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Abstract 

Lung cancer continues to be the leading cause of cancer‑related death worldwide. In the last decade, significant 
advancements in the diagnosis and treatment of lung cancer, particularly NSCLC, have been achieved with the help 
of molecular translational research. Among the hopeful breakthroughs in therapeutic approaches, advances in tar‑
geted therapy have brought the most successful outcomes in NSCLC treatment. In targeted therapy, antagonists 
target the specific genes, proteins, or the microenvironment of tumors supporting cancer growth and survival. 
Indeed, cancer can be managed by blocking the target genes related to tumor cell progression without causing 
noticeable damage to normal cells. Currently, efforts have been focused on improving the targeted therapy aspects 
regarding the encouraging outcomes in cancer treatment and the quality of life of patients. Treatment with targeted 
therapy for NSCLC is changing rapidly due to the pace of scientific research. Accordingly, this updated study aimed 
to discuss the tumor target antigens comprehensively and targeted therapy‑related agents in NSCLC. The current 
study also summarized the available clinical trial studies for NSCLC patients.
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Introduction
Lung cancer accounts for about 13% of all cancers and is 
the number one cause of cancer-related death worldwide 
which leads to more deaths than colorectal, breast, brain, 
and prostate cancers [1, 2]. In 2022, the American Cancer 
Society estimated 236,740 new cases and 130,180 deaths 
from lung cancer in the United States. The progno-
sis of those with advanced disease, such as stage IIIB or 
stage IV, is poor and less than 5% [3]. Only about 15% of 
patients are diagnosed with early-stage disease, and most 
(84%) are in an advanced stage at the time of diagnosis. 
Altogether, Non-small cell lung cancer (NSCLC) patients 
have a poor prognosis and low 5-year overall survival 
(OS), approximately 17.4% [4–6].

NSCLC is the most common type of lung cancer, 
accounting for approximately 85% of the cases. The three 
most common forms of NSCLC are adenocarcinoma, 
squamous cell carcinoma as well as large cell carcinoma 
[7–9]. Common cancer treatment approaches include 
surgery, chemotherapy, and radiation therapy. Recent 
advances in science have led to the emergence of newer 
and more efficient methods, such as immunotherapy 
and target therapy, in treating  various diseases, includ-
ing infections, cancers, autoimmunities, and other disor-
ders [10–12]. Over the past decade, immunotherapy and 
targeted therapy, along with other treatments, indicated 
successful outcomes in treating advanced lung cancer, 
especially NSCLC.  They improved the overall survival 
(OS) of patients. This is predominantly due to the avail-
ability of biomarkers to select patients for targeted and 
immunotherapy-based treatments. In other words, treat-
ments are shifting toward newer targeted and small mol-
ecule therapies to improve outcomes among NSCLC 
patients. Indeed, investigation of the human genome has 
permitted more efficient identification of gene alterations 
that are potential "targets" for therapy [13–15]. How-
ever, targeted therapy is indicated for those with distant 
metastases and stage IV disease.

Our main goal in the present study is to investigate cat-
egorized targeted therapy strategies in  treating NSCLC. 
In the beginning, we give a general explanation of the 
NSCLC common treatments and then continue our study 
by focusing on the targeted therapy of NSCLC, which be 
discussed separately in the VEGF, KRAS, EGFR, ALK, 
ROS1, BRAF, RET, MET, NTRK, HER2, HER3, PI3K/
AKT/mTORC, PD1, and CTLA-4 related sections.

Treatment approaches for NSCLC
The treatment choices for NSCLC are based mainly 
on factors such as the tumor grade, size, and location, 
lymph node status, the patient’s overall health, and lung 
function. Surgery, chemotherapy, radiation therapy,  and 

targeted therapy are the approved treatment modalities 
for NSCLC [16]. As a standard therapy approach, Stage 
0 NSCLC is generally curable by surgery with no chemo-
therapy or radiation therapy. In addition, laser therapy, 
photodynamic therapy, or brachytherapy may be substi-
tuted for surgery. For stage I NSCLC, surgery is the main 
choice, and radiation therapy or adjuvant chemotherapy 
after surgery may lower the cancer recurrence. In stage 
II NSCLC, cancer removal may be followed by adjuvant 
chemotherapy, radiation, and immunotherapy. The ini-
tial treatment for stage IIIA NSCLC may comprise some 
combination of chemotherapy, radiation therapy, and/
or surgery accompanied by immunotherapy. For peo-
ple whose cancer cells have specific mutations in the 
EGFR gene, adjuvant therapy with the targeted drug osi-
mertinib might be an option at some point additionally. 
Stage IIIB can’t be entirely removed by surgery, but chem-
oradiotherapy and immunotherapy are helpful. Stage 
IVA or IVB can be tough to cure, and treatments such as 
surgery, photodynamic therapy, laser therapy, radiation 
therapy, chemotherapy, immunotherapy,  and targeted 
therapy may help by relieving symptoms. For stage IVB 
cancers that have metastasized all over the body, before 
any treatments, the cancer cells will be tested for certain 
gene mutations, including the VEGF, KRAS, EGFR, ALK, 
ROS1, BRAF, RET, MET, NTRK genes. If one of these 
genes is mutated, your first treatment will likely be a tar-
geted therapy drug.  Identifying gene mutations or some 
protein expressions in lung cancer has led to the devel-
opment of molecularly targeted therapy to progress the 
survival of patients with advanced disease [17].

Targeted drug therapy
Cancer cells have modifications in their genes or pro-
teins that make them different from normal cells. Con-
sequently, they can develop faster and sometimes could 
spread. Targeted cancer therapy works by those dif-
ferences and targets cancer’s specific genes and pro-
teins that contribute to cancer growth and survival. So, 
it chunks the growth and spread of cancer cells, which 
confines the damage to healthy cells. Targeted drugs are 
often used for advanced lung cancers when conventional 
drugs don’t affect them, mainly because they have dif-
ferent side effects. Many drugs targeting these pathways 
have been developed, and there are numerous FDA-
approved targeted agents [5]. Today, inhibitors of EGFR, 
ALK, PI3K/AKT/mTOR, RAS-MAPK, RET, MET, BRAF, 
and NTRK/ROS1, as well as PD1 and CTLA4 molecules, 
are available for NSCLC, and many of these are now typi-
cal of care for selected patients  (Fig. 1). In other words, 
to find the most effective treatment, personalized cancer 
therapy should be done by identifying the status of target 
genes and proteins in the patient by standard tests [5].
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Despite these new therapeutic options for patients with 
advanced NSCLC, there continue to be significant chal-
lenges as resistance development and disease progression 
occur in most of these patients [18]. Nevertheless, while 
target therapy in NSCLC has provided disease control, 
the tumors inevitably develop drug resistance. Under-
standing resistance mechanisms and developing combi-
national therapies are essential for improving treatment 
outcomes.

Vascular endothelial growth factor (VEGF)
Numerous studies demonstrated the efficient effect of 
small-molecule inhibitors of the Vascular Endothelial 
Growth Factor and its receptors (VEGF/VEGFR) in treat-
ing various malignancies, including NSCLC. There is two 

FDA-approved anti-VEGF pathway, Bevacizumab (Avas-
tin/anti-VEGF-antibody) and Ramucirumab (Cyramza/
anti-VEGFR antibody), for advanced NSCLC, which are 
used alone or in combination with chemotherapy. The 
VEGF pathway has been extensively studied and shown 
to play a critical role in angiogenesis [19]. Interestingly 
emerging evidence has  demonstrated that VEGF may 
play a more comprehensive role in the pathogenesis of 
cancer than was previously thought, as it causes tumor-
induced immunosuppression [20]. VEGFs can disrupt 
the maturation of dendritic cells (DCs) and other hemat-
opoietic lineages and consequently down-regulate the 
antigen presentation process. Besides, it could enrich the 
infiltration of regulatory T (Treg) cells, tumor-associated 
macrophages (M2 macrophages), and Myeloid-Derived 

Fig. 1 Target genes and drugs in NSCLC. Various targeted therapy drugs have been summarized that target different key related genes and their 
signaling pathways in NSCLC
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Suppressor Cells (MDSC) into the NSCLC niche [20–23]. 
In other words, blockade of the VEGF signaling leads 
to  reversing these immune suppressive mechanisms, 
reducing the recruitment of suppressor cells into the 
tumor but increasing the infiltration of effector T cells.

Some studies revealed combination therapy of the 
other anti-angiogenic inhibitor or chemotherapy drug by 
anti-VEGF exerts a mostly synergistic anti-tumor effect. 
One study constructed a novel bispecific decoy recep-
tor VEGFR-EGFR/Fc targeting the VEGF and EGF-like 
ligands in human NSCLC. The constructed dual-specific 
antibody inhibited tumor invasion, relocation, prolif-
eration, and angiogenesis [24]. Interestingly, "Zhao" et al. 
revealed EGFR/VEGF inhibition therapy was transcend-
ent to single EGFR inhibition, but not VEGF inhibition, 
for advanced NSCLC [25]. In addition, the combination 
of bevacizumab plus gemcitabine/cisplatin chemotherapy 
for advanced NSCLC had clinical efficacy and prolonged 
the long-term survival of patients [26]. Furthermore, 
it has been shown the combination of bevacizumab and 
erlotinib extended Progression-free survival (PFS) but 
increased the incidence of adverse events compared to 
their monotherapy in NSCLC patients [27].

Recently, some studies investigated the modula-
tory role of miRNA on the VEGF pathway. Wang et  al. 
showed a decreased level of messenger RNA expressions 
of miR-199a and increased VEGF in NSCLC rat mod-
els. They declared that miR-199a prevents the prolifera-
tion of NSCLC cells via the targeted down-regulation of 
the Hypoxia-inducible factor 1-alpha /VEGF signaling 
pathway [28]. Another study showed that miR-214 tar-
geted the inhibitor of Growth Family Member 4 in lung 
cancer cells and upregulated the HIF-1α pathway, lead-
ing to Matrix Metallopeptidase 2 and VEGF upregula-
tion [29]. These studies indicate that targeted inhibition 
of the VEGF pathway by another mechanism could be 
investigated.

KRAS
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) 
gene is a gene that produces a protein that functions 
in the cell signaling systems that regulate cell division, 
maturation, and growth. It is the most mutated onco-
gene in human cancers, which hinders the develop-
ment of effective drugs against KRAS [30, 31]. On that 
account, despite colossal endeavors that contributed to 
the development of drugs pointed at hindering KRAS or 
its signaling pathways, KRAS was historically considered 
undruggable. Nevertheless, several recent research that 
shows encouraging results initiating a new exciting era 
[32].

We now have a better understanding of the intri-
cate interactions involving the RAS family of signaling 

proteins thanks to Ostrem, Shokat, and colleagues’ dis-
covery of the switch II pocket on the surface of the active 
and inactive forms of KRAS [33, 34]. According to all this 
research, two direct KRAS G12C (OFF) inhibitors, Soto-
rasib and Adagrasib, earned the breakthrough designa-
tion by the U.S. Food and Drug Administration (FDA) 
for the treatment of patients with KRAS G12C metastatic 
lung cancer and have shown  promising results in phase 
I and II clinical trials (NCT04625647, NCT04933695, 
NCT04303780, NCT03785249) [35, 36].

Sotorasib (AMG510), developed by Amgen, is the first 
FDA-approved drug that irreversibly and selectively inac-
tivates KRAS G12C using the interaction with a surface 
groove of the histidine 95 next to the cysteine 12 switch 
II pocket and keeps it in the inactive GDP-bound state. 
The compound AMG 510 has shown promise in phase 
I/II study (CodeBreak 100: NCT03600883) across solid 
tumors. In addition to CodeBreak 100, aiming for KRAS 
in NSCLC is a field of study. Recently, the phase 3 mul-
ticenter CodeBreak 200 clinical trial (NCT04303780) of 
a type of combined treatment using sotorasib and doc-
etaxel has been used for patients with locally progressive 
and unresectable or metastatic NSCLC with KRAS G12C 
mutations [37–40]. Adagrasib (MRTX849) is another 
KRAS G12C (OFF) inhibitor that acts the same as soto-
rasib and binds KRAS G12C irreversibly and preferen-
tially in its inactive GDP-bound state and also secures the 
switch II pocket. Adagrasib has been shown in clinical 
studies to have an anticancer effect against brain metas-
tases and can reach the brain and cerebrospinal fluid. 
Phase I/II research evaluating the efficacy of adagrasib 
included participants with previously treated advanced 
or metastatic cancers, including NSCLC that carried 
the KRASG12C mutation. Adagrasib and docetaxel are 
also being compared in a phase III trial (KRYSTAL-12) 
for patients with recently treated KRASG12C-mutated 
NSCLC (NCT04685135), and numerous combination 
therapies with adagrasib are being developed [41–45].

EGFR
The epidermal growth factor receptor (also known as 
ErbB1, HER1, or EGFR) is a member of a family of recep-
tor tyrosine kinases that can activate a wide range of 
signaling pathways resulting in cell growth, differentia-
tion, proliferation, and survival [46, 47]. After the ligand 
has been bound, the EGFR tyrosine kinase activates the 
receptor by homo- or heterodimerizing it and auto-phos-
phorylating tyrosine-rich cytoplasmic regions. This ini-
tiates the PIK3CA/AKT1/mTOR pathway and the RAS/
RAF1/MAP2K1/MAPK1 kinases6, two major down-
stream intermediate pathways [48].

The EGFR mutation is one of the most significant 
genetic abnormalities in NSCLC patients among the 
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rising driving oncogenes. Enhanced EGFR expression 
on cancerous cells (which is about 40–80% of NSCLCs), 
increased ligand synthesis by cancerous cells, and activat-
ing mutations of EGFR within cancerous cells are three 
primary factors that activate EGFR [49, 50].   Over  50% 
of adenocarcinomas and tumors from East Asians, never 
smokers, and women have these sorts of mutations, as 
do 10 to 20% of individuals with advanced NSCLC [51]. 
Complementary research demonstrated that activat-
ing mutations, not EGFR overexpression, were the main 
therapeutic target.

Around 20% of individuals with lung adenocarcinoma 
have EGFR mutations, including Exon 19 deletions (60%) 
and exon 21-point mutations (L858R missense replace-
ments) at position 858 (35%), where leucine is changed 
to arginine, which cause fundamental activation of the 
receptor without ligand interaction [52, 53]. The first 
two drugs to target the tyrosine kinase domain of the 
EGFR were gefitinib and erlotinib. In both the phase I 
series and the subsequent phase II studies, these drugs 
showed encouraging action in NSCLC patients who had 
previously received chemotherapy. As a result, they have 
decided to approve the therapy for advanced NSCLC [54, 
55]. Afatinib is another EGFR-TKI that is quite effective 
in treating advanced NSCLC patients with activating 
EGFR mutations in several clinical studies [56, 57].

In the first-line therapy approach, EGFR-TKIs are 
advised for NSCLC patients who have to activate EGFR 
mutations. Notably, chemotherapy is not necessarily 
the only treatment choice for individuals with wild-type 
EGFR NSCLC if there is no activating EGFR mutation. It 
is noteworthy that a sizable fraction of patients may still 
benefit clinically from EGFR-TKI therapy, even in those 
with wild-type EGFR NSCLC. There is ample proof that 
patients with wild-type EGFR NSCLC should not get 
EGFR-TKIs as their first-line therapy [58, 59]. A differ-
ent approach to preventing EGFR activation and signal-
ing is represented by monoclonal antibodies. In addition 
to forming antibody-receptor complexes that are endo-
cytosed and destroyed, they can also completely pre-
vent ligands from binding to the extracellular domain. 
The anti-EGFR mAbs cetuximab, necitumumab, panitu-
mumab, and matuzumab are now accessible. Cetuximab 
and platinum doublet chemotherapy were used in two 
phase III trials, FLEX and BMS099, to treat advanced 
NSCLC [60, 61]. EGFR-TKIs considerably increase objec-
tive response rate (ORR), progression-free survival (PFS), 
and quality of life (QoL) compared to traditional chemo-
therapeutic regimens while exhibiting minor toxicity. The 
use of EGFR-TKIs has made significant advancements 
in the treatment of NSCLC, ushering in a new age of 
focused therapy and precision medication [62, 63].

ALK
Anaplastic lymphoma kinase (ALK) is a different tyrosine 
kinase that has been thoroughly researched as a subject 
for TKI therapies. This 1620 amino acid transmembrane 
tyrosine kinase receptor is generated by the proto-onco-
gene ALK mostly expressed in the nervous system. ALK 
dimerizes and then auto-phosphorylates the intracellular 
kinase domain in response to ligand binding to its extra-
cellular domain. This protein aids in regulating cellular 
development.  Anaplastic large cell lymphoma, neuro-
blastoma, and non-small cell lung cancer are a few exam-
ples of cancers in which the anaplastic lymphoma kinase 
(ALK) gene may be altered. When activated in cancer, 
the cancer cells may develop and proliferate due to these 
ALK gene alterations. Gene fusions, chromosomal trans-
locations, gene amplification or deregulation, and acti-
vating point mutations are the three main ways by which 
ALK signaling is triggered in tumor cells [64–67].

In 60 percent of anaplastic large cell lymphomas, a 
rare subtype of non-Hodgkin lymphomas, alk rearrange-
ments were first discovered as a fusion to a section of the 
nucleophosmin (NPM) gene [68]. However, echinoderm 
microtubule-associated protein-like 4 (EML4) is the most 
common fusion component, and many EML4 break-
points have been identified. Other uncommon fusion 
partners have also been identified; examples include TFG 
and KIF5B [69, 70]. About 2-7% of stage III or IV NSCLC 
patients and, more frequently, younger individuals, never 
or light smokers, which are more likely to develop brain 
metastases, have been shown to contain oncogenic fusion 
genes, including EML4 and ALK [71, 72]. Specific inhibi-
tors, such as crizotinib, ceritinib, alectinib, etc., are highly 
beneficial in treating ALK-positive individuals, particu-
larly those with non-small cell lung cancer [73].

The tyrosine kinases ALK and c-MET are specifically 
and powerfully inhibited by the tiny drug crizotinib. It 
is a first-generation c-MET inhibitor called PHA-66752 
that was converted into an inhibitor of the 3-benzy-
loxy-2-aminopyridine series by leveraging the cocrystal 
structure of the inhibitor and c-MET to enhance active-
site binding. In both first-line and second-line settings, 
crizotinib has been shown to increase progression-free 
survival (PFS) compared to chemotherapy [74, 75]. A sec-
ond-generation ALK inhibitor, ceritinib, has been dem-
onstrated to  successfully treat advanced or metastatic 
ALK-positive NSCLC, including in patients who have 
already received crizotinib [76, 77]. The efficacy of these 
two ALK-targeted treatments may vary, according to 
recent research. Preclinical findings show that ceritinib 
is 20 times more effective against ALK than crizotinib. 
Additionally, it has been demonstrated that ceritinib 
is effective in individuals who have gained resistance to 
crizotinib, with remarkable tumor responses being seen 
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in brain metastases [78, 79]. The evidence for the effec-
tiveness of ceritinib combined with crizotinib in patients 
with advanced or metastatic NSCLC who have not taken 
crizotinib comes from five clinical trials: NCT01283516, 
NCT01685138, NCT00585195, NCT00932451, 
NCT00932893 [80, 81]. Expanding the therapy options 
and improving survival are effective targeted medications 
created against specific molecular subtypes of NSCLC, 
such as EGFR and ALK.

C‑ros oncogene 1 (ROS1)
ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) 
rearrangement in NSCLC cell lines was first discovered 
in 2007 [82]. ROS1-rearranged NSCLC includes 1–2% of 
total NSCLC cases, all detected/diagnosed as adenocar-
cinomas. Although ROS1-positive prevalence was signifi-
cantly higher in never-smoker young patients, the overall 
survival rate of ROS1-positive NSCLC indicated no sig-
nificant variation compared with ROS1–negative [83]. 
There are FDA-approved ROS1 tyrosine kinase inhibitors 
(TKIs), such as crizotinib and entrectinib. Indeed, several 
other targeted TKIs are being developed or assessed in 
clinical trials.

Crizotinib (1st generation)
ALK and ROS1 share  a 77% amino acid profile in their 
kinase domains [84]. Crizotinib efficacy in ALK-positive 
NSCLCs and ALK-RAS structural similarity suggested 
that ROS1 may be a potent therapeutic target for crizo-
tinib. In 2016, crizotinib (Xalkori, PF-02341066) received 
approval from European Medicines Agency (EMA) and 
the United States Food and Drug Administration (FDA) 
for ROS1-rearranged NSCLC therapy [81]. crizotinib 
is the standard first-line treatment for ROS1-positive 
NSCLCs. Despite the significant efficacy of crizotinib 
against ROS1-rearranged NSCLCs, resistance to crizo-
tinib leads to tumor relapse. The resistance to crizotinib 
is developed due to the acquired secondary point muta-
tions, mainly attributed to the ROS1 G2032R mutation 
[85, 86]. This highlighted the pressing need to discover 
new potent ROS1-rearranged NSCLC-targeted therapies.

Entrectinib (2nd generation)
Entrectinib was first introduced in 2016 as a potent oral 
multi-target TKI against ROS1, ALK, and TRK kinases 
and gained FDA approval in ROS1-positive NSCLCs 
treatment [87]. A study disclosed in  vitro and in  vivo 
activities of entrectinib in NSCLC models [88]. Entrec-
tinib showed substantial activity in ROS1-positive mod-
els. In addition, it has been reported that entrectinib was 
well penetrated through the blood–brain barrier (BBB) 
and induced intracranial activity, which interprets entrec-
tinib potential efficacy in brain metastasis [88]. Multiple 

phase I/II cohort trials (STARTRK-1, STARTRK-2, and 
ALKA-372-001) of entrectinib have reported the effi-
cient activity and manageable safety of entrectinib in 
ROS1 + NSCLC patients. The overall objective response 
rate was 77%, and the median duration of response was 
24·6  months. Serious adverse events were observed in 
11% of patients, and high-grade (grade 3 or 4) adverse 
events were reported in 34% of patients [89]. A recent 
study has compared the outcomes of two FDA-approved 
ROS1 inhibitors TKI, entrectinib, and crizotinib. The 
time-to-treatment discontinuation (TTD), PFS, and OS 
were variables of this comparison. These reports indicate 
further prolonged TTD using entrectinib (12.9  months) 
compared to crizotinib (8.8 months) [90].

Lorlatinib (3rd generation)
Lorlatinib (PF-06463922) is a selective third-generation 
tyrosine kinase inhibitor (TKI). It has been introduced as 
a ROS1/ALK inhibitor in crizotinib-resistant ROS1-pos-
itive NSCLC and glioblastoma. Lorlatinib showed high 
potency in NSCLCs with ROS1 G2032R mutation [91], 
which developed resistance to crizotinib [85, 86]. Oral 
lorlatinib showed a significantly higher ROS1 inhibition 
compared with crizotinib, alectinib, and ceritinib, which 
represents an encouraging alternative treatment in crizo-
tinib-resistant ROS1-positive NSCLCs. In addition, lorla-
tinib improved CNS penetrance and reached a high level 
in cerebrospinal fluid (CSF), indicating that lorlatinib is 
a potential candidate for brain metastasis [91]. Phase I 
and II clinical trials in 2017–2019 investigated lorlatinib 
efficacy in ROS1- and ALK-rearranged NSCLC patients 
via addressing objective response rate (ORR) and median 
progression-free survival (PFS) [92, 93]. The clinical trials 
showed substantial activity in advanced ROS1-positive 
NSCLC patients. Lorlatinib showed a promising function 
in either crizotinib resistance or CNS metastasis. Addi-
tionally, there was no significant toxicity, and lorlatinib 
was well tolerated [92, 93]. Of note, lorlatinib showed 
in  vitro anti-tumor activity against other crizotinib-
resistant mutations such as L2026M, 66, 83 S1986Y/F, 66, 
and D2033N. Thus, Lorlatinib could be a potential alter-
native against advanced crizotinib resistance and metas-
tasized NSCLCs.

V‑Raf murine sarcoma viral oncogene homolog B1 (BRAF)
BRAF is an oncogenic driver which accelerates the RAS–
RAF–MEK–ERK pathway and induces cellular growth 
and hyper-proliferation [16]. BRAF gene mutations are 
present in 2–4% of NSCLC patients, of which approxi-
mately 50% of BRAF mutations have been detected 
as V600E [94, 95]. Non-V600E mutations, includ-
ing G469A and D594G, account for 50% of total BRAF 
mutations [94–96]. Interestingly, in contrast with other 
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rearrangements/drivers, non-V600E BRAF-driven cases 
are more associated with current/former smoking his-
tory [97, 98], while V600E BRAF mutant cases were com-
monly female or never smokers [98].

There are combined targeted therapies against V600 
mutant melanoma that have achieved FDA approval. In 
2014 the combined  treatment of trametinib and dab-
rafenib, and later in 2020, the combination of atezoli-
zumab with cobimetinib and vemurafenib was approved 
by FDA for patients with BRAF V600 mutation-positive 
melanoma [99]. The similarities in mutations and under-
lying mechanisms lead to several studies and clinical 
trials investigating  these therapies for BRAF-positive 
NSCLC. BRAF mutation leads to the hyperactivity of 
the RAS–RAF–MEK–ERK axis, which exerts oncogenic 
features and drives hyper-proliferation [100]. Hence, 
blocking the members of the abovementioned pathway 
individually or together has shown encouraging effects 
against tumors.

Single treatment
Vemurafenib (PLX4032) was the first drug approved 
against BRAF-mutant cancer by the United States in 
2011 [101]. Vemurafenib was first introduced 2008 as 
an oral selective inhibitor of oncogenic B-Raf kinase 
against melanoma harboring BRAF V600E mutation. 
Vemurafenib inhibits the activity of V600E BRAF muta-
tion by blocking RAF/MEK/ERK pathway [102]. In 2015, 
vemurafenib administration by BRAF-positive NSCLC 
patients indicated a PFS of 7.3  months and an ORR of 
42% [103]. In line with this study, in 2017, an open-label 
phase 2 study indicated that vemurafenib enhanced the 
PFS in previously untreated patients with V600 BRAF-
driven NSCLC. Regarding toxicity, vemurafenib adminis-
tration has been described as safe in these patients [104]. 
Dabrafenib selectively inhibits BRAF kinase and func-
tions as an adenosine-triphosphate(ATP)-competitive 
inhibitor [105]. In 2016, an open-label phase 2 clinical 
trial study investigated the effect of dabrafenib in V600E 
BRAF-positive NSCLC cases. It has been reported that 
most patients had a rapid response to the treatment. 
Adenocarcinoma was controlled in 58% of patients, 
whereas the overall response was 33% [106]. This inves-
tigation was the first study (cohort A) of a series of three 
enrolled cohorts [106–108]. Cohorts B and C investi-
gated the trametinib and dabrafenib combination, which 
will be mentioned below.

Adjuvant treatment/Co‑administration
Dabrafenib + Trametinib (combined BRAF/MEK inhibi-
tion): Several clinical trials have investigated the combi-
nation of BRAF/MEK inhibition to develop a synergistic 
response. Planchard et al., in cohort B study, investigated 

the therapeutic outcome and toxicity of trametinib and 
dabrafenib combination for the first time in a  phase 2 
clinical trial [107]. This combined strategy was inves-
tigated in BRAF V600E-mutant metastatic NSCLC 
patients who were previously treated with platinum-
based chemotherapy. The reported median PFS was 
longer than 9  months, and the overall response rate 
was more than 50%, which presents this combination as 
a promising candidate. Of note, in melanoma, intense 
adverse effects such as pyrexia, anemia, confusional 
state, decreased appetite, etc., were reported in more 
than half of the patients (56%), although the safety profile 
was manageable, and no treatment-related deaths were 
reported [107]. Later in 2017, in a cohort C study [108], 
Planchard et  al. investigated the abovementioned com-
bination therapy (trametinib plus dabrafenib) in patients 
with treatment-naïve BRAF V600E-mutant metastatic 
NSCLC. Thus, the response rate and toxicity are compa-
rable in previously treated vs untreated patients. Due to 
the promising results of trametinib and dabrafenib com-
bination therapy, in 2017, the FDA approved this treat-
ment option for patients harboring BRAF V600E-positive 
metastatic NSCLC [109].

Trametinib + Vemurafenib: In 2015, a study com-
pared the outcome in patients treated with trametinib 
(a MEK inhibitor) with or without vemurafenib. A single 
administration of vemurafenib affected V600E-BRAF, 
whereas trametinib affected both V600E-BRAF and non-
V600E-BRAF. It has been reported that vemurafenib 
and trametinib co-administration enhanced BIM (pro-
apoptotic protein) and apoptosis compared to single 
trametinib administration. Thus the combination of a 
BRAF inhibitor and a MEK inhibitor showed encourag-
ing efficiency. Of note, this study also investigated the 
vemurafenib and erlotinib combination in BRAF-V600E 
cells, and they observed no synergistic effect [110].

Rearranged during transfection (RET)
RET fusions have been reported in approximately 1% 
of NSCLC cases. Similar to the ROS1 fusions, most  of 
the RET-positive population  never included smokers 
and young patients [111]. The autophosphorylation of 
RET TKI domains drives Proto-Oncogene pathways. 
It  activates downstream pathways, such as phosphati-
dylinositol 3-kinase (PI3K)/AKT, RAS/MAPK, c-Jun 
N-terminal kinase (JNK, and RAS/extracellular signal-
regulated kinase (ERK), which are involved in the cellular 
growth, differentiation, and proliferation [112]. Addition-
ally, it has been reported that RET rearrangements in 
advanced NSCLC patients are independently associated 
with an increased risk of brain metastases [113].

Both selective and non-selective RET inhibitors 
have been tested in clinical trials. While the reported 
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outcomes were controversial, FDA has recently approved 
two selective RET inhibitors (pralsetinib and selper-
catinib) as therapeutic options for metastatic NSCLC 
patients harboring RET fusions [114, 115].

Selective RET inhibitors
Pralsetinib (BLU-667): Pralsetinib is a selective tyrosine 
TKI, which potently targets and inhibits RET fusions. 
A multi-cohort, open-label, phase 1/2 study (ARROW) 
study (NCT03037385) tested the potential activity and 
safety of the pralsetinib in both previously treated and 
untreated patients with RET-altered metastatic NSCLC 
[116]. The maximum tolerated dose was determined 
once-daily 400 mg, based on a phase 1 study [117]. The 
response rate was reported based on the ORR. The ORR 
of previously-treated patients with platinum-based 
chemotherapy was 61%, of which 6% showed a complete 
response. While the ORR of treatment-naïve patients 
was 70%, and the complete response rate was 11%. These 
data suggested a better ORR in treatment-naïve; however, 
previously treated patients showed linger median dura-
tion of response in the periods of 6 and 12 months [116]. 
Although no treatment-related deaths were reported, 
several adverse effects were observed, including neutro-
penia, hypertension, and anemia.

Altogether, these findings introduce oral pralsetinib as 
a potent, well-tolerated treatment for RET-altered meta-
static NSCLC patients [116]. The response to pralsetinib 
in RET fusion-positive NSCLC patients was also assessed 
based on the alterations/clearance of the level of the RET 
circulating tumor DNA (ctDNA) in blood samples. Inter-
estingly RET ctDNA was rapidly decreased in almost all 
patients with every range of administered pralsetinib 
doses. After 8 weeks, RET ctDNA was not detectable in 
81% of NSCLC patients, which is a rapid response [118]. 
A recruiting, randomized, open-label phase III trial com-
pares  pralsetinib and conventional first-line treatments 
based on the PFS of RET-altered NSCLC patients. The 
experimental arm will randomly receive pralsetinib. The 
squamous cell lung carcinoma patients of the control arm 
will receive platinum + gemcitabine, while non-squamous 
cell lung cancer patients of the control arm will receive 
platinum + pemetrexed ± pembrolizumab. This study 
aims to determine the appropriate choice for the first-line 
treatment [119].

Selpercatinib (LOXO-292): Selpercatinib (LOXO-292) 
is an oral, highly selective TKI inhibitor. It is an ATP-
competitive, small-molecule RET inhibitor which has 
been developed to inhibit resistant or activating RET 
mutations. Compared to the multi-kinase inhibitors 
(MKIs), selpercatinib has shown remarkable activity in 
RET-inhibition and meaningful less toxicity in vitro and 
in  vivo [120]. Clinically, selpercatinib presented potent 

activity in a patient with KIF5B-RET fusion-positive 
lung cancer. The alectinib-resistant patient had previ-
ously received treatments, including whole-brain radio-
therapy, immunotherapy, and chemotherapy. It has been 
reported that selpercatinib dramatically reduced neuro-
logical [120]. A recent phase I/II study (LIBRETTO-001, 
NCT03157128) investigated the efficacy and toxicity of 
selpercatinib separately in two different cohort studies 
in previously treated and treatment-naïve patients with 
advanced RET fusion-positive NSCLC [121]. The objec-
tive response (partial or complete) was considered the 
primary endpoint. The PFS, duration of response, and 
safety were secondary endpoints in this study. Treatment-
naïve showed an 85% accurate response, while the objec-
tive response of previously treated patients was 64%. In 
line with prior observations, selpercatinib significantly 
exerted intracranial activities against brain metastasis. 
The median CNS duration of response was 10.1 months, 
and the objective intracranial response was reported  to 
be 91%. Selpercatinib showed intracranial responses, 
significantly rapid response, and persistent activity. Due 
to the insignificant/absent off-target activities, selper-
catinib induced low-grade toxicity, and most of the drug-
induced grade 3 toxicities were manageable via dose 
modifications. Thus, selpercatinib could be employed as a 
long-term RET-targeted therapy in patients with NSCLC 
[121].

Due to the promising reports of selective RET inhibi-
tors, several phase 3 studies investigated novel agents 
to introduce the best treatment as the first-line treat-
ment option. A phase III study (LIBRETTO-431, 
NCT04194944) is comparing standard first-line treat-
ments with selpercatinib in RET-fusion-positive NSCLC 
patients, and this trial is in recruiting stage. In this study, 
the PFS of the control group who receive platinum-based 
chemotherapy (carboplatin or cisplatin) with or without 
pembrolizumab will be those who received selpercatinib 
[122]. In addition, this recruiting-stage trial aims to 
investigate the efficacy and safety of selpercatinib in com-
bination with chemotherapy ± pembrolizumab.

Non‑selective RET inhibitors
Non-selective RET inhibitors are MKIs, which tar-
get multiple kinases, have shown limited efficacy, and 
induced off-target toxicity. Non-selective RET inhibitors, 
including vandetanib, cabozantinib, and lenvatinib, were 
the first MKIs tested in RET-altered NSCLC patients. 
In a study in 2017, the highest total response rate (37%) 
and median PFS (3.6  months) were attributed to cabo-
zantinib. The response rates of sunitinib and vandetanib 
were reported  at 22% and 18%, respectively, although 
no complete response was observed. The median PFS 
of sunitinib and vandetanib were reported  at 2.2 and 
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2.9 months, respectively [123]. Due to the limited efficacy 
and potentially high off-target toxicity of the multi-kinase 
inhibitors (MKIs), selective RET inhibitors appear to be 
more appropriate candidates. Resistance to both FDA-
approved RET inhibitors is Inevitable, and G810C has 
been reported as the most resistant RET mutant [82].

Thus, further investigations are required to develop 
novel selective RET inhibitors and combined thera-
pies. A phase I/II clinical trial (NCT04161391) aims to 
investigate TPX-0046 efficacy, safety, and tolerability in 
drug-resistant and naïve RET-altered tumor models with 
Solvent Front Mutations (SMF). TPX-0046 has shown 
potent anti-tumor activity in  vitro and in  vivo against 
various  RET alterations, particularly against SFM-
mediated resistance. In phase II, this trial will test TPX-
0046 in treatment-naive or pretreated stage IV NSCLC 
patients to investigate the ORR [124].

mesenchymal‑epithelial transition (MET)
Mesenchymal-Epithelial Transition (MET) is a proto-
oncogene belonging to the tyrosine kinase receptors 
family that was activated following the binding to its 
ligand, hepatocyte growth factor (HGF) [125]. Besides 
the physiological function of MET in cell proliferation 
[126], this proto-oncogene undergoes various altera-
tions like mutations, amplifications, and overexpression, 
which could lead to malignant cells [127]. For instance, 
it has been reported that MET is overexpressed in 20% 
of NSCLC and amplified in 1–5% of NSCLC [128, 129]. 
On the other hand, it has been introduced as one of the 
critical processes in metastasis, which is needed to revert 
the mesenchymal phenotype to the epithelial phenotype 
for attaching the cancer cells to other tissues [130]. In 
this regard, it has been shown that this aberrant MET 
expression is correlated with a poor clinical prognosis 
of NSCLC [131]. Thus, targeting MET as a therapeutic 
option has been investigated in clinical trials.

Small molecule inhibitors of MET are divided into 
three main groups according to the binding site on MET 
structure [132]. type I and II prevent ATP binding and 
activating of the receptor (with the distinct binding site), 
while type III binds allosteric sites rather than the ATP-
binding site [133]. In addition, type I of MET inhibitors 
include two subtypes; Ia (i.e., Crizotinib) and Ib (i.e., 
Capmatinib, Tepotinib, and Savolitinib), which Ib group 
is more specific to MET and has less off-target effects 
[134]. Of note, Crizotinib was first approved for the treat-
ment of ALK-rearranged NSCLC and ROS1-rearranged 
NSCLC, but then it has been demonstrated that it could 
be recruited in NSCLC with MET amplification [135]. 
After Crizotinib FDA approval, Capmatinib and Tepo-
tinib were approved for metastatic NSCLC in patients 
with MET exon 14 (METex14) skipping mutation [136], 

as one of the main mutations, which contributes to 
NSCLC independently [137]. Type II inhibitors, includ-
ing Cabozantinib, Glesatinib, and Merestinib, not only 
bind to a hydrophobic pocket beside the ATP binding 
site of MET but also can block different kinases such 
as RON, AXL, VEGFR2, etc. Although Cabozantinib 
was approved for the treatment of advanced medullary 
thyroid carcinoma and advanced clear-cell renal-cell 
carcinoma, the studies on the efficacy and safety of Cabo-
zantinib in MET-mutated NSCLC have shown promising 
results [138]. Moreover, Tivantinib, as a type-III inhibi-
tor, was used in combination with Erlotinib, as an RGFR 
inhibitor, which revealed its beneficial effects on patients 
with NSCLC [139].

Moreover, there are other various strategies in the tar-
geting of MET, which were included as immunotherapy. 
Regardless the expression of PD-L1 is remarkable in 
MET exon 14 NSCLC [140], and the immune check-
point blockage strategy seems ineffective as monotherapy 
in patients with MET exon 14 NSCLC [141, 142]. Con-
versely, the combination of Cabozantinib with other anti-
PD-L1 monoclonal antibodies in clinical trials revealed 
the safety and efficacy of this combination approach 
[143]. In addition to combination therapy, recruiting 
monoclonal antibodies as a tool for targeting the MET 
has been developed to disrupt the HGF/MET interaction 
[144, 145]. In this regard, different MET-specific mono-
clonal antibodies have been designed and studied, such 
as Onartuzumab, Telisotuzumab, and Amivantamab 
[138]. Amivantamab is a bi-specific monoclonal antibody 
targeting either EGFR or MET approved for patients 
with advanced metastatic NSCLC [146].Regardless of the 
progressions in MET targeting strategies and promising 
results, the tumor heterogeneity and selecting an appro-
priate population of patients benefiting from targeted 
therapy is challenging [147]. In addition, acquired resist-
ance is another issue not only in MET targeting but also 
in all TKI approaches [148].

Neurotrophic tropomyosin receptor kinase (NTRK)
The Neurotrophic tropomyosin receptor kinase (NTRK) 
involves three transmembrane receptor tyrosine kinases, 
TRKA, TRKB, and TRKC are responsible for the devel-
opment and maturation of the central nervous system 
physiologically [1]. These tyrosine kinase receptors medi-
ate three main signaling pathways; Ras/Raf/MAPK path-
way, PI3K/Akt/mTOR pathway, and PLCc/PKC pathway 
are critical for cell proliferation and plasticity [2, 3]. Phys-
iologically, the activation of these receptors depends  on 
three ligands, including nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), and neuro-
trophin 3 (NT-3) [3, 4]. Otherwise, some genetic altera-
tions in NTRK genes have been shown in malignancies, 
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such as mutations, amplifications, splice variants, and 
deletions, which could lead to ligand-independent acti-
vation of downstream signaling pathways [5, 6]. The 
most prevalent alteration reported in numerous cancers 
is NTRK fusions (less than 1% of patients with NSCLC) 
which leads to the production of a chimeric protein with 
oncogenic activation [7]. Although it seems that NTRK 
fusions are just a minority cause of NSCLC, the high 
prevalence of NSCLC in the world made NTRK an inter-
esting target for developing inhibitory drugs [8].

Regardless of NTRK inhibiting by unselective tyrosine 
kinase inhibitors (TKIs) such as crizotinib, cabozantinib, 
etc., which inhibit a range of targets, other more selective 
drugs have been developed [9]. Consequently, larotrec-
tinib and entrectinib are two drugs that could get FDA 
approve after showing promising results in clinical tri-
als. Entrectinib is an oral TKI with more selective activity 
against TRK, ROS1, and ALK. Although this drug is not 
just particular  for TRK, according to the result of clini-
cal trials, the ORR in patients with NTRK fusion-positive 
NSCLC was 70% with minimal tolerable adverse effects 
[10, 11]. Finally, FDA granted accelerated approval to 
entrectinib for adults with NTRK fusion-positive solid 
tumors. In addition, larotrectinib is a selective pan-TRK 
inhibitor whose efficacy and safety in NSCLC, and other 
cancers have been demonstrated [12, 13]. Accordingly, 
in a short time after clinical trials started, FDA approved 
it for the treatment of adult and pediatric patients with 
NTRK fusion-positive tumors. Interestingly, it has been 
reported that patients enrolled in clinical trials with brain 
metastases efficiently respond to the treatment with 
entrectinib and relatively with larotrectinib [10, 14].

Due to the acquired resistance mutations in tumor 
cells treated with the first generation of NTRK inhibitors 
which affect the durability of the drug, the second gen-
eration of inhibitors has been developed [15]. This new 
generation of inhibitors has a specific macrocyclic struc-
ture which could circumvent the on-target mutation of 
NTRKs [16]. In this regard, three drugs are under inves-
tigation; selitrectinib, taletrectinib, and repotrectinib. 
Although FDA just granted repotrectinib for Fast-Track 
designation in patients with advanced solid tumors har-
boring NTRK gene fusion [17], the results of selitrectinib 
case reports and phase I/II trials of taletrectinib suggest 
the efficacy and safety of these medications in the treat-
ment of tumors [18, 19]. furthermore, to clarify the direct 
effect of these medications on patients with NSCLC, 
more studies are needed.

Neurotrophic tropomyosin receptor kinase (NTRK)
The Neurotrophic tropomyosin receptor kinase (NTRK) 
involves three transmembrane receptor tyrosine kinases, 
TRKA, TRKB, and TRKC, which are responsible for the 

development and maturation of the central nervous sys-
tem physiologically [149]. These tyrosine kinase recep-
tors mediate three main signaling pathways; Ras/Raf/
MAPK pathway, PI3K/Akt/mTOR pathway, and PLCc/
PKC pathway, which are critical for cell proliferation 
and plasticity [150, 151]. Physiologically, the activation 
of these receptors depends  on three ligands, including 
nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), and neurotrophin 3 (NT-3) [151, 152]. 
Otherwise, some genetic alterations in NTRK genes have 
been shown in malignancies, such as mutations, amplifi-
cations, splice variants, and deletions, which could lead 
to ligand-independent activation of downstream signal-
ing pathways [153, 154]. The most prevalent alteration 
reported in numerous cancers is NTRK fusions (less than 
1% of patients with NSCLC), which leads to the pro-
duction of a chimeric protein with oncogenic activation 
[155]. Although it seems that NTRK fusions are just a 
minority cause of NSCLC, the high prevalence of NSCLC 
in the world made NTRK an interesting target for devel-
oping inhibitory drugs [156].

Regardless of NTRK inhibiting by unselective tyrosine 
kinase inhibitors (TKIs) such as crizotinib, cabozantinib, 
etc., which inhibit a range of targets, other more selec-
tive drugs have been developed [157]. Consequently, 
larotrectinib and entrectinib are two drugs that could 
get FDA approve after showing promising results in 
clinical trials. Entrectinib is an oral TKI with more selec-
tive activity against TRK, ROS1, and ALK. Although 
this drug is not just selective for TRK, according to the 
result of clinical trials, the ORR in patients with NTRK 
fusion-positive NSCLC was 70% with minimal tolerable 
adverse effects [158, 159]. Finally, FDA granted accel-
erated approval  of  entrectinib for adults with NTRK 
fusion-positive solid tumors. In addition, larotrectinib is 
a selective pan-TRK inhibitor whose  efficacy and safety 
in NSCLC, and other cancers have been demonstrated 
[160, 161]. Accordingly, in a short time after clinical trials 
started, FDA approved it for the treatment of adult and 
pediatric patients with NTRK fusion-positive tumors. 
Interestingly, it has been reported that patients enrolled 
in clinical trials with brain metastases efficiently respond 
to the treatment with entrectinib and relatively with laro-
trectinib [158, 162].

Due to the acquired resistance mutations in tumor 
cells treated with the first generation of NTRK inhibitors, 
which affect the durability of the drug, the second gen-
eration of inhibitors has been developed [163]. This new 
generation of inhibitors has a specific macrocyclic struc-
ture, which could circumvent the on-target mutation of 
NTRKs [164]. In this regard, three drugs are under inves-
tigation, selitrectinib, taletrectinib, and repotrectinib. 
Although FDA just granted repotrectinib for Fast-Track 
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designation in patients with advanced solid tumors har-
boring NTRK gene fusion [165], the results of selitrec-
tinib case reports and phase I/II trials of taletrectinib 
suggest the efficacy and safety of these medications in the 
treatment of tumors [166, 167]. Furthermore, to clarify 
the direct effect of these medications on patients with 
NSCLC, more studies are needed.

Human epidermal growth factor receptor 2 (HER2)
The human epidermal growth factor receptors are a 
series of receptor tyrosine kinase (RTK) which consist of 
4 members; HER1-4 encoding by ErbB1-4 genes respec-
tively [168]. HER2 is a transmembrane glycoprotein, 
and no exact ligand has been demonstrated for it [169]. 
Although activation of HER2 leads to several proliferative 
or apoptotic signaling pathways, including MAPK, PI3K/
AKT, and JAK/STAT, its oncogenic and tumorigenic 
roles have been clearly illustrated in different cancers 
[170]. In this regard, three main genetic alterations have 
been demonstrated that could lead to NSCLC; mutation, 
overexpression, and amplification. Their frequency has 
been reported  to be about 2–4%, 11–32%, and 2–23% 
respectively, in various studies [171, 172]. Nevertheless, 
the exact definition of HER2-positive lung cancer has not 
been addressed.

Targeting HER2 by various inhibitors such as pyrotinib, 
poziotinib, lapatinib afatinib, dacomitinib, and neratinib 
has been studied as a therapeutic option in patients with 
NSCLC, but unhopefully, none of them could yet get 
approved [173–176]. Despite the unsatisfactory results 
of various TKIs in treating  NSCLC, some clinical trials 
showed promising results. For instance, in the treatment 
of NSCLC patients harboring HER2 exon 20 mutations 
with pyrotinib (as an oral pan-HER TKI), an ORR of 
53.3% and a median PFS of 6.4 months with no extreme 
adverse events have been reported [177]. Moreover, a 
new small molecule TKI, mobocertinib, which selectively 
inhibits EGFR insertion and HER2 mutation, is  under 
investigation with primary acceptable results [178]. In 
immunotherapy, monoclonal antibodies targeting HER2 
have been investigated for the treatment of NSCLC. In 
this regard, two drugs, pertuzumab and trastuzumab, 
which have been approved for HER2 + breast cancer, 
have been used in clinical trials, but more studies are 
needed to confirm their therapeutic effect on NSCLC 
[179–181]. In addition, antibody–drug conjugations 
have been developed as an effective strategy for target-
ing HER2. T-DMI and T-DXd are two antibody–drug 
conjugates in which trastuzumab is attached to eman-
tisine and deruxtecan, respectively. Both of these drugs 
have been implicated in clinical trials and showed prom-
ising results, which caused to T-DXd drug to get FDA 
grant for HER2-mutant NSCLC and gastric cancer [182, 

183]. The main issue in recruiting HER2-targeting thera-
peutic approaches in treating  NSCLC is detecting the 
proper population of patients sensitive to these medica-
tions. In other words, HER2 + NSCLC should be defined 
clearly for researchers and clinicians. Moreover, the lack 
of  pharmacodynamic and pharmacokinetic information 
is another limitation for recruiting these medications on 
larger scales. Accordingly, more clinical and preclinical 
studies are needed to design the optimal guideline.

PI3K/AKT/mTORC
The PI3K/Akt/mTOR signaling pathway has been con-
sidered one of the most commonly altered molecu-
lar pathways in NSCLC. EGFR and KRAS, the types of 
oncogenic drivers in NSCLC, can activate the PI3K/
AKT/mTOR pathway, which enhances cancer cell pro-
liferation, metabolism, and survival [184]. Besides, the 
RTKs are known as an entry point to PI3K/AKT/mTOR 
pathway activation. RTK mutation and amplification 
lead to ligand-independent signaling in NSCLC. Accord-
ingly, targeting the PI3K/Akt/mTOR signaling pathway 
could suppress these signals [185].

PI3K is a family of intracellular lipid kinases classified 
into three classes based on structure and function. Each 
class showed distinct roles in signal transduction that 
regulated oncogenic transformation and tumor mainte-
nance. However, somatic mutation and amplification of 
PI3K classes have been found in patients with NSCLC 
[186]. Activation mutations in PIK3CA (encoding the 
catalytic subunit PI3Kα) and alterations of the tumor 
suppressor phosphatase and tensin homolog (PTEN) 
are reported in squamous and non-squamous NSCLC. 
Preclinical and clinical studies suggested that target-
ing the PI3K pathway cloud regresses PIK3CA-mutant 
lung cancer. The growth of PI3K-dependent NSCLC 
cell lines could block through simultaneous inhibition 
of multiple PI3K pathway components, reducing the 
NSCLC progression [187, 188]. PI3K inhibitors are clas-
sified as pan-PI3K and selective PI3K inhibitors [184]. 
Several pan-PI3K inhibitors, including, Pilaralisib (XL-
147), Buparlisib (BKM120), PX-866, and Pictilisib (GDC-
0941), have been tested in clinical trial phases. The data 
associated with partial responses did not indicate signifi-
cant improvement in PFS and OS [184]. Hence, the pan-
class I PI3K inhibitor therapies have not shown enough 
efficacy. Several clinical trials are performed based on 
isoform-specific class I PI3K inhibitors. Of these, Alpe-
lisib (BYL719) and Taselisib (GDC-0032) are potent 
PI3K inhibitors, which target the p110α isoform and the 
p110α, p110γ, and p110δ isoforms, respectively. They 
have been under evaluation in a phase II study of patients 
with advanced NSCLC [189, 190]. Other Selective PI3K 
inhibitors, including INK1117, GSK2636771, AZD8186, 
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and SAR260301, have been investigated in clinical phase 
I trials [184].

On the other hand, upregulation of the Akt pathway is 
significant in NSCLC patients associated with increased 
mTOR [191]. Preclinical studies in NSCLC cell lines 
demonstrated that Akt activation leads to PTEN, EGFR 
or PIK3CA mutation, or HER2 amplification [192]. 
Therefore, targeted inhibition of Akt is an efficient thera-
peutic strategy, as many studies have characterized the 
extensive list of Akt pathway inhibitors in development. 
Perifosine is an alkyl phospholipid (APL) that blocks Akt 
translocation to the membrane, preventing Akt phos-
phorylation and activation, the best-tolerated treatment 
against NSCLC [193]. The evidence illustrated that using 
perifosine debilitates the translocation of GSK3β to the 
cell membrane and the consequent phosphorylation by 
kinases to Akt and ERK.

Moreover, perifosine therapy can inhibit rapamycin 
and significantly reduce the level of p-GSK3β and GSK3β 
in A549-RR cells. These results suggested that perifosine 
can counteract several survival pathways activated by 
mTORC1 inhibition, including GSK3β. However, recent 
studies found that a combination of perifosine and rapa-
mycin can be more efficient than monotherapy, with 
every single reagent inhibiting cell growth by regulating 
the activity of GSK3β [194]. MK-2206 is another potent 
and selective inhibitor of AKT with anti-proliferative 
activity. Based on in  vitro and in  vivo results, the com-
bined effects of MK-2206 with RTK inhibitors such as 
lapatinib and erlotinib can significantly exert tumor 
inhibitory activities [195]. Also phase II trial indicated 
that the combination of MK2206 and erlotinib met its 
primary endpoint in patients pretreated with erlotinib 
[196].

Meanwhile, significant proportions of NSCLC demon-
strated upregulation of the mTOR pathway. mTOR com-
plexes (mTORC1 and mTORC2) play an essential role 
in maintaining cellular homeostasis and growth [197]. 
Phosphorylation of p70-ribosomal protein S6 kinase 
1 (p70-S6K1) and elongation initiation factor (EIF)-4E 
binding protein 1 (4E-BP1), are two significant sub-
strates of mTORC1, regulate numerous processes such 
as cell growth, proliferation, migration, and invasion in 
NSCLC patients [198]. mTORC2 directly phosphoryl-
ates and activates Akt and Protein Kinase Cα (PKCα) 
[199]. Accordingly, mTOR inhibitors can be an attrac-
tive strategy to prevent the progression of advanced 
NSCLC. Ongoing clinical trials have been developed and 
investigated in preclinical and clinical studies, including 
Everolimus, Sirolimus, Temsirolimus, and Ridaforolimus. 
Everolimus is an mTOR inhibitor that explicitly targets 
mTORC1. Conservative evaluation indicated that side 
effects were of mild severity in most patients treated 

with Everolimus [200]. On the other hand, Combina-
tion therapy of Everolimus and EGFR inhibitors showed 
limited antitumor activity in NSCLC patients with a 
mutation in the PI3K-AKT-mTOR pathway [201]. Based 
on the  phase I/II study, the combination of Sirolimus 
with Pemetrexed demonstrated potential activity and 
appeared to have no severe safety concerns [202]. Using 
Temsirolimus as a single targeted agent failed to meet its 
efficacy endpoint [203]. Although, the combination of 
Temsirolimus and Neratinib (HER2 inhibitor) showed a 
19% response in patients with HER2-mutant lung cancers 
[204]. Ridaforolimus treatment showed improvement in 
PSF and trending for better OS in NSCLC patients with 
KRAS-mutant [205]. NSCLC involves a multistep pro-
cess and is associated with several intracellular pathways 
and several genetic alterations. Therefore, using a single 
targeted agent may not be optimal [203]. Dual targeting 
has been developed by blocking both PI3K and mTOR. 
Cyclin D and FOXO forkhead transcription factors are 
important downstream targets of PI3K/Akt signaling. 
BEZ235 downregulated cyclin D1 and cyclin D3 expres-
sion in NSCLC through transcriptional repression and 
proteasome-mediated degradation, ultimately arresting 
the cell cycle at the G1 phase and inhibiting PI3K/Akt 
activity [203]. BEZ235 also inhibited mTOR signaling 
mediated by reduced  cyclin D expression [206]. Addi-
tionally, XL765 and GDC-0980 were tested in a phase 
Ib trial that demonstrated an acceptable safety profile in 
NSCLC patients [207, 208].

Targeting programmed death receptor 1 (PD‑1)/ PD‑L1 
pathway
PD-1/PD-L1 signaling axis is prominent  in regulating 
immune responses and maintaining self-tolerance or 
tissue integrity [209]. PD-1 is a negative costimulatory 
receptor expressed primarily on the surface of activated 
T cells, B cells, natural killer T cells, activated mono-
cytes, and dendritic cells (DCs) [210]. PD-1 binds with 
its ligands, PD-L1  and PD-L2, which belong to the B7 
family and can be expressed by tumor cells, normal cells, 
and immune cells [211]. However, PD-1-expressed T 
cells mediated to inhibit effective anti-tumor immune 
responses. PD-1/PD-L1 interaction inhibits the expres-
sion of T cell transcription factors such as GATA-3 and 
T-bet. It also inhibits CD8+ cytotoxic T lymphocyte 
(CTL) function, survival, and proliferation and induces 
apoptosis of tumor-infiltrating T cells. Besides, regula-
tory T cell (Tregs) differentiation and maintaining their 
suppressive function can mediate PD-L1 expression. 
Thereby, inhibition of PD-1/PD-L1 pathways can activate 
the anti-tumor activity mediated by both effector T cell 
activation and Treg inhibition [212].
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Whereas the migration of immune cells to the tumor 
exhibit anti-tumor activity, over time, the tumor micro-
environment favoring to becomes immunosuppressive, 
intending the emergence of tumor-promoting cells such 
as M2 macrophages, T regs, and myeloid-derived sup-
pressor cells (MDSCs). Cancer cells escape from immune 
recognition and use immune-inhibitory mechanisms 
to evade the immune system’s defenses. Immune edit-
ing is a dynamic process used to modulate the immune 
microenvironment and improve immune cell function 
so it can induce the alternative mechanisms of immune 
evasion [213–215]. Targeting the PD-1/PD-L1 check-
point could regulate immune responses to eliminate 
NSCLC. Modulating the PD-1/PD-L1 pathway is cur-
rently under development as potential immunotherapies 
for patients with NSCLC. Several PD-1/PD-L1 antibod-
ies are approved for the first- and second-line setting 
that improved efficacy and longer duration of response 
compared to other standard treatments and demon-
strated manageable toxicity profiles [216]. Nivolumab is a 
fully human monoclonal antibody against PD-1 that was 
approved for treating patients with NSCLC. The patient 
treated with nivolumab in first-line monotherapy did 
not show more PFS than those who received platinum-
based chemotherapy in a broad population with a PD-L1 
expression level of 5% or more. Nivolumab showed a 
favorable safety profile as compared with chemotherapy 
[217]. Besides, based on the phase 3 study, nivolumab 
was correlated with a significant improvement in overall 
survival and response rate versus docetaxel in advanced 
non-squamous NSCLC [218]. Pembrolizumab, MK-3475, 
a humanized monoclonal IgG4 anti-PD-1 antibody, is 
another anti-PD1 showing robust anti-tumor activity and 
significantly improved PFS and OS than chemotherapy 
as first-line therapy for metastatic NSCLC with PD-L1 
tumor proportion score of at least 50%. There was a 
lower incidence of treatment-related AEs than platinum-
based chemotherapy, and did not show any evidence of 
increased toxicity during long-term follow-up [219]. The 
analyses demonstrated that pembrolizumab had a better 
ORR than nivolumab, but the difference in PFS was not 
significant between pembrolizumab and nivolumab in 
patients with recurrent or advanced NSCLC [220]. The 
evidence indicated that NSCLC patients with EGFR- or 
HER2-mutated and ALK-rearranged do not benefit from 
immunotherapy. Also, BRAF- and MET-mutated NSCLC 
are supposed to be as sensitive to anti-PD1/PD-L1 immu-
notherapy [221]. Although anti-PD1 monotherapy such 
as nivolumab and pembrolizumab had similar efficacy 
in older and younger patients with NSCLC, survival was 
significantly worse in patients with poor performance 
status (PS). However, an immune checkpoint inhibi-
tor may be considered for NSCLC patients with poor 

PS harboring positive PD-L1 expression [222]. Other 
immune checkpoints were potential therapeutic targets, 
including programmed death receptor ligand 1 (PD-L1). 
Atezolizumab is a humanized IgG1 antagonist antibody 
to PD-L1 that blocks the interaction between the PD-L1 
and PD-1 receptors activation complex. It is designed to 
impede inhibitory signals in T cells, with resultant tumor 
recognition by cytotoxic T cells. atezolizumab therapy 
improved the OS and ORR in patients with NSCLC 
expressing PD-L1 [223]. Cemiplimab monotherapy sig-
nificantly enhanced OS and PFS versus chemotherapy in 
patients with advanced non-small-cell lung cancer with 
PD-L1 of at least 50% [224]. Moreover, durvalumab is a 
selective, high-affinity, engineered, human IgG1 mono-
clonal antibody that blocks the interaction between 
PD-L1 and PD-1, allowing T cells to recognize and kill 
tumor cells. Based on the real-world prospective study, 
durvalumab therapy had a safety profile and improved 
progression-free survival and OS among patients with 
stage III NSCLC [225, 226]. According to meta-analysis 
data, anti-PD-1 and anti-PD-L1 therapy had significantly 
longer OS and illustrated a lower ORR, higher 3–4 Grade 
AEs rate, and higher drug-related death than  chemo-
therapy [227]. However, the  Phase 3 trial demonstrated 
that Avelumab did not significantly improve OS versus 
docetaxel in patients with NSCLC with PD-L1 + tumors 
[228].

Additionally, Epigenetic mechanisms were used to 
modulate PD-L1 expression in cancer cells. miR-200c is 
one miRNA that directly binds to the 3′UTR of PD-L1 
in NSCLC to inhibit PD-L1 expression [229]. miR-135 
and miR-3127-5p positively regulate PD-L1 expression 
in NSCLC that indirectly induce PD-L1 expression by 
activating the PI3K-AKT-mTOR pathway [230, 231]. 
On the other hand, the methylation status of the PD-L1 
promoter can use to predict the outcome of PD-1/PD-
L1-targeted therapy. Anti-PD1 therapy may enhance 
drug resistance to anti-PD-1 immunotherapy Nivolumab 
in NSCLC patients through increasing PD-L1 promoter 
methylation and decreased PD-L1 expression [232].

Cytotoxic T‑lymphocyte‑associated antigen‑4 (CTLA‑4)
CTLA-4 (Cytotoxic T-lymphocyte-associated anti-
gen-4, CD152) is a type of immune checkpoint pathway 
that mediates negative regulation of T cell activation 
and preservation of self-tolerance. However, CTLA-4 
expression is a potential prognostic and predictive bio-
marker in NSCLC patients. Evidence showed that the 
expression of CTLA-4 has a different prognostic effect in 
metastatic NSCLC lymph nodes versus primary tumors, 
which is mediated by phenotypical differences between 
the tumor microenvironments of lymph nodes and pri-
mary tumors [233]. CTAL-4 is considered a leader of the 
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immune checkpoint inhibitors, which potentially sup-
pressing autoreactive T cells at the initial stage of naive 
T-cell activation, typically in lymph nodes [234]. The 
inhibitory function of CTLA-4 was administered through 
several mechanisms, such as competition with CD28-
positive costimulation for binding to their shared B7 
ligands (CD80/CD86) [235]. CTLA-4 is considered the 
homolog of CD28 that shows a higher binding affinity 
for B7 than CD28. CTLA-4:B7 binding can produce an 
inhibitory signal through contraction of the stimulatory 
signals from CD28:B7 and TCR: MHC binding. However, 
CTLA-4:B7 inhibitory signals include direct inhibition 
at the TCR immune synapse and enhanced mobility of 
T cells, causing the reduced ability to interact with APCs 
[234].

Besides, the independent prognostic effect of CTLA-4 
overexpression was indicated in NSCLC, a favorable 
impact of CTLA-4 overexpression on clinical outcomes. 
CTLA-4 overexpression can cause a worse prognosis 
due to an enhanced downregulation of T-cell activa-
tion. Indeed, it showed that CTLA-4 mediated negative 
signals into cancer cells, compared with the ones cur-
rently observed in T cells [236]. However, the permanent 
expression of CTLA-4 on cancer cells showed a criti-
cal role in cancer cell progression by producing inhibi-
tory signals to weaken the immune response. Hence, 
targeting CTLA-4 is an attractive strategy for increas-
ing immune efficacy against malignancies and improv-
ing the prognosis of tumor patients. Multiple preclinical 
and clinical trials were performed to test the antibodies 
targeting CTLA-4, including ipilimumab and tremeli-
mumab [235]. Ipilimumab is a fully humanized IgG1κ 
mAb targeting CTLA4. Treatment with ipilimumab 
improved  irPFS and mWHO-PFS and safety and toler-
ability without the severe impact of toxicities in patients 
with stage IV NSCLC [237]. Tremelimumab is another 
monoclonal immunoglobulin G2 antibody against 
CTLA-4 that enhances immune function via preventing 
normal downregulation of T cells and prolonging T-cell 
action [238]. Tremelimumab indicated a safety profile 
and improved the durability of objective responses than 
standard chemotherapy in patients with advanced can-
cer such as NSCLC [239]. Clinical trial results illustrated 
that anti-CTLA4 mAbs lead to acute immune activa-
tion, which increases CD8+ CTL infiltrates in the tumor 
and may produce transient autoimmune manifestations. 
Corticosteroid therapy has been planned with CTLA-4 
blockage to prevent the adverse event. Besides, a combi-
nation of CTLA-4 with GM-CSF-expressing tumor cell 
vaccine can be therapeutically effective; it targets promi-
nent regulatory pathways of the immune system and 
modifies the immune response [239].

However, CTLA-4 blockade was suggested as a regu-
latory checkpoint for therapeutic development. Dual 
checkpoint therapy may be more efficient and reduce the 
adverts event of monotherapy with anti-CTLA-4 therapy. 
Also, PD-L1 expression and tumor mutational burden 
are potential biomarkers to respond to the combina-
tion approaches in these treatments. Based on First-line 
treatment, a combination of nivolumab plus ipilimumab 
improved PFS compared with chemotherapy in NSCLC 
patients with high tumor mutational burden. In com-
parison, patients with a low tumor mutational burden 
showed similar PFS in the nivolumab-plus-ipilimumab 
and chemotherapy groups. Dual therapy exhibited bet-
ter efficacy than monotherapy in patients with a high 
tumor mutational burden [240]. Combination therapy 
tremelimumab with durvalumab has demonstrated clini-
cal activity in advance-NSCLC patients. Based on a phase 
3 randomized clinical trial, durvalumab plus tremeli-
mumab did not statistically significantly enhance OS or 
PFS versus chemotherapy in patients with PD-L1 tumor 
proportion score ≥ 25%, while there was improved OS or 
PFS in durvalumab plus tremelimumab than chemother-
apy in patients with 25% of tumor cells expressing PD-L1. 
Also, the dual checkpoint inhibition showed optimal 
benefit in OS and enhanced PFS. In addition, dual immu-
notherapy showed a high rate of TRAEs that was causing 
to discontinuation than durvalumab or chemotherapy 
[241].

FDA approved Clinical trials for NSCLC‑targeted 
therapy
Clinical and preclinical studies indicated the efficacy and 
safety of multiple therapies for NSCLC patients with dif-
ferent aberrations, including EGFR exon 19 deletions or 
exon 21 (L858R) mutations, RET fusion-positive meta-
static, ALK genomic tumor aberrations, EGFR exon 20 
insertions. However, based on clinical trial results, several 
targeted therapies were approved by U.S. Food and Drug 
Administration (FDA) for NSCLC (Table  1). The recep-
tor tyrosine kinase inhibitors, including erlotinib [242], 
gefitinib [243], osimertinib [244], crizotinib [245], lor-
latinib [246], tepotinib [247, 248] received first approval 
for treating patients with EGFR mutation, acquired 
EGFR TKI resistance, ALK-positive, METex14 skipping 
alterations, respectively. In addition, immune checkpoint 
inhibitors such as atezolizumab [249], cemiplimab [250], 
and nivolumab plus ipilimumab [251] received FDA 
approval for treating patients with high PD-L1 expres-
sion and no EGFR or ALK genomic tumor aberrations. 
Moreover, Amivantamab, an intravenously administered 
bispecific antibody targeting EGFR and c-MET, received 
its first FDA approval for treating  NSCLC with EGFR 
Exon 20 insertion mutations [146]. Based on findings 
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from the CHRYSALIS clinical trial (NCT02609776), 
Amivantamab showed robust and durable responses with 
tolerable safety, which an ORR rate of 40%, a median PFS 
of 8.3  months, and a median OS of 22.8  months [252]. 
Unfortunately, according to recent evidence, the disease’s 
progression and no treatment response have been shown 
in patients [253]. Recently, preclinical investigation sup-
ported the clinical development of mobocertinib for 
treating EGFRex20ins-mutated NSCLC [254].

Combination therapy
In order to overcome the limitations of target therapy 
and increase its efficiency, using this treatment in combi-
nation with other cancer treatment methods can be more 
effective. There are multiple examples of combined treat-
ment of target therapy with other common treatments 
used for NSCLC patients, especially chemotherapy. 
Various studies have been conducted in this field, which 
can help to increase the efficiency of target therapy and 
overcome the limitations of this treatment method, espe-
cially drug resistance [255]. Extensive research has been 
conducted on the comparison of targeted therapy drugs 
with chemotherapy agents, including cetuximab, an anti-
EGF-R monoclonal antibody, with cisplatin and vinorel-
bine [61], Bevacizumab, a mAb targeting the VEGF 
in combination with carboplatin and paclitaxel [256], 
and Figitumumab, a mAb targeting insulin-like growth 
factor type 1 receptor (IGF-1R), along with paclitaxel 
and carboplatin or gemcitabine/cisplatinum regimen 
[257]. On average, the results of all studies were similar. 
They showed that the combination therapy was effective 
and safe, and the group receiving these treatments had 
higher response rates, median progression-free survival, 
and overall survival. The combination of a c-MET inhibi-
tor and the EGF-R inhibitor erlotinib was used compared 
to using either inhibitor alone in the  NSCLC tumor 
xenograft mice model and indicated a significant anti-
tumor function [258]. Vandetanib is a multi-target TKI 
that selectively targets VEGF-R, EGF-R, and RET tyros-
ine kinase activity. Similar to mentioned combination 
therapies, Vandetanib and docetaxel, exhibited promising 
outcomes with increased progression-free survival (PFS). 
It also showed that Vandetanib controlled lung cancer 
symptoms longer than chemotherapy alone [259, 260]. 
Promising results have also been reported from the con-
ducted and ongoing trials on the effect of combination 
therapy sunitinib and erlotinib, as well as sunitinib along 
with platinum-based chemotherapy. Sunitinib is a multi-
targeted TKI with antiangiogenic and antitumor activi-
ties that inhibits VEGFR, PDGFR, KIT, RET, and Flt-3 
[261]. Similar studies have reported promising results of 
combination therapy of everolimus, the mammalian tar-
get of rapamycin (mTOR) inhibitor with chemotherapy 

or combination with chemotherapy/gefitinib regimen, 
including higher survival, good response to therapy, 
and improvement in disease symptoms [200, 262]. Also, 
target therapy in combination with radiotherapy or 
combined chemotherapy/radiotherapy has resulted in 
promising results of improved survival and response to 
treatment. Examples are cetuximab, an EGFR inhibitor, 
along with radiotherapy and chemotherapy in advanced 
lung cancer [263, 264], as well as Gefitinib and erlotinib 
integrated into chemoradiation [265, 266].

Limitations of NSCLC targeted therapy
The widespread application of targeted therapies for 
advanced NSCLC to potentially cure disease, is hindered 
by several significant challenges. These include drug 
resistance, toxicity, and the high cost of these agents, 
which can limit their accessibility to all NSCLC patients.

Tumor heterogeneity and Lack of validated biomarkers
Another limitation of targeted therapy in NSCLC is the 
lack of validated biomarkers to predict response to treat-
ment due to tumor heterogeneity [255]. While molecu-
lar testing is used to identify patients who may benefit 
from targeted therapy, not all patients with a particular 
molecular abnormality will respond to treatment. Addi-
tionally, some molecular abnormalities may be present 
in only a subset of cancer cells within a tumor, leading 
to incomplete targeting and potential resistance [267, 
268]. Most targeted therapies have been developed for 
advanced-stage NSCLC patients who have already devel-
oped molecular abnormalities that can be targeted. How-
ever, early-stage NSCLC patients may not have these 
molecular abnormalities, and there may not be targeted 
therapies available for their specific subtype of NSCLC 
[269, 270]. This can make it challenging to identify which 
patients should receive targeted therapy and which 
should receive other types of treatment [255, 269, 271]. 
Additionally, even when molecular abnormalities are 
identified, there is often a lack of evidence on the optimal 
treatment approach, including which targeted therapy to 
use and the best sequencing of therapies.

Drug resistance
Resistance is a major limitation of targeted therapy in 
NSCLC, where cancer cells that were initially sensitive 
to treatment eventually become resistant and continue 
to grow and spread. Resistance can occur due to vari-
ous mechanisms, including genetic mutations, alterations 
in gene expression, and changes in the tumor micro-
environment. Sometimes, changes like mutations and 
amplifications occur in the target gene that allows cells 
to continue growing even when an inhibitor is present 
[255]. Targeted therapies can create selective pressure, 
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which causes abnormalities that activate the driver onco-
gene. Malignant tumors with specific abnormalities 
initially respond well to selective inhibitors. However, 
resistance develops over time, often due to genetic aber-
rations in the target gene. For example, secondary muta-
tions like EGFR C797S have been seen after osimertinib 
therapy, while EGFR T790M mutations can lead to resist-
ance with erlotinib or gefitinib [272, 273]. Additionally, 
crizotinib has been shown to lead to on-target resistance 
in patients with ALK and ROS-1 mutations (L1196M and 
L2026M, respectively) [274]. These genetic changes and 
subsequent resistance are significant limitations to the 
effectiveness of targeted therapies in NSCLC. In NSCLC 
cells, acquired resistance to gefitinib or osimertinib has 
shown EMT characteristics, such as a decrease in E-cad-
herin and an increase in vimentin and stemness, without 
any secondary EGFR mutations [275]. AXL is implicated 
in the pathogenesis of EMT, and AXL inhibitors may 
restore sensitivity to erlotinib in mesenchymal EGFR-
mutant cells [276]. While these inhibitors have shown 
significant efficacy in some patients with NSCLC, resist-
ance can develop due to a variety of mechanisms, includ-
ing downregulation of antigen presentation, upregulation 
of alternative immune checkpoints, and alterations in the 
tumor microenvironment.

Toxicity
Although short-term exposure to targeted therapy drugs 
is generally manageable, their prolonged use for chronic 
administration often results in significant toxic side 
effects. Targeted therapies were initially considered  less 
harmful  because they specifically target cancer cells. 
However, both "on-target" and "off-target" effects of these 
therapies can lead to toxicity. Also, some targeted thera-
pies can cause serious adverse events such as liver or kid-
ney toxicity, blood clots, and gastrointestinal problems 
[255]. These side effects can limit the dose and duration 
of therapy, reducing the effectiveness of the treatment. 
The on-target toxicity occurs when a drug designed to 
inhibit cancer-specific targets also inhibits a fixed set of 
proteins in normal cells, leading to toxicity by inhibiting 
the signaling pathway. This can result in a range of toxic 
side effects, including hyperglycemia with PI3K inhibi-
tion, hypertension with vascular endothelial growth fac-
tor inhibition, and skin rash with EGFR inhibition [277, 
278]. Off-target toxicity occurs when a drug blocks a 
non-target protein, leading to harmful side effects. Unlike 
on-target toxicity, off-target toxicity is specific to a par-
ticular drug and does not exhibit a class effect. For exam-
ple, osimertinib is associated with cardiac toxicity, such 
as heart failure, left ventricular dysfunction, conduction 
abnormalities, and myocardial injury, while gefitinib is 
not [279, 280].

Conclusions and future perspective
Over the last decade, the progress of molecular pathol-
ogy has improved our knowledge of the pathophysiol-
ogy and heterogeneity of NSCLC, resulting in significant 
evolution in treating patients with more advanced and 
effective methods. Target therapy and immunotherapy 
have opened a new and promising perspective in treating 
lung cancer by achieving successful outcomes. Several 
signaling pathways and specific oncogenic driver muta-
tions have been identified that cause malignant altera-
tions. New  targets, such as microRNAs, VEGF, ALK, 
MET, HER2, and immune checkpoint inhibitors (PD-1 
and CTLA4), as well as signaling pathways like PI3K/
AKT/mTOR, RAS/MAPK, and NTRK/ROS1 pathways, 
are constantly discovered in addition to the epider-
mal growth factor receptor (EGFR), driving the emer-
gence of new treatments. These factors and pathways 
have been the target of numerous medicines that have 
demonstrated clinical efficacy. Currently, some of these 
drugs, including EGFR inhibitors (gefitinib and erlotinib), 
PI3K/AKT/mTOR inhibitors (everolimus), and NTRK/
ROS1 inhibitors (entrectinib) are being used as first-line 
therapies instead of chemotherapy. Interestingly, many 
NSCLC patients hopefully respond to checkpoint inhibi-
tors, such as the anti-PD1 antibodies (nivolumab and 
pembrolizumab). Additionally, some research has indi-
cated that certain targeted treatments combined with 
immunotherapies are effective in NSCLC. Drug resist-
ance in the tumors is inevitable even though target ther-
apy for NSCLC has controlled the disease. For improving 
treatment effectiveness, combination drug development 
and understanding resistance mechanisms are essential. 
Up to now, numerous clinical trials evaluating targeted 
therapy and immunotherapy agents are now being con-
ducted, and the outcomes thus far are encouraging. The 
findings of trials will shed light on defining targeted ther-
apy involvement in the treatment of NSCLC and clarify 
the roles of immune-based monotherapies, combined 
immunotherapies, and targeted therapy-immunotherapy 
combinations. Targeted therapy may ultimately change 
the way that lung cancer is treated for patients with few 
therapeutic options. Clinical research is still being done 
to discover the predictive factors responding to targeted 
therapies. Improved molecular biomarker knowledge and 
developed combined therapies might provide the most 
effective cure. Proper patient selection using predictive 
biomarkers will be crucial for theranostics and truly cus-
tomized oncological treatment in the future to maximize 
the limited resources available and decrease vulnerability. 
Future gains in patient survival are anticipated if resist-
ance is addressed, the  suitable inhibitor or combination 
of inhibitors is used, and side effects minimal.
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