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Abstract 

Background PRKCG encodes PKC γ, which is categorized under the classical protein kinase C family. No studies have 
specifically established the relationship between PRKCG nsSNPs with structural and functional variations in PKC γ 
in the context of hepatocellular carcinoma (HCC). The present study aims to uncover this link through in-silico and 
experimental studies. 

Methods The 3D structure of PKC γ was predicted. Molecular Dynamic (MD) Simulations were run and estimates 
were made for interactions, stability, conservation and post-translational alterations between wild and mutant struc-
tures. The association of PRKCG levels with HCC survival rate was determined. Genotyping analyses were conducted 
to investigate the deleterious PRKCG nsSNP association with HCC. mRNA expression of PKC γ, HIF-1 alpha, AKT, SOCS3 
and VEGF in the blood of controls and HCC patients was analyzed and a genetic cascade was constructed depicting 
these interactions.

Results The expression level of studied oncogenes was compared to tumour suppressor genes. Through Alphafold, 
the 3D structure of PKC γ was explored. Fifteen SNPs were narrowed down for in-silico analyses that were identified in 
exons 5, 10 and 18 and the regulatory and kinase domain of PKC γ. Root mean square deviation and fluctuation along 
with the radius of gyration unveiled potential changes between the wild and mutated variant structures. Mutant 
genotype AA (homozygous) corresponding to nsSNP, rs386134171 had more frequency in patients with OR (2.446), 
RR (1.564) and P-values (< 0.0029) that highlights its significant association with HCC compared to controls in which 
the wild genotype GG was found more prevalent.

Conclusion nsSNP rs386134171 can be a genetic marker for HCC diagnosis and therapeutic studies. This study has 
laid down a road map for future studies to be conducted on HCC.
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Background
HCC originates from hepatocytes and accounts for 75 
percent to 85 percent of primary liver cases [1, 2] [3] 
Its incidence is globally rising, primarily because of the 
growing prevalence of hepatitis B and C infections. Stud-
ies report that about 60%-70% of its cases are mainly 
linked with these two viruses [4]. Moreover, it is pre-
dicted that the incidence of HCC will further elevate after 
2025, with cases increasing to 1 million per year [4].With 
regard to cancer related deaths, it is still a major contrib-
utor [5]. Also, it is not diagnosed early, which reduces its 
2-year survival chances to less than 50%, while its 5-year 
survival rate is less than 10% in the US population [6]. 
Moreover, there is a need to explore the SNPs (Single 
Nucleotide Polymorphisms) that lead to its pathogenesis.

The most frequent mutations in humans are notified 
as SNPs and they contribute to only 0.1% of phenotypic 
differences when the genomes oftwo individuals arecom-
pared within a population [7]. It is established that there 
are over a million SNPs in DNA coding regions and 
intronic or intergenic sequences that do not directly code 
for or translate into amino acids [8]. Moreover, SNPs 
can lead to different amino acids, which may affect the 
encoded protein function and the course of the disease 
[9]. The coding area is thought to include 50% SNPs, 
25% of which are silent or synonymous SNPs, and 25% 
are missense SNPs [3]. The physiological or anatomical 
diversity of human proteins is driven by nsSNPs (non-
synonymous SNPs), and multiple nsSNPs reconfigure 
the geneinteraction network through disease-associated 
proteins [5, 6]. Moreover, not all coding region SNPs are 
crucial in terms of functionality [10]. According to an 
estimate, about 20% of nsSNPs damage proteins [11]. It 
is inevitable to identify nsSNPs that participate in disease 
initiation by impacting proteins’ conformation.

The current work is centered on nsSNP variants of 
the PRKCG gene, which is localized at chromosome 
19q13.4.2 and encodes the classical PKC (Protein Kinase 
C) enzyme, i.e., PKCγ in humans [12]. According to the 
information gathered from ENSEMBL [13], the PRKCG 
gene is 3149 base pairs long,and PKCγ consists of 697 
amino acids. Moreover, PKCγ comprises several varied 
regulatory domains in addition to a conserved kinase, 
catalytic domain that encloses the protein′s C-termi-
nus. The C1A, C1B, and C2 make up PKCγ′s regula-
tory domain. Additionally, the regulatory domains of 
PKCγ include a related NH2 terminus and a pseudosub-
strate (PS) motif. The C1 domain is split into the C1A 
and C1B domains, which are cysteine-rich domains, with 
the usual core structure including two histidines and six 
conserved cysteines, which work in coordination with 
two zinc ions [14]. There is mounting evidence that the 
PKC′s C1A and C1B domains play separate roles in the 

activation steps [15]. DAG (Diacylglycerol) andPMA 
(phorbol 12-myristate 13-acetate) bind to the C1 domain. 
The C2 domain depends on calcium to bind phospholipid 
molecules. The C3 and C4 domains perform the func-
tion of the kinase [16]. To fully activate the protein, three 
conserved sites on PKC are phosphorylated (P): T514 in 
the catalytic domain and T655 and T674 in the C-termi-
nal tail [17]. The regulatory, kinase,and C-terminal tail 
work in conjunction to bring about stability in the PKCγ 
structure.

Different diseases have been confirmed with the 
PRKCG gene mutation [8, 11]. However, research on this 
gene, especially in the context of HCC, is limited, and no 
study has come to limelight that can associate nsSNPs 
of PRKCG with HCC pathogenesis. The current study 
delineated pathogenic nsSNPs in the PRKCG gene and 
investigated the effect of these nsSNPs on protein func-
tional behavior in the context of HCC. We consulted in-
silico tools at first, as they provide firm grounds based on 
which the results of wet-lab analysis could be predicted. 
Moreover, they are inevitable for initial analysis and 
constructing the roadmap for future therapeutic stud-
ies [18]. Through our wet-lab study, PRKCG expression 
along with the major genes involved in HCC, i.e. HIF1 α, 
AKT, SOCS3, and VEGF, was measured, and a pathway 
was constructed that interlinked these genes in different 
pathways. A genotyping analysis was also conducted, and 
the narrowed down non-synonymous SNP (rs386134171) 
association with HCC was determined. This is our second 
study in which we have identified a novel genetic marker 
of PRKCG, i.e., nsSNP rs386134171, through in-silico 
and experimental studies. Our first study [19] was also 
centered on HCC, where we reported a unique genetic 
marker. This study is different from our previous study, 
and in this study, we have included evolutionary con-
servation and Post Translational Modifications (PTMs) 
results, as well as survival and pathological stage wise 
analysis. To add to this, the PRKCG expression along 
with major genes involved in HCC i.e., HIF1 α, AKT, 
SOCS3 and VEGF was measured, and pathway was con-
structed interlinking these genes in different pathways.

Methods
In silico method
nsSNPs data collection
The  PRKCG variant data (including rsIDs, chromo-
somal position, AA coordinates, and amino acid residue 
change) was fetched from DisGENET, ENSEMBL, COS-
MIC, ClinVar, and HGMD databases [20, 21]. Among 
all the SNPs present in  PRKCG, the missense variants 
(under the coding category) with the transcript ID: 
ENST00000263431 were included, while the variants not 
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provided with the rsIDs and those that were redundant 
were excluded in the final filtration step.

Pathogenicity Prediction of nsSNPs
The deleterious nsSNPs were distinguished from neu-
tral (non-deleterious) ones by utilizing a bioinformat-
ics tool scoring system [22]. For nsSNPs, SIFT, CADD, 
PolyPhen-2, REVEL, MetaLR, and Mutation Assessor 
were utilized [23]. nsSNP was considered pathogenic 
only if more than four tools predicted it to be deleteri-
ous through established criteria [24]. The selected nsS-
NPs were screened out and finalized for further analysis 
by defining a stringent criterion. Moreover, the selected 
nsSNPs were assessed through computational tools: 
FATHMM and PROVEAN [25], which employ specific 
algorithms to predict the effect of non-synonymous 
variants on the functional status of proteins. The scruti-
nized pathogenic nsSNPs were positioned on exons using 
genomic coordinates and exon number information 
gained from ENSEMBL.

PKC γ 3D structure determination
The 3D conformation aids in discerning a protein’s 
molecular function [26]. AlphaFold [27] was preferred 
to predict the PKC γ protein structure. AlphaFold uses 
an AI system to fold the input protein sequence into its 
corresponding structure. The 3D molecular viewer and 
AlphaFold work together to make it easier to recognize 
domains with corresponding locations and orientations 
The model confidence scores greater than 90, as pre-
dicted by AlphaFold, signify the higher accuracy of esti-
mated residues position within the protein structure [28]. 
Additionally, InterProScan [29] was employed to predict 
the existence of significant functional sites and categorize 
protein sequences into domains. Entries from the family 
and domain that were organized into separate, non-over-
lapping hierarchies were examined as well.

Structural and functional alteration prediction of PKC γ 
nsSNP Variants
The structural variations of native and mutant proteins 
with changed ligand interactions were observed through 
PyMol software [30] through inserting desired single 
nucleotide mutations within the wild-typePKC γ struc-
ture. Because the protein structure of the variant rsIDs 
was not available, they were generated by utilizing the 
wild-type structure of PKC γ. The web application tool 
MutPred2 [31] predicted the molecular basis of disease 
and the processes underlying the disruption of protein 
conformation. For the automated analysis of mutants and 
analyses of point mutations on the structural conforma-
tion and function of proteins, Project HOPE software 
[32] was used.

nsSNPVariants Effect on
Protein Structure Stability: by either reducing or enhanc-
ing protein stability, SNPs frequently have an impact on 
protein stability [33]. The mutated protein structure’s sta-
bility status was checked, and comparison with the wild 
structure was made through a combination of analyses, 
including I-Mutant, MUpro, and DynaMut [34]. The sta-
bility differences were predicted through ΔΔG values.

PTMs identification of amino acid residues
PTM sites contain a variety of amino acid alterations that 
result in the production of a diverse range of proteins. 
These locations play a key role in cellular architecture 
and in processes including protein–protein interactions 
and disease-related signaling cascades [35]. Thus, pre-
dicting PTM information helps understand the effect of 
variations in terms of disease association or pathogenic-
ity. PTM code2 (https:// ptmco de. embl. de/) was visited 
for detecting the overall PTMs. PTM code2 predicts 
PTMs of input protein sequences and provides the result 
for 14 distinct PTMs.

Table 1 RT-PCR primer sequences for PRKCG, Hif-1 alpha, VEGF, SOCS3, AKT and β actin

Genes Primer sequences (5ʹ-3ʹ) Tm (oC) Ta (oC) Product size References

PRKCG F: CCT TCT GCG ACC ACTGT 
R: GCT GCA GTT GTC AGCAT 

54.8
53.4

58 557 bp [38]

Hif 1 alpha F: CAT CAG CTA TTT GCG TGT GAGGA 
R: AGC AAT TCA TCT GTG CTT TCA TGT C

57.4
56.2

58 83 bp [39]

VEGF F:CCT GGT GGA CAT CTT CCA GGA GTA C
R: GAA GCT CAT CTC TCC TAT GTG CTG G

62
60.8

61 196 bp [39]

SOCS 3 F: ATT TCG CTT CGG GAC TAG C
R: AAC TTG CTG TGG GTG ACC AT

55
57.1

58 126 bp [40]

AKT F: TAG GCA TCC CTT CCT TAC AGC 
R: CAC TGT CCC ATC CGG CTT CA

56.4
59.7

55 114 bp [41]

Beta actin F:GGG GTG TTG AAG GTC TCA AA
R:TGT CAC CAA CTG GGA CGA TA

55
55.7

57 165 bp [42]

https://ptmcode.embl.de/
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Determination of evolutionary conservation of amino acid 
residues
Variants present in protein regions that are evolutionary 
conserved tend to disrupt the structure and function of 
a protein. The evolutionary conservation of amino acids 
was calculated using the ConSurf server [36]. The protein 
sequence in FASTA format was entered. The Homolog 
search algorithm selected was HMMER, the number of 
iterations was kept to 1, and the E-cut off value selected 
was 0.0001. The UNIREF-90 protein database was used 
for the homolog search. Next, the automatic operation 
was selected for ConSurf analysis. 150 sequences were 
selected for the analysis of the homolog search. The 
Maximal %ID between sequences was kept to a value of 
95 whileminimal %ID for homologs was kept to a value 
of 35. For the alignment method, MAFFT-L-INS-i was 
selected,and the calculation method selected was Bayes-
ian. The user-email ID was entered to retrieve the results 
through email.

Assessing structural variations with time through molecular 
dynamics simulations
For a clear depiction of structural variations with time, 
MD simulations of native and mutant structures (caused 
by nsSNPs) were run with the aid of GROMACS software 
[37]. Systems were solvated in a cube-shaped box with 
water molecules at a marginal radius of 1 nm, and elec-
trical neutralization of the system was accomplished by 
introducing sodium (Na +) and chloride (Cl-) ions to the 
simulation box. For the energy minimization, the steepest 
descent minimization technique with an energy step size 
of 0.01 was used,and maximum numbers of iterations of 
50000 steps were achieved. To provide a stable environ-
ment for the system, Berendsen temperature (tcouple) 
of 300  K and Parrinello-Rahman pressure (pcouple) of 
1  bar were utilized. All electrostatic interactions were 
performed using the PME (Particle- Mesh Ewald) tech-
nique. Structures were equilibrated in NPT (pcoupl) and 
NVT (tcouple) for 100 ps. Finally, 20-ns MD simulation 
was run on both native and mutant structures. Once 
the required time of simulation was completed, the tra-
jectory analysis command was entered, through which 
md_0_1_noPBC.xtc was generated. Next, the analyses 

were conducted utilizing this trajectory file. At first, 
anrmsd.xvg file was produced that identified the root 
mean square deviations, followed by rmsf.xvg that gave 
results for the root mean square fluctuations. Finally, 
gyrate.xvg was generated as the output file that identified 
the radius of gyration (Rg) of the input structures. The 
results obtained were plotted graphically.

Comprehending the clinical profile and survival analysis 
among HCC Patients
The gene expression differs when a comparison between 
normal and tumor samples is done [38]. Identifying 
the expression differences of genes at different stages 
can prove vital in patient diagnosis and prognosis [39]. 
PRKCG expression levels at different pathological stages 
and the survival analysis were done through OncoDB 
(http:// oncodb. org.), which intakes clinical data from 
TCGA (The Cancer Genome Atlas) [40]. The cancer cases 
that are selected are categorized into high or low groups 
based on RNA expression levels, using a percentage cut-
off. The survival plot generated provides the p-value and 
the hazard ratio from the log-rank test and Cox propor-
tional regression analysis respectively [40].

Experimental method
Collection of blood samples
Samples of blood were obtained from controls with no 
history of disease and from patients confirmed with HCC 
diagnosis. Prior to collecting samples, patients and con-
trols were informed ofthe purpose of the research and 
asked to sign a form of consent. About 100 controls and 
100 patients volunteered to become part of the study. 
Both males and females were included in the study, with 
an age range of18-74. The blood was collected from 
the Combined Military Hospital (CMH), Rawalpindi. 
The research was initiated after ASAB, NUST Institute 
Review Board (IRB) approval and was done keeping in 
view the Declaration of Helinski principles [41]. From the 
collected blood, both RNA and DNA were isolated.

Table 2 ARMS PCR primer sequences for PRKCG SNP (rs386134171, G/A)

SNP Primer sequences (5ʹ-3ʹ) Tm(oC) Ta(oC) Product size

rs386134171 (G/A) Forward inner primer (G allele): 160 CTT CAG CTT CCT CAT GGT TCT AGG AACAG 188 68 °C 60 °C 175 bp

Reverse inner primer (A allele): 214 CAG GAA TCC AAC CTT CCC AAA ACT TCT 188 68 °C 193 bp

Forward outer primer (5ʹ—3ʹ): 22 TCT GGC TCT TTC TTT CTC CTT TCC ACAG 49 68 °C 312 bp

Reverse outer primer (5ʹ—3ʹ): 333 ACG GCC CAA CCT AAC CAT ATT TGA AGAT 306 68 °C

http://oncodb.org
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RNA extraction, reverse transcription and amplification 
of transcriptome
The RNA extraction was done for expression analysis 
using the TRI reagent according to a defined protocol 
[42]. The RNA obtained was converted to cDNA (com-
plementary DNA) through the  FIREScript® RT cDNA 
synthesis kit that was purchased fromSolis BioDyne. 
According to the defined concentrations in the manual, 
a master mix was added to the samples and kept at 65 
degrees centigrade for 5  min, 42 degrees centigrade for 
60 min,and 70 degrees centigrade for 10 min. The DNA 
presence was evaluated by the Nanodrop 2000 spectro-
photometer (Thermo Scientific). For DNA amplification, 
the SYBER Green qRT-PCR (Real-Time Quantitative 
Reverse Transcriptase Polymerase Chain Reaction) Kit 
was used according to a defined protocol. For qRT-PCR, 
the primers for the genes (PRKCG, HIF1 α (Hypoxia 
inducible factor alpha), AKT (Ak strain transform-
ing), SOCS3 (Suppressor of cytokine signaling 3), VEGF 
(vascular endothelial growth factor), and Beta(β)  actin) 
amplified were retrieved through literature (Table 1). At 
the end, gel electrophoresis was done by preparing 1% 
Agarose gel for DNA band visualization. Bromophenol 
dye was used as the tracking dye, The PCR conditions 
included initial denaturation at 95  °C for 5 min, anneal-
ing at 65 °C for 60 min, and extension at 72 °C for 10 min. 
A plot was generated that provided the starting quantity 

of the template molecule on the x-axis against the CT 
(Cycle Threshold) on y-axis. Beta actin was used as an 
internal control and a reference gene for the calculation 
of fold change by the  2−ΔΔCt method.

Fig. 1 a. nsSNPs retrieved from six databases including ENSEMBL, COSMIC, ClinVar, DisGENET and HGMD. b. Filtration of nsSNPs as disease causing 
or non-deleterious through SIFT, PolyPhen-2, Mutation Assessor, CADD, REVEL and MetaLR

Table 3 The 15 filtered Variant IDs (nsSNPs) with bioinformatics 
SNP tools scores

Variant ID Chr: bp vf_allele Alleles AA AA coord

rs797045900 19:53882648 A T/A C/S 52

rs386134162 19:53889693 A G/A C/Y 114

rs1064797249 19:53889695 T G/T D/Y 115

rs1568752939 19:53889734 C G/C G/R 128

rs386134167 19:53889744 A G/A C/Y 131

rs1192424800 19:53889900 A G/A V/M 138

rs1599943341 19:53889936 C T/C C/R 150

rs866406014 19:53889963 A G/A G/R 159

rs386134171 19:53898097 A G/A G/S 360

rs747522330 19:53898555 C T/C L/P 403

rs1398783758 19:53900448 C T/C L/P 468

rs387906679 19:53900612 T G/T D/Y 480

rs1202130595 19:53900736 G A/G Y/C 521

rs1568764306 19:53906342 A G/A R/H 597

rs121918516 19:53906728 C T/C F/L 643
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Network construction
HIF-1 alpha [43], AKT [44] and VEGF [45] are 
included among the genes that are involved in cancer 
progression,while SOCS3 [46] acts oppositely to onco-
genes as a tumor suppressor. Through utilizing qRT-PCR, 
the STRING database [47], and a thorough literature 
search, PRKCG was interconnected with the aforemen-
tioned genes in distinct pathways.

DNA Extraction and mutation analysis
The DNA extraction was done according to the phe-
nol/chloroform method [48]. To validate the presence 
of DNA within the sample, gel electrophoresis was car-
ried out. For mutation or genotyping analysis at locus, 
rs386134171, ARMS-PCR (Amplification Refractory 
Mutation System-Polymerase Chain Reaction) was done. 
The PCR (Polymerase Chain Reaction) primers were 
designed computationally via Primer1 [49]. Two sets of 
primers, two outer and two inner primers were designed. 
The inner primers were SNP specific and used for detec-
tion. The product size of the two outer primers was 
312;and the product size of the forward inner primer (G 
allele) was 175, while the product size of the reverse inner 
primer (A allele) was 193. Primer1 also gave respective 
annealing temperatures (Ta) of primers. The Tm (melt-
ing temperature) of primers was calculated using Oligo 
Analyzer 3.1 [50] (Table 2). 20 µl of reaction mixture was 
prepared in each PCR tube that contained 2 µl of DNA, 
7  µl of Solis BioDyne Master Mix, 7  µl of nuclease free 
water,and 1  µl of each of the four primers. The condi-
tions for ARMS-PCR were set as 95 °C for 5 min for ini-
tial denaturation, 35 cycles at 30 s for each temperature 

of 95 °C, 60 °C and72 °C and final extension for 7 min at 
72 °C. Finally, the gel electrophoresis was performed with 
2% agarose gel. Both the RT-PCR and ARMS-PCR end 
products were visualized under UV illuminator and digi-
tally photographed by the GEL-DOC system.

Statistical analysis
SPSS software [51] and Graph Pad Prism [52] were used 
in the end for statistical analysis. The significant level 
was determined through Probability (P) scores of < 0.05. 
The Fisher exact test and the Chi-square test were used 
for analyzing the results. Relative risk (RR) and Odds 
ratio (OR) were calculated along with the 95% confidence 
interval. OR or RR has values ranging from 0 to 1, with 
values greater than 1.0 indicating increased risk or asso-
ciation between the studied factor and the disease, while 
values less than 1.0 point towards decreased association. 
To add to this, a value equal to 1.0 shows no association 
[53].

Results
Identification of deleterious variants of PRKCG
437 nsSNPs from ENSEMBL, 438 nsSNPs from COS-
MIC, 125 nsSNPs from ClinVar, 41 nsSNPs from Dis-
GENET, and 39 nsSNPs from HGMD were obtained 
(Fig.  1a). So, the total nsSNPs gathered from different 
databases were 1080. After the filtration process, the 
final number of nsSNPs that remained was 427 (Addi-
tional file 1). The values obtained were validated from the 
dbNSFP database (http:// sites. google. com/ site/ jpopg en/ 
dbNSFP). The filtered rsIDs were sorted into deleterious 

Table 4 The 15 filtered nsSNPs with Variant IDs, Chromosomal Location, replaced alleles, amino acids (AA) and AA coordinates

Variant ID SIFT PolyPhen-2 CADD REVEL MetaLR Mutation 
assessor

rs797045900 0 1 31 0.927 0.9962 4.825

rs386134162 0 0.988 31 0.967 0.997 4.7

rs1064797249 0 0.988 32 0.921 0.908 3.05

rs1568752939 0 0.993 32 0.936 0.947 4.65

rs386134167 0 0.988 32 0.937 0.997 4.715

rs1192424800 0 0.975 32 0.755 0.92 3.65

rs1599943341 0 0.999 32 0.907 0.944 4.735

rs866406014 0.003 1 32 0.662 0.74 3.97

rs386134171 0 0.993 31 0.978 0.961 3.73

rs747522330 0 1 32 0.789 0.276 3.02

rs1398783758 0 1 32 0.671 0.43 4.49

rs387906679 0 1 33 0.933 0.939 4.29

rs1202130595 0 1 32 0.687 0.405 3,62

rs1568764306 0 1 32 0.804 0.701 4.57

rs121918516 0 1 32 0.942 0.908 3.625

http://sites.google.com/site/jpopgen/dbNSFP
http://sites.google.com/site/jpopgen/dbNSFP
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or benign by utilizing bioinformatics SNP tools (Fig. 1b, 
Additional file 1).

Variants with SIFT scores that ranged from 0.00–0.05 
were chosen as intolerant or deleterious, while those 
with scores greater than 0.05 were classified as tolerant 
or benign. Variants with PolyPhen-2 values of 0.25 were 
classified as benign; values between ‘ > 0.25 and  > 0.8’ 
were classified  as ‘Possibly Damaging’, and values  > 0.8 
were characterized as ‘Probably Damaging’. For mutation 
assessor scoring, variants with scores less than 0.8 were 
classified as neutral; scores > 0.8 but less than and equal 
to 1.9 were put in the low deleterious category; scores 
greater than 1.9 but equal to or less than 3.5 as medium 
deleterious; and scores greater than 3.5 as highly deleteri-
ous. The CADDs with scores equal to or greater than 30 
were characterized as damaging. Moreover, the REVEL 
scores ranged from 0 to 1, with higher scores reflecting a 

greater likelihood that the variant was disease-causing. If 
the scores were less than or equal to 0.5, then the REVEL 
class was likely benign. Similarly, for MetaLR, scores less 
than or equal to 0.5 were taken as benign, while scores 
above 0.5 were considered damaging.

Moreover, the deleterious nsSNPs were narrowed 
down to 15 nsSNPs (Additional file 1). For that purpose, 
SIFT scores that were 0 or equal or less than 0.003 were 
selected; PolyPhen-2 scores above or equal to 0.975 were 
selected; CADD scores equal or above 30 were selected; 
and Mutation Assessor scores that were equal or above 
0.862 were selected (Table 3). Variant IDs, chromosomal 
locations, substituted alleles, amino acids (AA), and AA 
coordinates of 15 nsSNPs were studied, and the data was 
collected (Table 4).

Fig. 2 a. Domains and amino acid coordinates of PKC γ with 15 nsSNP variants. b. Distribution of 427 nsSNP variants that fall in different exon 
positions of PRKCG
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Domains recognition
Domains of PKC γ were predicted through InterProScan. 
The positions of corresponding amino acid residues for 
15 nsSNPs were narrowed down (Fig.  2a). One residue 
was identified in the C1A region, six residues in the C1B 
region, one residue in the region between C1B and C2, 
six residues in the C3/C4 region, and one residue was 
found in the C-terminal tail. The pseudosubstrate domain 
was identified between 1 and 35 amino acid coordinates, 
the regulatory domain between 35 and 260 residues, 
the hinge region between 260 and 351 amino acids, the 
catalytic domain between 351 and 615 amino acids, and 
the C-terminal tail between 615–685 amino acids (Addi-
tional file 1). It can be seen that among 427 nsSNPs, the 
majority were identified in exons 5, 10, and 18 that gave 
rise to amino acid residue variations in different domains 
of PKCγ (Fig. 2b).

PKCγ tertiary structure prediction
PKC γ 3D structure was predicted through AlphaFold 
(Fig.  3a). The projected structure provided amino acid 
coordinates and confidence estimates for each residue 
on a scale from 0 to 100, with higher scores signifying 
greater confidence. The very high model confidence resi-
dues have pLDDT values ≥ 90. The residues were marked 
as confident with 90 > pLDDT ≥ 70 and residues with 
70 > pLDDT ≥ 50 were marked as low confidence resi-
dues, while very low confidence residues had pLDDT < 50 
(Fig. 3b). The model confidence levels at different amino 
acid positions of PKC γ were also observed (Additional 
file  1). Positional errors of aligned residues were ana-
lyzed as well (Fig.  3c). The expected position error is 
minimal in residues highlighted in dark green, while as 
the color turns towards light green, the expected posi-
tion error increases, which highlights the unreliability of 

Fig. 3 a. PKC γ 3D structure prediction by Alphafold. b. Confidence levels of the interactions found in the PKC γ structure. c. Expected position error 
of aligned residues of PKC γ. d and e. Elaborate structural view of domains of PKC γ that is drawn in conjunction with the information gained from 
Alphafold, InterProScan and PyMol. PKC gamma domains are represented in different colors, Pseudosubstrate (PS) region as green, C1A region as 
blue, region between C1A and C1B as yellow, C1B region as magneta, region between C1B and C2 as cyan), C2 (red), region b/w C2 and C3/C4 as 
orange), region C3/C4 as raspberry and C-tail as chocolate
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the relative orientation and position of residues within 
the protein structure. The PDB structure of PKC γ was 
retrieved from Alphafold and analyzed in PyMol. The 
domain information was obtained from InterProScan. 
Different domains of PKC γ are highlighted separately in 
different colors (Fig. 3d, e).

Evolutionary analysis prediction
ConSurf estimated the evolutionary conservation of 
amino acid positions in a protein molecule based on the 
phylogenetic relations between homologous sequences. 
Only the FASTA sequence of the protein was input at the 
beginning to retrieve the expected results. ConSurf gave 
an accurate evolutionary rate by using either an empiri-
cal Bayesian method or a maximum likelihood (ML) 

method. The ConSurf results highlighted the preserva-
tion sequence homology and conservation scores from 
1 to 9 (Fig. 4), where residues with the maximum score, 
i.e., 9, were highly conserved, while residues with scores 
less than 5 were variable and less conserved. Moreover, 
the most variable positions (grades 1–4) were colored 
turquoise, intermediate or average conserved positions 
(grade 5) were colored white, and the most conserved 
positions (grades 6–9) were colored maroon (Fig.  4). 
Conservation scores obtained for PKC γ residues indi-
cated that all 15 residues lay in positions that were highly 
conserved, so the mutations would expectably produce 
a damaging effect on the functionality and structural 
stability of the protein. According to ConSurf, residues 
G360, D480, Y521, and R597 were found exposed, while 

Fig. 4 ConSurf analysis of PKC γ. Illustration of the evolutionary conservation scale and representation of the PKC γ residues as buried (b), exposed 
(e), functional (f ), and structural (s)
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the rest of the residues were found buried within the pro-
tein structure (Fig. 4 and Table 5).

Sorting and filtration process through involving different 
bioinformatics tools
For initial sorting, SIFT, PolyPhen-2, REVEL, MetaLR, 
CADD, and Mutation Assessor were used. Then further 
bioinformatics tools were applied to the 15 filtered nsS-
NPs, which included FATHMM and PROVEAN. These 
tools were employed to further validate the filtered 

nsSNPs to determine whether they were deleterious 
or non-deleterious and had an effect on the biological 
activity or functional status of proteins. The associated 
nsSNV was projected as ′Damaging (D) if the FATHMM 
score was = −  1.5 (or rankscore >  = 0.81332) and the 
PROVEAN score was <  = −  2.5 (rankscore >  = 0.54382); 
otherwise, it was predicted as ′Tolerated (T) or ′Neutral 
(N) (Table  6). The molecular mechanisms of disrup-
tion brought about by structural or functional changes 

Table 5 The 15 filtered residue positions with their corresponding ConSurf values

Position Residues Scores of 
conservation

Color Conservation levels Buried/exposed 
(B/E)

Functional/
structural 
role

52 C − 0.818 9 Highly conserved Buried Structural

114 C − 0.822 9 Highly conserved Buried Structural

115 D − 0.665 9 Highly conserved Buried Structural

128 G − 0.741 9 Highly conserved Buried Structural

131 C − 0.822 9 Highly conserved Buried Structural

138 V − 0.725 9 Highly conserved Buried Structural

150 C − 0.823 9 Highly conserved Buried Structural

159 G − 0.823 9 Highly conserved Buried Structural

360 G − 0.656 8 Highly conserved Exposed Functional

403 L − 0.719 9 Highly conserved Buried Structural

468 L − 0.484 8 Highly conserved Buried –

480 D − 0.842 9 Highly conserved Exposed Functional

521 Y − 0.777 9 Highly conserved Exposed Functional

597 R − 0.797 9 Highly conserved Exposed Functional

643 F − 0.714 9 Highly conserved Buried Structural

Table 6 Assessing the pathogenicity of filtered nsSNPs through different softwares

Residues FATHMM_score FATHMM_converted_
rankscore

FATHMM_pred PROVEAN_score PROVEAN_
converted_rankscore

PROVEAN_
pred

C52S − 7.56 0.9989 D − 7.62 0.95394 D

C114Y − 7.56 0.9989 D − 10.17 0.98905 D

D115Y − 3.21 0.93291 D − 8.14 0.96736 D

G128R − 3.46 0.94508 D − 7.13 0.94048 D

C131Y − 7.56 0.9989 D − 9.82 0.98684 D

V138M − 3.54 0.94799 D − 2.38 0.52451 N

C150R − 3.27 0.98487 D − 10.9 0.99248 D

G159R − 0.8 0.91589 T − 7.44 0.94872 D

G360S − 3.98 0.96277 D − 5.38 0.84954 D

L403P 1.3 0.3559 T − 6.75 0.92692 D

L468P 0.73 0.50721 T − 6.38 0.911 D

D480Y − 3.16 0.92996 D − 8.58 0.9743 D

Y521C 0.37 0.57729 T − 8.59 0.97447 D

R597H − 0.57 0.71307 T − 4.22 0.75854 D

F643L − 3.05 0.92407 D − 5.54 0.86149 D
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because of mutations were investigated through MutPred 
(Table 7).

Project hope analysis of protein structure and mutant 
analysis
With the help of Project Hope, the changes in the 3D 
tertiary structure of the protein and the associated 

functional or phenotypic changes were studied. It can be 
seen that those mutant amino acid residues that are big-
ger than the wild-type residues have become the primary 
cause of repulsions and bumps in the protein structure 
that have led to perturbed folding and the loss of essen-
tial hydrogen and hydrophobic interactions (Table 8).

Table 7 MutPred2 conservation scores and the underlying molecular mechanisms disrupted because of alteration in amino acid 
residues

Residues Conservation 
scores 
(g-value)

Molecular mechanisms disruption

Functional impact Pr-value  P-value Structural impact Pr-value  P-value 

(Probability) (Probability)

C52S 0.960 Altered Transmembrane protein;
Altered Metal binding;
Gain of Disulfide linkage at C49

0.29
0.28
0.12

3.7e-04
0.02
0.04

C114Y 0.955 Altered Metal binding;
Altered Transmembrane protein;
Gain of Sulfation at C114

0.56
0.12
0.02

2.9e-03
0.03
0.04

D115Y 0.932 Altered Metal binding;
Altered Transmembrane protein;
Gain of Sulfation at D115

0.56
0.09
0.01

2.9e-03
0.05
0.04

G128R 0.869 Altered Metal binding 0.29 0.02

C131Y 0.901 Altered Metal binding;
Gain of Pyrrolidone carboxylic 
acid at Q127

0.41
0.04

6.1e-03
0.05

Gain of Strand 0.26 0.04

V138M 0.431 - - -

C150R 0.970 Altered Metal binding;
Altered Transmembrane protein;
Loss of Disulfide linkage at C150

0.55
0.11
0.22

3.0e-03
0.04
0.01

Gain of Intrinsic disorder;
Altered Disordered interface

0.35
0.22
0.15

0.02
0.01
0.05

G159R 0.741 Altered Transmembrane Protein 0.13 0.02 Gain of Helix 0.32 2.2e-0.3

G360S 0.908 Loss of Acetylation at K364;
Altered DNA binding;
Loss of Methylation at K364;
Loss of Catalytic site at K359

0.24
0.20
0.15
0.14

0.02
0.02
0.02
0.03

L403P 0.971 Gain of Allosteric site at K400 0.23 0.02 Gain of Intrinsic disorder 0.35 0.02

L468P 0.932 Altered Metal binding;
Gain of Allosteric site at H472;
Altered Transmembrane protein;
Altered DNA binding

0.31
0.26
0.14
0.14

2.2e-03
9.1e-03
0.02
0.05

Altered Ordered interface; 0.28 0.04

D480Y 0.946 Altered Metal binding;
Loss of Allosteric site at R479;
Altered DNA binding;
Altered Transmembrane protein;
Loss of Catalytic site at D484;
Gain of Sulfation at D480

0.77
0.31
0.23
0.15
0.14
0.01

5.4e-05
3.5e-03
0.01
0.01
0.03
0.04

Altered Ordered interface;
Altered Disordered interface;

0.32
0.28

1.8e-03
0.04

Y521C 0.945 Altered Metal binding;
Gain of Catalytic site at C516;
Loss of Allosteric site at Y521;
Altered Transmembrane protein;
Gain of Disulfide linkage at C516;
Loss of Sulfation at Y521;

0.81
0.37
0.33
0.30
0.16
0.04

5.7e-04
2.8e-04
1.9e-03
1.3e-04
0.03
0.01

Altered Ordered interface;
Altered Disordered interface;
Gain of Relative solvent acces-
sibility

0.44
0.29
0.26

5.7e-04
0.02
0.03

R597H 0.771 Altered DNA binding;
Loss of Allosteric site at R597;
Loss of Acetylation at K592;
Loss of Amidation at P594

0.37
0.37
0.25
0.01

6.8e-04
9.2e-04
0.01
1.2e-03

F643L 0.865 Loss of Acetylation at K645 0.40 1.3e-03 Altered Ordered interface;
Gain of Helix

0.29
0.27

0.03
0.04
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Protein stability analysis
For protein stability analysis, the I-Mutant 3.0 gave 
the output as a Delta Delta G (DDG) value that gave 
three predictions: largely unstable (DDG <  − 0.5  kcal/
mol), largely stable (DDG > 0.5  kcal/mol), or neutral 
(− 0.5 ≤ DDG ≤ 0.5  kcal/mol). The values that were 
less than 0.5 were assigned a negative value, while the 
values that were above 0.5 were assigned positive val-
ues. For MUpro, the same criteria were used to pre-
dict protein stability, a score less than 0 means the 
mutation decreases protein stability. Conversely, a 
score higher than 0 means the mutation increases the 
protein’s stability. The higher the score, the more con-
fident the prediction is. Moreover, in DynaMut, DDG 

was used as a metric for predicting how a single point 
mutation would affect protein stability. The more nega-
tive a value, the less stable the protein is, and the more 
positive the value, the more stable the protein is (Fig. 5, 
Additional file 1).

PTM code2 for PTM prediction
The PTMs for the wild type PKC γ amino acid resi-
due positions were identified (Additional file  1). The 
conservation scores of PKC γ residue positions high-
lighted the possibility that alterations brought about 
by the mutations could have a negative impact on the 

Table 8 Project Hope Prediction Analysis

Residues Hydrophobicity Domain Size Charge Conservation site Amino acid Properties

C52S Wild > Mutant C1A - - Highly Conserved Perturbed folding;
Loss of Hydrophobic interac-
tions

C114Y Wild > Mutant C1B Wild < Mutant - Highly Conserved Bumps/repulsions of ligands;
Loss of Hydrophobic interac-
tions;
Disrupted folding

D115Y Wild < Mutant C1B Wild < Mutant Wild-Negative,
Mutant-Neutral

Highly Conserved Loss of hydrogen bonds;
Disrupted correct folding;
Bumps/repulsions of ligands

G128R Wild > Mutant C1B Wild < Mutant Wild- Neutral,
Mutant-Positive

Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

C131Y Wild > Mutant C1B Wild < Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions;
Loss of Hydrophobic interac-
tions

V138M - C1B Wild < Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

C150R Wild > Mutant C1B Wild < Mutant Wild-Neutral,Mutant-
Positive

Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions;
Loss of Hydrophobic interac-
tions

G159R Wild > Mutant Between C1B and C2 Wild < Mutant Wild-Neutral Mutant-
Positive

Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

G360S - C3/C4 Wild < Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

L403P - C3/C4 Wild > Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

L468P - C3/C4 Wild > Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions

D480Y Wild < Mutant C3/C4 Wild < Mutant Wild-Negative
Mutant- Neutral

Highly Conserved Loss of hydrogen bonds;
Perturbed folding

Y521C Wild < Mutant C3/C4 Wild > Mutant - Highly Conserved Bumps/repulsions of ligands;
Disrupted folding interactions;
Loss of hydrogen bonds

R597H - C3/C4 Wild > Mutant Wild- Positive
Mutant-Neutral

Highly Conserved Loss of ionic interactions;
Disrupted folding

F643L - C-Tail Wild > Mutant - Highly Conserved Loss of hydrophobic interac-
tions;
Disrupted folding
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functional status of proteins due to altered modifica-
tions at the post translational level.

Flexibility and molecular dynamics simulation analysis 
of mutants in regulatory domain of PKCγ
C1A, C1B, and C2 constitute the PKC γ regulatory 
domain. Of the fifteen nsSNPs, the C1 domain har-
bored seven mutations (C52S, C114Y, D115Y, G128R, 
C131Y, V138M, and C150R). Moreover, all seven muta-
tions were located within the C1B region, which caused 
the flexibility of the PKC γ to decrease in the region 
where the mutations were identified. The changes in 
inter-residue hydrogen bond interactions have been 
observed in C52S (Fig. 6a). In mutant residues, D115Y, 
G128R, V138M, and C150R, the changed hydrogen 
bond and hydrophobic interactions were identified 
(Fig. 6c, d, f, and g). In the case of C114Y, C131Y, along 
with changed hydrogen and hydrophobic interactions, 
there has been a gain in aromatic interactions (Fig. 6b 
and e). Between the regions C1 and C2, a single muta-
tion, G159R, was identified that resulted in changed 
hydrogen bonds and hydrophobic interactions (Fig. 6h). 
A molecular dynamics simulation investigation showed 
that the mutants, C52S, C114Y, D115Y, G128R, C131Y, 
V138M, and G159R had increased RMSD values when 
compared with the wild type. The C150R mutant had 
RMSD values close to the wild type but showed fluc-
tuation throughout 20  ns, which represents the 
instability of the C150R mutant structure (Fig.  7a). 
The fluctuations in RMSF values of mutants in the 

regulatory domain also indicate destabilization in the 
regions where the mutations were identified (Fig.  7b). 
Fluctuations in the radius of gyration were seen for the 
mutants C52S, C114Y, D115Y, G128R, C131Y, V138M, 
C150R, and G159R over the span of 20 ns that indicate 
the structural instability and loss of compactness of the 
PKC γ regulatory region (Fig. 7c).

Flexibility and molecular dynamics simulation analysis 
of mutants in kinase domain of PKC γ
Molecular flexibility analysis revealed that kinase domain 
mutations G360S, D480Y, and R597H cause a decrease in 
flexibility, whereas mutations of L403P, L468P, and Y521C 
cause flexibility to increase (Fig. 8). In mutant G360S, the 
loss of weak hydrogen bonds was observed while strong 
hydrogen bonds were retained. In mutants, L403P, L468P, 
and Y521C, the loss of hydrogen bonds and hydropho-
bic interactions has been spotted. In mutant, D480Y, the 
change in length and size of hydrophobic and hydro-
gen bonds within wild and mutant structures has been 
observed, while in mutant R597H, the loss of ionic inter-
actions and gain of hydrophobic interactions have been 
noted. Also, a few inter-residue hydrogen bond interac-
tions have been reduced. A molecular dynamics inves-
tigation revealed that nsSNPs caused fluctuations in the 
kinase region. The RMSD, RMSF, and Rg values depict 
instability in mutant protein structures (Fig. 9a, b, and c). 
Reportedly, a high Rg specifies protein structure expan-
sion, while a low Rg shows protein structure compactness 
(Fig. 9c).

Fig. 5 nsSNP stability analysis of PKC γ variants through MUpro, I-Mutant v2.0 and DynaMut
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Flexibility and molecular dynamics simulation analysis 
of mutant in C-terminal tail of PKC γ
A single residue mutation, F643L, was identified in 
the C-terminal tail of PKC γ that caused an increase in 
molecular flexibility due to the loss of hydrophobic and 
ionic interactions (Fig.  10). The RMSD of the F643L 
variant increased in comparison with the wild type 

(Fig. 11a). The RMSF and Rg for protein atoms showed 
fluctuations throughout 20 ns (Fig. 11b, c).

Survival rates estimation and pathological N and T stage 
analysis
The plot of the Kaplan–Meier estimator shows that as 
the expression of PRKCG increases (depicted by the red 

Fig. 6 DynaMut results depiction of molecular flexibility analysis and interatomic interactions of regulatory domain of PKC γ. a. Variant C52S is 
shown. Hydrogen bonds are present at 3.1A-3.6A. b. Variant C114Y is shown. Hydrogen bonds are present between 2.8A and 3.5A (Angstrom) while 
hydrophobic interactions are displayed between 2.9A and 4.5A. The aromatic interactions are observed between 2.7A and 3.9A. c. Variant D115Y 
is represented. Hydrogen bonds are present between 2.7A to 3.2A. Hydrophobic interactions are observed at 3.9A and 4.5A. d. Variant G128R is 
shown. Hydrogen bonds are present between 2.4A and 3.7A. Hydrophobic interactions are displayed between 3.9A and 4.5A. e. Variant C131Y is 
shown. Hydrogen bonds are present between 2.8A and 3.7A. Hydrophobic interactions and aromatic interactions are observed at 3.0A-4.5A and 
3.4A-3.9A respectively. f. Variant V138M is shown. Hydrogen bonds are present between 2.8A and 2.9A distance. Hydrophobic interactions are 
observed between 3.5A and 4.5A. g. Variant C150R is shown. Hydrogen bonds are present between 2.8A and 3.9A. Hydrophobic interactions are 
observed at 3.4A, 4.3A and 4.4A. h. Variant G159R is shown. Hydrogen bonds are present at 2.5A–3.0A. Hydrophobic interactions are observed 
between 3.8A and 4.5A. The region where mutation is present is highlighted inside the red box that depicts the rigidification of the structure and 
decrease of molecular flexibility in the represented structures
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line in a series of declining horizontal steps), the sur-
vival rate of liver cancer patients decreases (Fig.  12a). 
For the survival plot, Threshold: Cutoff was selected 
as ≥ 50%. In total, information related to 371 (n) patients 
was extracted from OncoDB. High expression of PRKCG 
was recorded in 181 (n) patients, while low expression 
was reported in 190 (n) patients. It shows that the over 
expression of PRKCG is hazardous for cancer patients 
and lowers their survival rates. Moreover, the results 
depict that PRKCG expression is higher during differ-
ent T and N stages according to ANOVA p values, which 
highlights its role in metastasis (Fig. 12b, c).

Frequency analysis of PKC γ nsSNPrs386134171 genotype 
(G/A) in patients and controls
In total, 100 HCC patients and 100 controls were 
included in the study. Through analyzing the locus 
rs386134171, notable differences between the frequen-
cies of homozygous (GG, AA) and heterozygous (AG) 
genotypes were observed between patients (Additional 

file  1) and control groups (Additional file  1). GG was 
found in 56 controls and in 36 controls. AA was noted 
in 61 patients and 39 controls, while the AG genotype 
was identified in 3 patients and 5 controls. The GG geno-
type was more prevalent in controls compared to the AA 
genotype. AG had almost equal frequency in the studied 
groups. Genotype AA had more prominence in patients 
with OR (2.446), RR (1.564), and P-values (< 0.0029) indi-
cating the probability that it may act as a predominant 
factor towards HCC onset, while the GG genotype was 
found to be rather protective in terms of association with 
HCC (Table 9).

Gender specific frequency analysis of PKC γ 
nsSNPrs386134171 genotype (G/A)
When genotype frequency comparison was done gen-
der specifically, it was noticed that males in compari-
son to females had higher frequencies of the examined 
genotypes, GG, AA, and AG. In males, 44 controls and 
22 patients had the GG genotype, 31 patients and 29 

Fig. 7 Molecular dynamics simulations representation of PRKCG nsSNPs residing in regulatory domain. a. Root mean square deviation (RMSD). b. 
Root mean square fluctuation (RMSF)—protein. c. Radius of gyration—backbone
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controls had the AA genotype, and 2 patients and 4 con-
trols had the AG genotype. In females, 14 patients and 12 
controls had GG genotypes, 30 patients and 10 controls 
had AA genotypes, and heterozygous genotype (AG) was 
almost equal in the patient and control groups. Accord-
ing to P values, a non-significant association was found 
between the respective genotypes and HCC (Table 10).

Expression analysis
The blood expression analysis of PKC γ, HIF1 α, AKT, 
SOCS3, and VEGF was done to analyze the fold change 
difference among patients and controls. Apart from 
SOCS3, all other genes had high expression in HCC 
patients, which indicates their prominent role in carcino-
genesis. Among the genes analyzed, PRKCG showed a 
high fold change difference (Fig. 13).

Fig. 8 DynaMut tool depiction of molecular flexibility analysis and interatomic interactions of kinase domain of PKC γ. a Variant G360S is 
shown. Hydrogen bonds are present at 2.9A and 3.5 A distance. The region where mutation is present is highlighted with blue region inside 
the red highlighted box that depicts the rigidification of the structure. b Variant L403P is shown. Hydrogen bonds are present at 2.7A and 
2.9A. The hydrophobic interactions are observed at 3.6A-4.5A. c Variant L468P is shown. Hydrogen bonds are present between 2.9A and 3.7A 
while hydrophobic interactions are observed at 3.9A-4.5A. d. Variant D480Y is shown. Hydrogen bonds are present between 2.9A and 3.3 and 
hydrophobic interactions are represented at 2.3A-3.9A. e. Variant Y521C is shown. Hydrogen bonds are present between 2.6A and 3.6A while 
the hydrophobic interactions are observed at 3.4–4.4A. f. Variant R597H is shown. Hydrogen bonds are present between 2.6A and 3.4A. Ionic 
interactions are displayed between 3.3A and 3.6A. The hydrophobic interactions are observed at 4.1A.The region where mutation is present is 
highlighted within red box that depicts the increase or decrease of molecular flexibility



Page 17 of 24Abid et al. Cancer Cell International          (2023) 23:123  

Inter-connection between PKC γ, HIF-1 alpha, AKT, SOCS3 
and VEGF
PKC γ, HIF-1 alpha,AKT, SOCS3, and VEGF expressions 
connect with one another in defined and recognizable 
pathways. HIF-1 alpha expression leads to upregulated 
VEGF expression, which in turn activates PKC γ. VEGF, 
once released, can lead to angiogenesis through bind-
ing with VEGFR, which activates SRC, which ends 
up with PLD1-PA/DAG/PKCγ pathway stimulation. 
Interestingly,PKC γ induces Raf and MEK activation via 
phosphorylation through the tumor promoting molecule, 
TPA (12-O-tetradecanoylphorbol 13-acetate). Apart 
from Raf and MEK, PKCγ can interact with ERK which 
triggers cancer cell proliferation through many proteins, 
including cyclin D and MYC, to name a few (Fig.  14). 
In cancer, SOCS3 acts as a suppressor. It can inhibit the 
HIF-1 alpha and ERK pathways that cross-link with PKC 
γ. So, indirectly, SOCS3 obstructs pathways that lead to 
PKC γ activation or those pathways that are controlled by 
PKC γ. One of the pathways that activates RAS is when 
mitogen factors, e.g., EGF, bind to the EGFR receptor, 

which in response activates Grb2, which turns on SOS 
activity, which acts as a guanine nucleotide exchange 
factor for RAS. RAS through PI3K activates AKT, which 
switches on HIF-1 alpha activity. So, indirectly, through 
upregulation of AKT, PKC γ activity is also triggered 
(Fig. 14).

Discussion
Liver cancer etiology differs geographically. In other 
words, it is heterogeneous. HCC is deemed as the liver 
cancer common type and is ranked at the sixth number 
for its incidence rate among cancers [54, 55]. Disease 
susceptibility differs from one individual to another on 
a genetic basis that includes SNPs. Among SNPs, non-
synonymous ones contribute to altered phenotype [56]. 
Based on PRKCG, the literature available on nsSNPs 
association with cancer is very limited and not studied in 
detail. The present study has taken the help of bioinfor-
matics approaches before wet lab experiment validation 
to unravel the nsSNPs of PRKCG that could potentially 
be involved in carcinogenesis and are often missed for 

Fig. 9 Molecular dynamics simulations representation of PRKCG nsSNPs residing in kinase domain. a. Root mean square deviation (RMSD). b. Root 
mean square fluctuation (RMSF)—protein. c. Radius of gyration (Rg)—backbone
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their significance in disease pathogenicity. The differ-
ent filtration and sorting bioinformatics tools have been 
used previously in different studies, and their precise and 
accurate predictions have proven successful in determin-
ing whether the nsSNPs are pathogenic/deleterious, or 
benign [57].

The following study concluded that 15 nsSNPs were 
pathogenic according to SIFT, PolyPhen-2.0, Muta-
tion Assessor, CADD, REVEL, MetaLR, FATHMM and 
PROVEAN scores [23, 25].

The majority of 15 nsSNP mutations were identified in 
exons 5, 10, and 18 and the regulatory and kinase domains 
of PKC γ. Structural analysis of selected high-risk nsS-
NPs showed that the amino acid residue substitutions in 
PKC γ domains had a deleterious impact on the stability 
and, subsequently, the function of PKC γ. Amino acid resi-
dues that had undergone substitution were rs797045900 
(C52S), rs386134162 (C114Y), rs1064797249 (D115Y), 

rs1568752939 (G128R), rs386134167 (C131Y), rs1192424800 
(V138M), rs1599943341 (C150R), rs866406014 (G159R), 
rs386134171 (G360S), rs747522330 (L403P), rs1398783758 
(L468P), rs387906679 (D480Y), rs1202130595 (Y521C), 
rs1568764306 (R597H), and rs121918516 (F643L). Because 
of the presence of these high-risk nsSNPs, it is more likely 
that humans with these nsSNPs in their genome may 
develop different phenotypes due to altered PKC γ gene 
expression. Our research suggests that these nsSNPs be con-
sidered when determining the risk of several diseases. Six 
variant residues were found in the C1B area: one in the C1A 
region, one in the region between C1B and C2, six in the C3/
C4 region, and one in the C-terminal tail. Studies suggest 
that the connection between the pseudosubstrate and cata-
lytic domains appears to be strengthened by each regulatory 
domain, including C1a, C1b, and C2. Additionally, mutations 
that alter the C1a and other regulatory domain contacts can 

Fig. 10 DynaMut tool representation of molecular flexibility analysis and interatomic interactions of C-terminal tail of PKC γ. a. Variant F643L is 
shown. Hydrogen bonds are present at 3.0A, 3.4A and 3.7A. Hydrophobic interactions are displayed between 3.5A and 4.5A. Ionic interactions are 
present at 3.2A. The region where mutation is present is highlighted within red box that depicts the increase of molecular flexibility
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loosen the autoinhibited interaction, causing the enzymatic 
activity to increase [58].

Also, C1B domain mutations prevent the binding of 
secondary messengers, leading to decreased activity [16]. 
Similarly, mutagenesis of the C2 domain puts PKCs in an 
inactive conformation or lock state by developing intra-
molecular interactions with the catalytic domain [59]. 
Moreover, kinase loops, or C3/C4 domains, are the sites 
for phosphorylation, and mutations at these conserved 
sites do harm the full activation of PKC enzymes [60]. 
C-terminal tail facilities PKC stability and in facilitating 
the catalytic core interaction with ATP or the substrate 
[61]. The conservation scores and the disruption in the 
underlying molecular pathways were both determined 
in the subsequent study using MutPred2. Utilizing Mut-
Pred2, pathogenic mutations with underlying functional 
changes have been documented [62]. Additionally, the 
Project Hope software’s findings have offered crucial 
details on the potential consequences of missense SNPs. 

Once transformed into different residues, those residues 
that have a very flexible wild-type structure generate 
perturbed folding interactions. More bumps and repul-
sions were induced in the structures where the mutant 
residue was bigger. A difference in charges and sizes 
between the wild-type and mutant amino acids was also 
noted, which disrupted the inter-molecular interactions 
as a result of point mutations. Additionally, it was shown 
that the mutant residue imparted differential charges to a 
buried residue, which caused issues with protein folding. 
As mutations took place, the torsion angles also altered, 
which drove the local backbone into a misaligned con-
formation, disrupting the local structure. It was observed 
that the new residues were not in the proper location 
to form the same intermolecular bonds as the original 
wild-type residue due to size and ionic discrepancies. 
The formation of hydrogen bonds was also impacted by 
the variation in hydrophobicity levels caused by changed 
residues.

Fig. 11 Molecular dynamics simulations representation of PRKCG nsSNP residing in C-terminal tail. a. Root mean square deviation (RMSD). b. Root 
mean square fluctuation (RMSF)—protein. c. Radius of gyration (Rg)—backbone
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Importantly, SNPs that form part of the conserved 
region of the protein, if gets mutated, have a deleterious 
effect compared to those that lie in the non-conserved 
region [63]. ConSurf software was therefore employed 
for determining the conservation status of amino acids. 
The ConSurf software was employed to give the conser-
vation scores of amino acids by analyzing the evolution-
ary dynamics of homologous sequences. The exposed 

residues G360, D480, Y521, and R597, according to Con-
Surf, highlight their potential functional role in initiating 
various molecular pathways through surface-molecule 
interaction. The remaining residues, on the other hand, 
were found buried within the structure, indicating their 
structural role. From the ConSurf results, it can be 
deduced that those residues that were conserved when 

Fig. 12 a. Kaplan–Meier plot showing the relationship between PRKCG levels and patient survival in liver cancer. b. PRKCG expression at 
Pathological T stages c. PRKCG expression at Pathological N stages

Table 9 Comparison of PKC gamma genotype (G/A) frequencies in patients and control groups

Gene Locus Genotypes Patients (n) Control (n) OR OR (95% CI) RR RR (95% CI) P-value

PRKCG rs386134171 GG 36 56 0.4420 (0.2524, 0.7858) 0.6603 (0.4848, 0.8822)  < 0.0069

AA 61 39 2.446 (1.377, 4.289) 1.564 (1.177, 2.109)  < 0.0029

AG 3 5 0.5876 (0.1525, 2.308) 0.7423 (0.2687, 1.410)  > 0.7209
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they got mutated directly impacted the structural confor-
mation and stability [63].

DynaMut2 was also used in the study, which incorpo-
rates information on protein dynamics and structural 
environment properties of wild‐type residues and pro-
teins with single and multiple point mutations [64]. The 
results of the DynaMut2 software tool helped in the iden-
tification of changes in hydrogen, hydrophobic, ionic, and 
other electrostatic bond interactions in residues from 
wild-type to mutant types. A molecular dynamics inves-
tigation revealed that nsSNPs caused fluctuations in the 
kinase, regulatory, and C-terminal regions. Moreover, the 

RMSD, RMSF, and Rg values depict instability in mutant 
protein structures. The molecular dynamic simulation 
was run for 20 ns, if it is expanded to 50 ns or more, as 
indicated in past studies, it can give more accurate insight 
into the PKC γ molecular dynamics. [65]. This is primar-
ily the first study that has linked the decreased survival 
rates of liver cancer patients with the over expression 
of PRKCG through Kaplan Meier Analysis. The patho-
logical stages signify that as PRKCG expression has been 
upregulated, the tumor has become more aggressive and 
invasive. Moreover, blood expression analyses have high-
lighted upregulated and downregulated genes in HCC. 

Table 10 Comparison of PKC gamma genotype (G/A) frequencies between males and females of patient and control groups

Genotypes Patients (%) Control (%) OR OR (95% CI) RR RR (95% CI) P-value

GG (M) 22 44 0.50 0.2540–1.00 0.6667 0.4353–1.004  > 0.0771

AA (M) 31 29 2.138 1.064–4.235 1.550 1.035–2.343  > 0.0507

AG (M) 2 4 0.6887 0.1277–3.054 0.7925 0.2271–1.748  > 0.9999

GG (F) 14 12 0.4140 0.1509–1.126 0.7295 0.4668–1.048  > 0.1166

AA (F) 30 10 2.60 0.8774–7.231 1.40 0.9788–2.156  > 0.0755

AG (F) 1 1 0.50 0.02581–9.900 0.75 0.1410–1.435  > 0.9999

Fig. 13 RT-PCR analysis of PRKCG, HIF1 α, AKT, SOCS3 and VEGF expression in blood of hepatocellular carcinoma patients. Difference in expression 
between patients and controls is represented in the form of fold change: a high expression of PKC gamma b high expression of HIF1α c high 
expression of AKT d low expression of SOCS3 e high expression of VEGF
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Apart from SOCS3, all other genes studied had high 
expression that specify towards their prominent role in 
carcinogenesis. In the current study, a genetic cascade 
was constructed that depict PKC γ pathway interactions 
with other molecules in biochemical pathways. PKC γ is 
activated downstream of the HIF-1 alpha/VEGF pathway, 
which gets activated during hypoxic conditions when 
cancer cells are proliferating and demand and supply of 
oxygen do not fulfill their need for angiogenesis. [66]. 
Interestingly, the research has pointed out that apart 
from Ras GTP that switch on Raf/MEK/ERK pathway, 
PKC γ induces Raf and MEK activation via phosphoryla-
tion through tumor promoting molecule, TPA (12-O-tet-
radecanoyl phorbol 13-acetate) [67, 68]. Apart from Raf 
and MEK, PKCγ can interact with ERKthat triggers can-
cer cells proliferation through cyclin D1 [69].In cancer, 
SOCS3 acts as a suppressor. It can inhibit HIF-1 alpha 
and ERKpathway that cross-links with PKC γ [70, 71]. 
AKT upregulate HIF 1 alpha levels [72] that triggers PKC 
γ activation.

In the present study, genotyping analysis was done gen-
der specifically among patients and controls to notice 
the association of nsSNP (rs386134171) with HCC. The 
mutant genotype AA (homozygous) had more frequency 
in patients compared to controls, while the wild genotype 
GG had more frequency in controls. The heterozygous 
genotype AG showed no significant relation with disease 
onset, and the heterozygous genotype was almost equal 

in the patient and control groups. The results of the cur-
rent study are coherent with the previous studies, signify-
ing the role of variant alleles in disease onset [73].

As the SNP is non-synonymous, it has a direct impact 
on the phenotype of the resulting protein. So, through 
the investigation, it has been confirmed that the variant 
alleles have played a key role in altering the activity of 
PKC γ, which in turn can change its interaction pattern 
with other proteins. The current study raises questions 
regarding tumor relapse, metastasis, and chemoresist-
ance in patients with HCC and pinpoints the significance 
of nsSNP in tumor progression that ultimately leads to 
aggressive tumors and treatment failure. The studied 
nsSNP, rs386134171, can act as a solid genetic marker in 
HCC diagnosis.

Conclusion
The specific function of PKC γ in HCC remains largely 
unknown. Moreover, there is a need to conduct a 
detailed study on HCC so that sufficient literature on 
it is available. Through current study, PKC γ role in 
liver cancer has become evident. This is a major study 
in terms of its uniqueness because it has provided a 
detailed list of pathogenic nsSNPs most likely con-
tributing to cancer onset. Through wet-lab analysis, 
the involvement of one of the nsSNPs of PRKCG, i.e., 
rs386134171 in HCC progression hasbeen confirmed. 
This study has without a doubt set a direction for future 
studies that focus on finding novel genetic markers for 
HCC.
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