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Abstract
Background  The accumulation of reactive oxygen species (ROS) in tumor microenvironment (TME) is an important 
player for tumorigenesis and progression. We aimed to explore the outcomes of ROS on tumor vessels and the 
potential regulated mechanisms.

Methods  Exogenous H2O2 was adopted to simulate the ROS setting. Immunofluorescence staining and 
ultrasonography were used to assess the vascular endothelial coverage and perfusions in the tumors inoculated with 
Lewis lung cancer (LLC) and melanoma (B16F10) cells of C57BL/6 mice, respectively. ELISA and western-blot were 
used to detect the expression of secreted acidic and cysteine-rich protein (SPARC) and Caveale-1 in human umbilical 
vein endothelial cells (HUVEC) extra- and intracellularly. Intracellular translocation of SPARC was observed using 
electron microscopy and immunofluorescence approaches.

Result  Under the context of oxidative stress, the pericyte recruitment of neovascularization in mouse lung cancer 
and melanoma tissues would be aberrated, which subsequently led to the disruption of the tumor vascular 
architecture and perfusion dysfunction. In vitro, HUVEC extracellularly SPARC was down-regulated, whereas 
intracellularly it was up-regulated. By electron microscopy and immunofluorescence staining, we observed that 
SPARC might undergo transmembrane transport via caveale-1-mediated endocytosis. Finally, the binding of SPARC to 
phosphorylated-caveale-1 was also detected in B16F10 tissues.

Conclusion  In the oxidative stress environment, neovascularization within the tumor occurs structural deterioration 
and decreased perfusion capacity. One of the main regulatory mechanisms is the migration of extracellular SPARC 
from the endothelium to intracellular compartments via Caveolin-1 carriers.
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Background
Carcinogenesis requires a complex microenvironment. 
Unlike the normal context, the tumor microenvironment 
(TME) is often accompanied by significant adverse ele-
ments that can easily trigger tumor cells to resist drugs or 
irradiation and subsequently elicit recurrence or metas-
tasis [1–5]. Blocking detrimental components in TME, 
therefore, may mitigate their therapeutic resistance.

Aberrant angiogenesis is an important feature of the 
TME. It has been demonstrated in multiple tumor mod-
els that tumor parenchymal cells, as well as the mesen-
chyme components overexpress pro-angiogenic factors 
that contribute to the formation of aberrant vascular 
nets characterized by disorganization, immaturity and 
permeability that underpin the hypoxia and poor perfu-
sion in TME [6, 7]. Hypoxia in turn exacerbates vascular 
aberrations while promoting the aggressiveness of tumor 
cells and counteracting the killing of lymphocytes, such 
as CD8+ T cells, etc. [8–10]. In addition, the distorted 
tumor vessels often impede drug delivery and compro-
mise the response to irradiation [11–13]. Therefore, vas-
culature normalization is an important strategy to reduce 
the aggressiveness of tumor cells, as well as to re-sensi-
tize them to treatments.

In the context of TME, reactive oxygen species (ROS) 
are cumulatively elevated in response to the combined 
stimulus of a hypoxic background and some other 
adverse stimuli, which are detrimental to treatment [14, 
15]. In previous studies, we found that high doses of lipid-
lowering drug simvastatin can improve ROS-dependent 
tumor vascular hyperpermeability in mouse models of 
lung cancer and melanoma [16]. In this study, we would 
further explore the specific mechanisms of ROS scaveng-
ing on tumor vasculature normalization and its potential 
targets.

Materials and methods
Cell line and cell culture
Lewis lung cancer (LLC), melanoma (B16F10) cells and 
Human umbilical vein endothelial cells (HUVEC) were 
purchased from American Type Culture Collection 
(ATCC; Rockville, MD, USA). B16F10 and LLC cells were 
cultured in RPMI-1640 (HyClone, US) supplemented 
with 10% FBS (HyClone, US) and 100U/ml penicillin and 
0.1  mg/ml streptomycin (HyClone, US). HUVECs were 
sustained in endothelial cell medium (ECM; ScienCell, 
CA) adding EC growth supplements and 5% FBS. All cells 
were incubated in a humidified atmosphere of 5% CO2 at 
37 °C.

Animal tumor model
LLC (2 × 106) and B16F10 cells (2 × 105) were injected 
s.c. into the right flank of 8-weeks-old female C57BL/6 
mice (Animal Care Committee of Wuhan university, 

Wuhan, China). Treatments were initiated when tumors 
reached a size of ~ 100 mm3. Animals were randomly 
selected to receive H2O2 (50nmol/kg/d, Sigma, US), H2O2 
(12.5nmol/kg/d), 0.9% NaCl solution and DPI (1  mg/
kg/d, Sigma, USA) for 5 days. Tumor-bearing mice were 
euthanized using 2% pentobarbital sodium and all animal 
procedures were approved by the Animal Care Commit-
tee of Wuhan Union Hospital, Huazhong University of 
Science and Technology (SYXK 2010-0057).

Immunofluorescence
Subcutaneously implanted LLC and B16F10 tumor tis-
sues were harvested and immediately frozen with optimal 
cutting temperature (OCT) compounds (Sakura, Japan). 
Tumor sections (40  μm thick) were co-immunostained 
with goat anti-CD31 (1:50; Biotechnology, China) and 
mouse anti-α-smooth muscle actin (α-SMA) (1:200; 
Google Biotechnology, China) antibodies, followed by 
Cy3-conjugated donkey anti-goat secondary antibody 
(1:300; Google Biotechnology, China) as well as FITC-
conjugated donkey anti-mouse secondary antibody 
(1:200; Google Biotechnology, China). Images were cap-
tured using a confocal microscope (Zeiss, Germany). The 
pericyte coverage index was calculated as the percent-
age of vessels positive for CD31 and α-SMA staining. All 
images were analyzed with Image-Pro Plus 6.0 software 
(Media Cybernetics, MD).

Fluorescein perfusion test
Perfusion of tumoral vessels was assessed by tail vein 
injection of 0.05  mg FITC-labeled lectin (1  mg/ml in 
0.9%NaCl, Sigma, USA). After completion of fluoro-
phores injection, it was necessary to allow 10  min of 
circling in mice, and then the tumors were harvested 
and immediately frozen in a dark environment by OCT 
compound. Tumor sections (40  μm) were prepared and 
incubated with goat anti-CD31 antibody (1:50) overnight 
at 4 °C, followed by incubation with Cy3-conjugated sec-
ondary antibody (1:200). The perfusion function of tumor 
vessels was determined by calculating the percentage of 
FITC-lectin+/CD31+ stained vessels.

Ultrasonography
The vascular perfusion signal within the tumor was 
assessed using a color Doppler flow imaging system of 
a 1–5 MHz probe (iU22 SonoCT, Philips, Netherlands). 
Tumor-bearing mice were anesthetized and placed on an 
electric heating plate at 37  °C. For selecting the region 
of interest (ROI), the blood flow signal was taken on the 
corresponding tumor sections and analyzed by QLAB 
quantitative technique. The amount and intensity of 
tumor vascular perfusion signals were assessed by vas-
cularization index (VI) and vascularization flow index 
(VFI), respectively.
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Cell counting Kit-8 assay
HUVECs were seeded at 8000 cells/well in 96-well plates 
and grown overnight with attached walls. The cells were 
treated with H2O2 at concentrations of 0, 50µM, 100µM, 
250µM, 500µM, 1000µM, 2500µM, and 5000µM for 
30  min, 6  h, and 24  h, respectively. Cholecystokinin-8 
(Shangbo Biotechnology, China) was added to each well 
(10 ul per well) and incubated for 2 h at 37 °C. The optical 
density (OD) was measured at 450 nm by using a scan-
ning multi-well spectrophotometer (Bio-Rad Model 550, 
CA, United States).

The cell inhibition rate was calculated using the fol-
lowing formula: cell inhibition rate = [(OD control - OD 
experimental group) / OD control group] × 100%. Cells 
were treated with different concentrations of H2O2 and 
assayed at three time points, with each repeated thrice.

Enzyme-linked immunosorbent assay (ELISA)
Human SPARC ELISA kits (Shenglong Biotechnology, 
China) were used to measure the amount of SPARC and 
matrix metalloproteinase 2 (MMP-2) in the medium of 
HUVECs. The experimental procedure was performed 
according to the instructions. The optical density (OD) 
was assayed at 450 nm using a scanning multi-well spec-
trophotometer (Bio-Rad Model 550, CA, US).

Gelatin zymography
HUVECs were seeded at 1.0 × 106 cells/well in 6-well 
plates and allowed to grow attached to the wall overnight. 
Cells were then incubated continuously with serum-free 
medium for 12 h, after which HUVECs were treated with 
0 and 250µM of H2O2 for 24 h. Finally, the medium was 
collected and centrifuged. The BCA method was used 
to determine the protein concentration in the culture 
medium, which was used to adjust the amount of pro-
tein samples. APMA, 4-Aminophenylmercuric acetate, 
was selected as a positive control. The gel was subjected 
to two shaking elution for 20 min each, followed by two 
rinses of 20  min each with the rinse solution (Triton 
X-100 free in the eluent). Then it was put in the incuba-
tion solution on the shaker for 42 h. After 3 h of staining, 
the gels were dyed blue and then treated with 10% decol-
orizing solution for 0.5 and 1 h and 5% decolorizing solu-
tion for 2 h, respectively. Ultimately, the locations where 
the white and translucent bands appear were observed. 
All images were analyzed by Quantity One software 
(Media Cybernetics, MD).

Western-blot analysis
To detect the expression levels of SPARC, pY14-caveo-
lin-1 and PDGF-BB in tumor tissues, equal quantities of 
protein extracts were loaded onto 12% SDS-PAGE and 
transferred to nitrocellulose membranes (Millipore, Bil-
lerica, MA). After blocking with 5% casein/TBST, the 

membranes were incubated with rabbit anti-SPARC 
(1:100; CST, US), rabbit anti-pY14-caveolin-1 (1:50), and 
rabbit anti-PDGF-BB (1:200; Abcam, US). The mouse 
anti-β-actin (1:1,000; Google Biotechnology, China) 
antibody was used as the internal control. Protein blots 
were visualized using Super Signal Chemiluminescent 
kit (Google Biotechnology, China). The chemilumines-
cent signals on X-ray film were scanned and analyzed by 
AlphaEaseFC software (Innotech, US).

Electron microscope
Prior to electron microscopy assay, HUVECs were seeded 
at 1 × 106 cells/well in 6-well plates and grown overnight 
with adherent walls. Afterwards, the cell samples were 
treated with 0 and 250µM H2O2 for 30 min, respectively. 
Samples were collected and fixed with electron micro-
scope stationary liquid, and stored at 4  °C for 3 days. 
Samples were washed three times with 0.1 M PBS, then 
soaked in a solution containing osmium tetroxide (1%) 
for 1 h, and then washed again with PBS. After a further 
staining in 1% aqueous uranyl acetate for 30 min, those 
samples were dehydrated and embedded in 50%, 70%, 
90%, 100% ethanol and anhydrous acetone for 20  min, 
respectively. And then the cells were treated with a 
1:1 volume mixture of anhydrous acetone and embed-
ding agent and shaken for 2 h. Thereafter, the cells were 
treated with pure embedding agents and shaken for 2 h. 
The embedding agents were polymerized in an oven as 
the following conditions: 37  °C for 24 h, 45  °C for 24 h, 
and 60 °C for 48 h. A thin slice (120 nm) was made and 
the caveolae structure on the surface of HUVECs were 
observed by using transmission electron microscopy 
(80 kV, 15,000×; JEOL, Japan).

Co-localization
HUVECs sections were co-immunostained with rab-
bit anti-PY14-caveolin-1 (1:100) and goat anti-SPARC 
(1:100) antibodies, and then treated with Cy3-conjugated 
donkey anti-rabbit secondary antibody (1:100) and FITC-
conjugated donkey anti-goat secondary antibody (1:200). 
The co-immunostaining index of pY14-caveolin-1 and 
SPARC was estimated using Image-Pro Plus 6.0 software 
(Media Cybernetics, MD).

FITC marked hr-SPARC
We use HOOK™ Dye Labeling Kit (FITC) (Sagan, China) 
to mark Human recombinant SPARC proteins (RnD, 
USA). Prior to labeling treatment, 100 µl of DMSO was 
added to the dye marker and mixed well. Then, the dye 
marker was mixed thoroughly with the protein solu-
tion and centrifuged, and the samples were collected 
from the bottom of the tube. Thereafter, those samples 
were wrapped in aluminum foil and incubated at room 
temperature for 60 min. Subsequently, we collected and 
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purified the protein samples according to the detailed 
process instructions of the HOOK™ Dye Labeling Kit 
(FITC) and stored them for backup.

Internalized inhibition
HUVECs were seeded in 6-well plates at 1 × 106 cells/
well and allowed to grow in adherent walls overnight, the 
culture medium was replaced with serum-free medium, 
followed by addition of 5  µg/ml FITC-SPARC. We then 
treated HUVECs with 250µM H2O2 and 5 µg/ml Filipin-
III (Caveolae/caveolin-1 internalization pathway inhibi-
tor; Cayman, China) for 1 h, respectively.

Statistical analysis
All measurements were repeated at least three times. 
Quantitative data were presented as mean ± standard 
deviation (SD). Significant differences between two 
groups were analyzed by Student’s t test (normally dis-
tributed data) or Mann-Whitney U test (non-normally 
distributed data). For comparisons across three or more 
treated groups, the analysis of variance (ANOVA) and the 
Wilcoxon rank sum test were applied for normal distribu-
tion data and non-normal distribution data, respectively. 
All calculations were performed using SPSS Statistics 
software, version 22.0 (IBM Corporation, Armonk, NY). 
Statistical significance was set at a two-sided P < 0.05.

Results
ROS disrupts the vessel structure
Vascular endothelial cells and mature pericytes are 
important components of normal blood vessels; there-
fore, we first determined the status in vascular struc-
tures by detecting the expression of CD31, a marker of 
endothelial cells, and α-SMA, the marker of pericytes, at 
different ROS levels in LLC and B16F10 mouse models. 
We gave mice intraperitoneal H2O2 injections at different 
concentrations to simulate different intensities of the oxi-
dative stress environment.

When the grafts grew uniformly to 100 mm3 (6 days 
for B16 and 8 days for LLC), the two types of mice were 
randomly grouped into control, low ROS (H2O2, 12.5 
nmol/kg, once daily) and high ROS level (H2O2, 50 nmol/
kg, once daily) groups, and DPI (diphenyleneiodonium) 
de-oxidation treated group (1  mg/kg, once daily). After 
5 days of interventions, we collected the transplanted 
tumors for further detection. No death as well as an 
abnormal weight loss of the mice was observed during 
the course of intervention.

Compared to controls, a low proportion of α-SMA+/
CD31+ vessels could be detected in the LLC xenograft 
model with either low or high H2O2 treatments. A sig-
nificant recovery of those vessels occurred by DPI anti-
oxidant treatments (Fig.  1A-B). Likewise, under the 
same conditions of H2O2 as well as a recovery method, 

a similar change of α-SMA+/CD31+ vessels could be 
observed in the model B16F10 (Fig. 1C-D).

ROS impairs vascular perfusion function
We took FITC-lectin tail vein injection to observe the 
perfusion function of vessels in both models under 
the oxidative stress background. In response to H2O2 
(both low or high concentration backgrounds), the den-
sity of normally perfused vessels (indicating Lectin+/
CD31+ staining) in LLC was markedly reduced as com-
pared to controls, and those could be significantly ele-
vated with DPI antioxidant treatment (Fig.  2A-B). We 
then adopted the same strategy for the validation in 
the B16F10 model, and observed a consistent change 
(Fig. 2C-D).

Furthermore, a color Doppler ultrasound method was 
performed to visually investigate the perfusion of tumoral 
vessels. As seen from Fig.  3A and C, for both LLC and 
B16F10, few blood flow signals could be detected within 
tumors relative to controls, in response to H2O2. After 
DPI treated, high levels of flow signal could be measured.

The strength of the vascular signal could be quantified 
by VFI and VI. Accordingly, H2O2 decreased both VFI 
and VI in those two models, which, significantly, were 
improved by DPI antioxidant treatment, highlighting the 
negative role of oxidative stress on the vascular perfu-
sions (Fig. 3B-D).

Combined with the results above, it is reasonable to 
assume that the impairment of vascular perfusion in 
conditions of H2O2 is mainly attributed to the abnormal 
recruitment of pericytes.

The role of SPARC under ROS conditions
As SPARC is thought to be an important regulator of 
pericyte recruitment [17, 18], we first attempted to inves-
tigate the potential role of SPARC in the context of ROS. 
Western-blot assay from LLC and BF16 tumors showed 
that SPARC protein would downregulate in the H2O2 
environment when compared to the control group. After 
removal of ROS by DPI, the level of SPARC could be 
restored (Fig. 4A).

ROS decreases extracellular SPARC protein content in 
HUVEC
HUVECs are one of the most commonly applied mod-
els in vitro to characterize vascular biology. Through 
concentration-dependent experiments, we found that 
250 µM H2O2 inhibited cells more stably at different 
time points and did not cause excessive cell death, hence 
determining it as the operating concentration, for in vitro 
experiments (Fig. 4B).

By ELISA, we observed a linear downregulation of 
extracellular SPARC with the duration of H2O2 interven-
tion (Fig.  4C). However, the expression level of SPARC 
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within HUVECs were significantly upregulated along 
with the treatment of H2O2 (Fig. 4D). The above results 
implied that the SPARC protein might have experienced 
a process of extracellular to intracellular translocation.

Mechanism of SPARC downregulation in the extracellular 
matrix of HUVEC under the ROS environment: a caveolae 
dependent endocytosis
It has been suggested that extracellular SPARC could 
be degraded by MMP-2 [19]; therefore, we assayed the 
quantification and activity of extracellular MMP-2 by 
ELISA and gelatin zymography assay (Fig.  5A&B), both 
of which were decreased upon H2O2 treatment, presum-
ing that the extracellular downregulation of SPARC is not 
driven by the MMP-2 pathway.

Caveolae are bottle-shaped invaginated molecules pre-
sented in the plasma membrane of many types of cell, 

and they are capable of participating in the transport of 
many molecules across the membrane [20, 21].

Through membrane electron microscopy, we could 
observe the flask-shaped caveolae were precisely located 
on the surface of the cell membrane with its opening ori-
ented towards extracellular matrix in the control group. 
Under the stimulation of H2O2, increasing number of 
caveolae internalized gradually and formed intact ves-
icle-like structures moving toward intracellular matrix 
(Fig.  5C). Moreover, Western-blot of HUVEC cells also 
showed that the corresponding phosphorylated Caveo-
lin-1 protein levels were significantly upregulated under 
the H2O2 treatment (starting after 10  min and up to 
24 h) (Fig. 5D). When adding Filipin-III to HUVECs, an 
inhibitor of caveolae internalization, it led to a significant 
reduction of intracellular SPARC (Fig. 5E).

Fig. 1  In comparison with the control group, the density of vessels with normal structure was significantly reduced in LLC (A&B) and B16F10 (C&D) 
tumor tissues after H2O2 treatments (α-SMA+ vascular smooth muscle cell, green; CD31+ endothelial cells, red). Data presented were mean ± SD. By DPI 
treatment, a higher proportion of normal structured blood vessels could be observed. Differences among two H2O2-treated and DPI-treated groups were 
tested by ANOVA, with the * representing p values less than 0.05 and the *** representing p values less than 0.01
 LLC: Lewis lung carcinoma cell line; B16F10: murine melanoma cell line; DPI: diphenyleneiodonium; ANOVA: analysis of variance
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By immunofluorescence co-localization of phos-
phorylated caveolin-1 and SPARC within HUVEC, we 
observed that SPARC endocytosed by pY14-caveolin-1 
could be detected intracellularly after H2O2 treatment, 
further confirming the internalization effect of SPARC 
(Fig. 6A&B).

Internalization effect of phosphorylation-activated 
Caveolin-1 on SPARC proteins in tumor tissues under ROS 
environment
We chose the B16F10 mouse models to verify the endo-
cytosis of phosphorylated caveolin-1 on SPARC in vivo. 
We found that the expression of pY14-caveolin-1 and 
SPARC protein was highly overlapped in tumor tis-
sues treated with H2O2. However, the co-localization of 

pY14-caveolin-1 with SPARC was significantly weakened 
when ROS was scavenged. (Fig. 7).

Discussion
In TME, ROS is capable of initiating multiple processes 
in tumorigenesis, including the regulation of angiogene-
sis [22], metastasis [23] and cell apoptosis [24], etc. In our 
study, using LLC and B16 models, we found that vascular 
structures and perfusion function within the tumors were 
compromised under H2O2 treatments. Through in vitro 
experiments, we further observed that the detrimental 
outcomes of ROS on tumor vascular normalization could 
be mediated through an endocytosis of the caveolin-1 on 
extracellular SPARC.

Abnormal neovascularization in TME plays an impor-
tant role in tumorigenesis. First, tumor cells need enough 

Fig. 2  Perfusion function of vessels within LLC (A&B) and B16F10 (C&D) tissues was significantly impaired after H2O2 treatment when compared to the 
controls (FITC-lectin+, green; CD31+ endothelial cells, red). Data presented were mean ± SD. After treating with DPI, the proportion of vessels with normal 
perfusion function was significantly increased (P < 0.01). Differences among two H2O2-treated and DPI-treated groups were tested by ANOVA, with the 
*** representing p values less than 0.01
 LLC: Lewis lung carcinoma cell line; B16F10: murine melanoma cell line; DPI: diphenyleneiodonium; ANOVA: analysis of variance
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blood to survive, and second, the massive proliferation 
of immature vessels provides the environment for inva-
sion and metastasis. With an in-depth understanding of 
the angiogenic blockade, the anti-angiogenic mechanism 
consists less of simply inhibiting the growth of tumor ves-
sels, but more of promoting the normalization of abnor-
mal structures [25]. Preclinical studies had shown that 
targeting blockade of VEGF and its receptors, could facil-
itate normalization of tumor vasculature and remodeling 
of TME [26, 27]. Clinical studies confirmed that multiple 
blockers of VEGF in combination with conventional che-
motherapy or in triple therapy with immune checkpoint 
inhibitors would produce synergistic effects and provide 
survival benefits for multiple tumor types [28, 29].

In oxidative stress conditions, excess ROS are pro-
duced, damaging cellular proteins, lipids and DNA, lead-
ing to carcinogenesis. For example, H2O2 could oxidize 
prolyl hydroxylase domain protein 2 (PHD2) and lead to 

the stabilization of hypoxia-inducible factor 1α (HIF-1α), 
a protein that is essential for angiogenesis and cancer 
metastasis [30]. ROS can also promote the pancreatic 
cancer formation by activating NF-κB and upregulating 
EGFR proliferative signaling via protein kinase D1 [31]. 
In addition, ROS can also cause DNA damage, includ-
ing single strand cleavage, point mutations, miscoding, 
abnormal amplification and activation of oncogenes [32]. 
In this study, we simulated the landscape of oxidative 
stress with exogenous H2O2 in both ex vivo and in vitro, 
and we found that under conditions of overexpressed 
ROS, the recruitment of pericytes to the vascular endo-
thelium would be compromised, leading to an abnormal 
vascular architecture. Also, we observed an underlying 
H2O2 concentration-dependent decrease of perfusion, 
and thereby we postulated that vascular structural abnor-
malities caused by impairment of pericyte were one of 
the main contributors.

Fig. 3  Ultrasonography showed that VI and VFI within tumor tissues were significantly decreased after the H2O2 treatments when compared to the con-
trol group. After treating with DPI, the perfusion signals were significantly upregulated. The yellow arrow indicated the tumor areas; A&B figure was LLC 
model while C&D figure represented B16F10 model. Data presented were mean ± SD. Differences of VI and VFI among treatment groups were assessed 
by ANOVA, *** represents p- value less than 0.01
 VI: vascularization index; VFI: vascularization flow index; LLC: Lewis lung carcinoma cell line; B16F10: murine melanoma cell line; ANOVA: analysis of 
variance
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A growing body of evidence suggests that the oxida-
tive stress process is closely associated with Caveolin-1 
[33]. Reactive species produced under the oxidative stress 
could induce the Caveolin-1 expression and facilitate cell 
membrane internalization of target proteins, for example, 
In an ischemia-reperfusion model, oxidative stress can 
induce internalization of P-glycoprotein through phos-
phorylation of Caveolin-1, reducing its mediated corti-
sol efflux to the blood-brain barrier to mitigate neuronal 
injuries [34], Caveolin-1 also increases HDL biogenesis 
through internalization and degradation of ATP binding 
cassette transporter (ABCA1), which would be modu-
lated by propanol oxidation products [35]. Caveolin-1 
also exerts feedback regulation on the oxidative stress 
reactions in TME [36].

The pericytes are involved in angiogenesis and are 
essential for the development of a functional vascu-
lar network [37]. They are able to mobilize and migrate 
from established vessels to new ones through factors 
such as matrix metalloproteinase 9 (MMP-9) and plate-
let-derived growth factor B (PDGF-BB). In TME, once 

pericytes are poorly mobilized, de novo vessels exhibit 
highly leaky and tortuous features. Targeted improve-
ment of pericyte recruitment would improve the respon-
siveness to therapy.

SPARC is an extracellular calcium-binding glycoprotein 
that participates in a variety of cellular processes, includ-
ing promoting inflammatory cell aging [38], regulating 
stromal cell differentiation [39], and increasing tumor cell 
invasion [40]. SPARC is also engaged in pericyte recruit-
ment and neo-angiogenesis [17]. Herein, we observed 
that under oxidative stress conditions, extracellular 
SPARC was translocated into cells by membrane-bound 
protein caveolae-1. Furthermore, in the B16F10 tissue 
model, we also witnessed that endocytosis, suggesting 
that internalization of SPARC is a key mechanism of vas-
cular dysfunction.

Next, we will investigate the structure and function 
of vessels under conditions of blocking or upregulating 
caveolin-1, and the corresponding SPARC expression, 
which would shed light on the role of the caveolin-
SPARC pathway in tumor angiogenesis scenario.

Fig. 4  Western-blot showed the protein expression of SPARC was reduced in LLC and B16F10 tissues treated with H2O2 as compared to controls, while 
DPI treatment resulted in an up-regulation of SPARC (A); Cell inhibition rate of HUVECs at different treatment time points (30 min, 6 and 24 h) across a 
range of H2O2 intensities (B); ELISA demonstrated that SPARC of HUVECs decreased with the duration of H2O2 exposure (C); Western-blot showed a sig-
nificant upregulation of intracellular SPARC in the presence of H2O2.
 SPARC: secreted acidic and cysteine-rich protein; LLC: Lewis lung carcinoma cell line; B16F10: murine melanoma cell line; HUVEC: human umbilical vein 
endothelial cells; ELISA: enzyme-linked immunosorbent assay
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Conclusion
In TME, high levels of oxidative stress increase endocyto-
sis of SPARC by caveolin-1, leading to inadequate recruit-
ment of pericytes and causing distortion of intertumoral 
vascular function (Fig.  8). Amending the high oxidative 
stress in TME or targeting caveolin-1 may induce vascu-
lar normalization and improve efficacy.

Fig. 5  ELISA showed that extracellular MMP-2 of HUVEC decreases with prolonged exposure to H2O2 (A); Gelatin zymography indicated that H2O2 caused 
diminished activity of MMP-2 (B); Electron microscopy observed that the caveolae-1 on the surface of HUVEC were more accessible to the intracellular 
compartment under the treatment of H2O2, the yellow arrows indicated the caveolae-1 (C). Western-blot showed that the expression of phosphorylated 
caveolin-1 within HUVEC was upregulated in response to H2O2 (D). The addition of filipin-III resulted in downregulation of SPARC protein within HUVECs 
compared to H2O2-treated group and control (E)
 HUVECs: human umbilical vein endothelial cells; ELISA: enzyme-linked immunosorbent assay; MMP-2: matrix metalloproteinase 2; SPARC: secreted acidic 
and cysteine-rich protein
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Fig. 7  Immunofluorescence co-localized expression of phosphorylated Caveolin-1 (red) and SPARC (green) in the B16F10 tissue under the treatment of 
H2O2.
 B16F10: murine melanoma cell lines

 

Fig. 6  Intracellular co-localized expression of phosphorylated Caveolin-1 (red) and SPARC (green) was significantly increased in HUVECs in response to 
H2O2 treatment relative to the control group. Data presented were mean ± SD. Phosphorylated caveolin-1 and SPARC at different H2O2 treatment time 
points were compared by ANOVA, * represents p-value less than 0.05, *** represents p-value less than 0.01
 HUVECs: human umbilical vein endothelial cells; SPARC: secreted acidic and cysteine-rich protein; ANOVA: analysis of variance
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