-055, and KKU-100 cells, 
treatment with GEM alone significantly induced apop-
tosis compared to untreated control cells. Even though 
statistically insignificant, the same tendency was also 
observed in MIA PaCa-2 cells. In contrast, the single 
treatment of NANV did not induce apoptosis in any of 
the four tested cell lines. Apoptosis was not induced even 
when cells were treated with a higher concentration of 
NANV (30 µmol/L, data not shown), in line with its cyto-
static anticancer activity. The co-treatment of GEM with 
NANV caused no increase in the apoptotic rate com-
pared to the single treatment with GEM (Fig. 3).

Effects of the combination of gemcitabine and nanvuranlat 
on cell cycle
GEM and NANV are supposed to influence the cell cycle 
differently. GEM, as an antimetabolite, causes cell cycle 
arrest at the S phase [38]. Cell cycle arrest at the G0/G1 
phase is involved in cell growth inhibition by NANV in 

biliary tract cancer cell lines [25, 29, 33]. Therefore, we 
next examined the effects of the combined use of GEM 
and NANV on the cell cycle (Fig.  4). The single treat-
ment with NANV tended to increase the cells at the G0/
G1 phase in all the cell lines, even though statistically not 
significant in MIA PaCa-2 and KKU-055 cells under this 
experimental condition. The proportion of the S phase 
cells was not altered in MIA PaCa-2, SUIT-2, and KKU-
055 cells or slightly decreased in KKU-100 cells. Cells 
at the G2/M tend to be reduced by NANV in all the cell 
lines, although statistically significant only in KKU-100 
cells.

The single treatment with GEM significantly increased 
the S phase cells and concomitantly decreased the G0/G1 
phase cells in MIA PaCa-2, SUIT-2, and KKU-100 cells. 
In MIA PaCa-2 and SUIT-2 cells, the combined treat-
ment of GEM and NANV increased cells at the S phase 
to the same extent as the GEM single treatment. In these 
cells, the G0/G1 phase cells were also decreased to the 
same extent as GEM single treatment. KKU-100 cells 
showed a significant increase in the proportion of the S 
phase cells when co-treated with GEM and NANV, while 
the extent was modest compared to GEM single treat-
ment. Consistently, the decrease in the G0/G1 phase 
cells in KKU-100 cells was not so prominent as in MIA 
PaCa-2 and SUIT-2 cells. These results indicate that the 
combination of GEM and NANV tends to induce the cell 
cycle arrest at the S phase, relatively dominantly reflect-
ing the pharmacological activity of GEM on the cell cycle 
(Fig. 4). Only in KKU-055 cells, the proportion of cells at 
the S phase was clearly increased by the combined treat-
ment of GEM with NANV, but not by GEM alone. Inter-
estingly, unlike other cell lines, the G0/G1 cells were at a 
similar level as the untreated control under the combined 
treatment, whereas the G2/M cells were significantly 
decreased in KKU-055 cells.

Effects of the combination of gemcitabine and nanvuranlat 
on amino acid signaling
Amino acids transported by LAT1 are utilized as the 
material for protein synthesis and function as signaling 
molecules that activate mTORC1, a key regulator of cell 
metabolism and growth. One of the downstream directly 
regulated by mTORC1 is protein translation. As shown 
in Fig. 5, the single treatment with NANV decreased the 
phosphorylation of S6 ribosomal protein in all four cell 
lines, indicating the reduced activity of the mTORC1 
pathway that positively regulates the translation in an 
amino acid-dependent manner. Another key protein in 
the mTORC1 pathway, 4EBP1, was detected as multiple 
bands, in which the slower mobility on gel represents 
the higher phosphorylation. NANV also suppressed 
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the phosphorylation of 4EBP1, as demonstrated by the 
migration of bands to lower molecular weights. Another 
amino acid signaling pathway, general amino acid con-
trol (GAAC) pathway, is known to negatively regulate 
the translation initiation upon amino acid restriction. 
The phosphorylation of eIF2α was increased in all the 
cell lines except MIA PaCa-2 cells by NANV, indicating 
the increased activity of the GAAC pathway. All of these 

changes in the phosphorylation of molecules involved in 
amino acid signaling imply the suppression of translation 
by NANV.

The single treatment with GEM only limitedly influ-
enced the phosphorylation of these amino acid signaling-
related factors than that by NANV. The phosphorylation 
of S6 ribosomal protein was slightly decreased in MIA 
PaCa-2 cells, and that of eIF2α was slightly increased in 
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SUIT-2 and KKU-055 cells. In all the cell lines, the com-
bined treatment of NANV with GEM induced similar 
levels of the change in phosphorylation as the treatment 
with NANV alone (Fig. 5). These results suggest that co-
treatment with GEM does not enhance the influence of 
NANV on mTORC1 and GAAC pathways, and subse-
quent protein synthesis.

Combined growth inhibitory effects of gemcitabine 
and nanvuranlat in the spheroid culture of pancreatic 
and biliary tract cancer cell lines
All the above results in two-dimensional cancer cell cul-
tures suggested a promising therapeutic potential of 
NANV as a concomitant drug with GEM against pancre-
atic and biliary tract cancers. To obtain further support 
for this possibility in an assay that more accurately reca-
pitulates the actual tumor tissues, we performed growth 
inhibition experiments using spheroid cultures (Fig.  6). 
Spheroids were constructed from MIA PaCa-2 and KKU-
055 cells. The single treatments with GEM or NANV 
significantly but moderately suppressed the growth of 
spheroids in both cell lines. Notably, by co-treating sphe-
roids with GEM and NANV, the suppression of spheroid 
growth was profoundly enhanced compared to their sin-
gle treatment. As shown in Fig. 6B, the single treatment 
by NANV significantly suppressed the spheroid growth 
as early as 24 h after starting the treatment, while GEM 
single treatment did not until 96 h (MIA PaCa-2 cells) or 
72 h (KKU-055 cells). These observations are consistent 

with the results of experiments in two-dimensional cul-
tures, where the cell growth inhibition by NANV was 
detectable within 24  h and preceded that by GEM that 
required longer than 24 h to induce apoptosis (confirmed 
at 48 and 72 h, data not shown). Under the combinational 
treatment with GEM and NANV, the growth inhibition 
until 48 h after starting the treatment may mainly reflect 
the effects of NANV. The sustained inhibition of spheroid 
growth in longer incubation time seems to be attributed 
to the additive effects of GEM and NANV.

Discussion
In this study, we first examined the combinations of 
seven distinct types of cytotoxic anticancer drugs with 
an amino acid transporter LAT1 inhibitor, nanvuranlat 
(NANV; JPH203 or KYT-0353), on the growth of pan-
creatic cancer MIA PaCa-2 cells (Fig. 1B). All the tested 
combinations showed significantly enhanced growth 
inhibitory effects compared to their single treatments. 
The combined effects were suggested to be primar-
ily additive under the current experimental conditions. 
Whereas we previously reported the combination effects 
of BCH and cisplatin against head and neck cancer cells 
[35], BCH is a compound with a broad specificity over 
system L amino acid transporters [39]. The obtained 
anticancer effects thus cannot be specifically attributed 
to the inhibition of LAT1. For the first time, this study 
revealed the combined growth inhibitory effects specifi-
cally obtained by LAT1 inhibition with various types of 

S6

eIF2α

4EBP1

p-T37/46

p-S51

total

total

total

m
TO

R
C

1
G

A
A

C

MIA PaCa-2 SUIT-2 KKU-055 KKU-100

GEM
NANV

p-S240/244

Fig. 5 Effects of single or combined treatment with gemcitabine and nanvuranlat on amino acid signaling. MIA PaCa-2, SUIT-2, KKU-055, and 
KKU-100 cells were treated with GEM or NANV, or both, for 24 h, and analyzed by Western blot. Phosphorylated and total proteins of S6 ribosomal 
protein, 4EBP1, and eIF2α were detected. Cells were treated with drugs at the following concentrations: MIA PaCa-2 cells (GEM, 13 nmol/L; NANV, 3 
µmol/L), SUIT-2 cells (GEM, 3 nmol/L; NANV 12 µmol/L), KKU-055 cells (GEM, 10 nmol/L; NANV 0.9 µmol/L), KKU-100 cells (GEM, 6.5 nmol/L; NANV, 8 
µmol/L)



Page 10 of 13Nishikubo et al. Cancer Cell International          (2023) 23:116 

cytotoxic anticancer drugs. Considering that NANV 
has demonstrated anticancer effects against cancer 
cells derived from various organs in preclinical stud-
ies [19, 21–30], these results suggest the potential of 
NANV for broad clinical applications against multiple 
types of cancers in combination with cytotoxic antican-
cer drugs. Among the tested drugs, NANV exhibited 

relatively high combined effects with GEM, CPA, SN-38, 
and DXR. Therefore, we selected combining GEM with 
NANV for further evaluation against pancreatic and 
biliary tract cancer cells because GEM-based drug 
therapies are standard treatments for these refractory 
cancer types but remain ineffective [4–6]. The favora-
ble outcomes of the first phase II clinical trial of NANV 
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monotherapy in pretreated, advanced, and refractory bil-
iary tract cancers encouraged us to pursue this possibility 
(UMIN000034080) [34]. As a result, significant enhance-
ment of the growth inhibitory effects by combining GEM 
and NANV was demonstrated in all the tested pancreatic 
and biliary tract cancer cell lines (four cell lines for each 
cancer type) (Figs.  1B and 2). The combination effects 
were observed not only in two-dimensional cultures but 
also in spheroid cultures of cancer cells (Fig. 6).

To elucidate the molecular basis for the combined 
effects of GEM and NANV, we performed analyses of 
the cell cycle, apoptosis, and amino acid-related signal-
ing. The obtained overall results revealed no apparent 
enhancement in the pharmacological activities of each 
drug under the current experimental conditions. Consist-
ent with the previous reports [38], the single treatment 
with GEM induced cell cycle arrest at the S phase and 
apoptosis. NANV alone induced cell cycle arrest at the 
G0/G1 phase and did not induce apoptosis, as shown in 
previous research [25, 29, 33]. The combination of GEM 
and NANV caused the cell cycle arrest at the S phase and 
induced apoptosis to similar levels as GEM alone in MIA 
PaCa-2, SUIT-2, and KKU-100 cells (Figs. 3 and 4). There-
fore, GEM is supposed to influence the cell cycle and 
apoptosis more dominantly than NANV in their com-
bination. An exceptional observation was made in the 
cell cycle analysis of the KKU-055 cell. The proportion 
of cells at the S phase was increased by combining GEM 
with NANV, but not by GEM alone. Notably, the G0/G1 
cells were at a similar level as the untreated control under 
the combined treatment, whereas the G2/M cells were 
significantly decreased in KKU-055 cells. Although the 
details remain to be elucidated, these observations sug-
gest that the increase of S phase cells in KKU-055 cells by 
the combined treatment with GEM and NANV cannot 
be simply interpreted as the enhanced activity of GEM 
that induces the S phase arrest by decreasing cells at the 
G0/G1 phase. Consistently, NANV did not potentiate the 
apoptosis-inducing activity of GEM in KKU-055 cells. 
Treatments with NANV altered the phosphorylation lev-
els of proteins in amino acid-related signaling pathways 
to similar levels, irrespectively to the presence or the 
absence of GEM (Fig.  5). The identified changes in the 
phosphorylation in mTORC1 and GAAC pathways sug-
gest the suppression of protein synthesis, representing 
the pharmacological activity of NANV without notice-
able augmentation by GEM. These results indicate that 
GEM and NANV mostly independently exert their anti-
cancer activities even in combination.

This study investigated the combination of GEM and 
NANV at a single dose set. We focused on revealing the 
general molecular mechanisms underlying the combina-
tion effects using multiple pancreatic and biliary tract cell 

lines. Conversely, the concentrations and ratio of the two 
drugs remain to be optimized to attain the best combina-
tion effects. Furthermore, we adopted the Bliss independ-
ence model [36] to evaluate the drug combination effects 
because the mechanisms of action of cytostatic NANV 
and cytotoxic anticancer drugs are regarded as primarily 
independent. However, all the available reference models 
still present some limitations and do not perfectly fit the 
actual experimental conditions [37, 40]. The analyses of 
GEM and NANV in this study implied that their detailed 
pharmacological activities are not completely independ-
ent and partially interfere with each other, as exempli-
fied in their effects on the cell cycle, where the effects of 
NANV to induce the G0/G1 arrest was generally masked 
when combined with GEM (Fig. 4). The cooperative use 
of multiple theoretical and experimental methods [37, 
40] thus would be important to reinforce the significance 
of our findings in future studies.

Nevertheless, because NANV is the first-in-class anti-
cancer drug targeting LAT1, the discovery of GEM as a 
preferable combination partner holds significant impli-
cations for its future clinical development. The findings 
of this study may contribute to developing novel thera-
peutic strategies with GEM, which is currently widely 
used for pancreatic and bile duct cancers. Notably, can-
cer cell-specific cytostatic anticancer activities of NANV 
may pave the way to circumvent the problems of adverse 
effects and drug resistance posed by GEM (and other 
cytotoxic anticancer drugs). Significant combination 
effects of a mTORC1 inhibitor, temsirolimus, and GEM 
have been reported previously in an animal model of pan-
creatic cancer [41], while failed to show clinical efficacy 
in the first phase I/II study [42]. It has also been reported 
that another mTORC1 inhibitor, everolimus, shows more 
pronounced antiproliferative effects against GEM-resist-
ant pancreatic cancer cells than against GEM-sensitive 
pancreatic cancer cells [43] and exhibits synergistic anti-
proliferative effects with GEM against biliary tract cancer 
cells [44]. In addition to inhibiting mTORC1 by blocking 
the essential input of amino acid signals, NANV induces 
the depletion of amino acids as biosynthetic materi-
als and suppresses the global translation in cancer cells 
[30]. Thus, combining NANV with GEM may exhibit 
robust and multifaceted anticancer effects based on such 
broad pharmacological activities. A particularly tempt-
ing speculation in this regard would be that NANV, co-
administrated with GEM, inhibits cancer cell growth by 
generally suppressing protein synthesis and prevents the 
acquisition of drug resistance by abolishing the expres-
sion of proteins involved in the resistance to GEM [38, 
45]. Future studies should also investigate such possible 
mechanistic convergence in their anticancer activities 
that may lead to better combination effects.
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Conclusions
This study provides the primary evidence for the combi-
national effects of gemcitabine with a novel molecularly 
targeted drug, nanvuranlat, that may propose effective 
treatments for malignant pancreatic and bile duct can-
cers. The two drugs, when combined, additively sup-
pressed the growth of cancer cells by exhibiting their 
pharmacological activities largely independently under 
the tested conditions. To further explore the in vivo rel-
evance of our findings, detailed conditions for drug treat-
ments, especially the concentrations and ratio of the two 
drugs, need to be further optimized to accomplish the 
best combination effects. Validation of the combination 
effects based on the two or more mutually compensative 
evaluation methods will also be particularly important. 
Results of such future studies will provide valuable infor-
mation to extrapolate and enhance the combined effects 
of gemcitabine and nanvuranlat in in vivo animal models 
and clinical settings.
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