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Abstract
Objective  Systemic chemotherapy is the first-line therapeutic option for head and neck squamous cell carcinoma 
(HNSCC), but it often fails. This study aimed to develop an effective prognostic model for evaluating the therapeutic 
effects of systemic chemotherapy.

Methods  This study utilized CRISPR/cas9 whole gene loss-of-function library screening and data from The Cancer 
Genome Atlas (TCGA) HNSCC patients who have undergone systemic therapy to examine differentially expressed 
genes (DEGs). A lipid metabolism-related clustered polygenic model called the lipid metabolism related score (LMRS) 
model was established based on the identified functionally enriched DEGs. The prediction efficiency of the model 
for survival outcome, chemotherapy, and immunotherapy response was evaluated using HNSCC datasets, the GEO 
database and clinical samples.

Results  Screening results from the study demonstrated that genes those were differentially expressed were highly 
associated with lipid metabolism-related pathways, and patients receiving systemic therapy had significantly different 
prognoses based on lipid metabolism gene characteristics. The LMRS model, consisting of eight lipid metabolism-
related genes, outperformed each lipid metabolism gene-based model in predicting outcome and drug response. 
Further validation of the LMRS model in HNSCCs confirmed its prognostic value.
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      Background
Squamous cell carcinomas of the head and neck 
(HNSCCs) have a devastating impact on individuals 
worldwide. HNSCCs affect 850,000 people annually and 
result in 440,000 deaths [1, 2]. Unfortunately, over 40% of 
HNSCC patients are diagnosed at an advanced stage due 
to a lack of specific symptoms in early stages [3]. Patients 
in stages III and IV may have extensive local tumor inva-
sion, and only 30% may survive for five years [4]. The 
treatment of HNSCCs varies according to the pathologi-
cal features and disease stage and can include surgery or 
concurrent chemoradiotherapy and immunotherapy [3, 
5–7]. However, extensive tissue excision and the toxic 
side effects of chemo- and radiotherapy significantly 
harm the quality of life and overall outcome of HNSCC 
due to swallowing and respiratory dysfunction [8].

The advent of immune checkpoint inhibitors has 
resulted in a significant improvement in the overall sur-
vival of HNSCCs [9, 10]. However, only a limited popu-
lation could benefit from this approach. Cisplatin-based 
chemotherapy has a wider range of applications and 
can be used in more populations than immunotherapy. 
Moreover, patients who are sensitive to cisplatin-based 
systematic therapy have better overall survival and qual-
ity of life, and tumor downstaging and opportunities to 
protect swallowing and speech functions may be pos-
sible [6]. However, most HNSCC patients are still diag-
nosed in advanced stages, and treatment failures still 
occur [7], even with personalized comprehensive treat-
ment. Despite the improvement in treatment for locally 
advanced HNSCC, recurrences are still observed in 
nearly half of cases [8]. Thus, reliable options for plat-
inum-resistant diseases are needed [9]. This is critical, 
as only a few targeted drugs, including programmed 
death-1 (PD-1) inhibitors, programmed death-ligand 1 
(PD-L1) inhibitors, and cetuximab 7, are available. Hence, 
it is essential to identify potential drug resistance mol-
ecules and mechanisms to develop novel targeted drugs 
and formulate comprehensive treatment plans.

The metabolism of lipids is vital for the processes 
underlying cancer development and progression [10] 
and drug resistance [11–13]. Recent studies have dem-
onstrated that alterations in the expression of genes 
involved in lipid metabolism are associated with cisplatin 
resistance, particularly those engaged in the metabolism 
of fatty acids, such as FASN [14], CD36 [20] and SCD 
[16]. Abnormal lipid metabolism in HNSCC includes 
enhanced de novo lipid synthesis or accumulation and/

or impaired lipolysis [17]. According to previous studies, 
there is a strong association between elevated CPT1A-
dependent lipolysis and resistance to radiotherapy in 
individuals diagnosed with nasopharyngeal carcinoma 
[18]. Additionally, radiotherapy resistance is closely 
related to fatty acid synthesis in HNSCCs [19]. How-
ever, the occurrence of reprogramming of lipid metabo-
lism is specific to therapeutic drugs and is affected by 
the environment and cellular microenvironment [20, 21]. 
Previous studies on lipid metabolic reprogramming in 
HNSCCs are limited, and conflicting results have been 
reported [17] based on different anatomical regions and 
tumor microenvironments.

The objective of this research was to investigate the 
influence of lipid metabolism reprogramming on the 
overall drug response, particularly that of chemotherapy, 
in HNSCCs. Here, we integrated CRSIPR/cas9 whole 
gene loss-of-function library screening and the TCGA 
HNSCC dataset and identified that cisplatin resistance 
is associated with genes related to lipid metabolism. We 
constructed a polygenic model for HNSCC prognostic 
prediction, called the LMRS model, that is based on eight 
clustered lipid metabolism genes. Additionally, we evalu-
ated the effectiveness and prognostic value of the LMRS 
model for overall outcome, drug response, and immuno-
therapy response prediction in HNSCCs. Validation was 
performed not only in TCGA HNSCC and GEO datas-
ets but also on collected clinical specimens. Finally, we 
verified that the constructed LMRS model achieved good 
prognosis prediction and provided an essential refer-
ence for diagnostic and therapeutic decisions in HNSCC 
patients (Fig. 1A). Our findings highlight the significance 
of lipid metabolism in drug response and provide poten-
tial drug targets and improved prognostic models.

Methods and materials
Cell culture and cell viability assay
Fadu and Detroit-562 cells were purchased from the 
Cell Bank of the Chinese Academy of Sciences and kept 
in a cell incubator with 5% CO2 at 37  °C in high-glu-
cose DMEM (Gibco, Grand Island, NY, USA) contain-
ing L-glutamine with 10% fetal bovine serum, penicillin 
(100 U/mL), and streptomycin (100 U/mL). The CCK-8 
assay was used to assess cell viability, proliferation, and 
drug resistance. Drugs were added 24  h after the cells 
in an exponential growth phase were plated in 96-well 
plates to test cell viability. The cells were treated with 10 
µL of CCK-8 (MedChemExpress, Monmouth Junction, 

Conclusion  In conclusion, the LMRS polygenic prognostic model is helpful to assess outcome and drug response for 
HNSCCs and could assist in the timely selection of the appropriate treatment for HNSCC patients. This study provides 
important insights for improving systemic chemotherapy and enhancing patient outcomes.
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NJ, USA) according to the manufacturer’s instructions. 
After 2 h, the absorbance was measured at 450 nm. Three 
parallel experiments were carried out for each sample, 
and at least five replicate wells were used to analyze each 
concentration. Rosiglitazone and Orlistat were purchased 
from MCE (MedChemExpress, Monmouth Junction, 
NJ, USA). Annexin V-Propidium Iodide kit was used to 
determine the apoptosis cells distribution following the 
manufacturer’s instructions (Solarbio, Beijing, China).

Quantitative RT‒PCR, cDNA synthesis, and RNA isolation
Total RNA was isolated from cell lines using TRIzol 
according to the manufacturer’s instructions (TaKaRa, 
Dalian, Liaoning, China). The PrimeScript RT reagent 
kit for cDNA synthesis was used for reverse transcrip-
tion experiments (TaKaRa). The RNA concentration was 
determined by measuring the absorbance at 260  nm. 
After normalizing the expression to that of beta-actin, 
the expression values were calculated relative to those of 
the control samples.

Fig. 1  Lipid metabolism-related genes were significantly enriched in CRISPR/cas9 library screening. A, Illustration of the stepwise study design. 
B, Illustration of CRISPR/cas9 library screening in the HNSCC cell lines Fadu and Detroit 562 cells. C, Venn diagrams showing the 6,848 candidate genes 
related to drug resistance. D-G, GO and KEGG enrichment analyses for cisplatin and 5-FU drug screening in Fadu and Detroit 562 cells. H, PPI network 
analysis of the screening for differentially expressed lipid metabolism genes. I, Heatmap for differentially expressed genes involved in lipid metabolism 
across the four screening groups
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CRISPR/cas9 loss-of-function library screening
CRISPR/cas9 loss-of-function library screening was 
employed using the protocol outlined in Nature proto-
cols [22]. Lentiviral products were obtained from OBiO 
Technology (Shanghai) Corp., Ltd. (Shanghai, China). 
Screening was performed in both Fadu and Detriot-562 
cells, which were generated from human primary hypo-
pharyngeal carcinoma and human lung metastasis of 
hypopharyngeal cancer, to identify genes whose sup-
pression desensitized cancer cells to chemotherapy. The 
cell lines were plated in 100-mm plates at 500,000 cells 
per well one day before the experiment. The cells were 
starved for 12 h and then transduced at an MOI of 0.3, 
0.4, and 0.5. After 18  h, the culture supernatant was 
removed, and the transduced cells were kept in complete 
culture medium with 2 µg/mL puromycin for more than 
3 days to generate knockout cells (KO cells). The KO 
cells were divided into normal and treated groups using 
three duplicates of cells under different chemical treat-
ments: DDP (5  µg/mL for Detroit-562 and 1  µg/mL for 
Fadu) and 5-FU (5  µg/mL for Detroit-562 and 1  µg/mL 
for Fadu) at an IC20 dosage. Every 3–5 days, fresh high-
glucose DMEM that contained toxins was changed. After 
a two-week selection, sgRNA PCR amplification and next 
generation sequencing of the extracted DNA from the 
different groups were performed.

Using MAGeCKO (version 0.5.7), sgRNA labels were 
matched to the human reference (hg19). Using robust 
rank aggregation analysis, differential analysis of the 
screened sgRNAs between DDP- or 5-FU-treated and 
control groups was carried out. Based on the follow-
ing criteria, sgRNA enrichment was selected for addi-
tional analysis: sgRNAs with an FDR of 0.25 and p value 
of 0.05 for each independent replication in the cisplatin 
and 5-FU groups or sgRNAs with either an FDR of 0.05 
or p value of 0.05 for each independent replication in the 
DDP and 5-FU groups. Azenta Life Sciences (Shanghai, 
China) assisted in CRISPR/cas9 screening and sgRNA 
data analysis.

GO function and KEGG pathway enrichment analyses of 
the differentially expressed sgRNAs
The R environment cluster profile (version 3.14) and 
package “org.Hs.eg.db (version 3.10)” were used for GO 
function and KEGG pathway enrichment analyses of the 
differentially expressed sgRNAs from the CRISPR/cas9 
library screening. Differential analysis of biological pro-
cesses (BPs), cellular components (CCs), molecular func-
tions (MFs), and related pathways was performed. The 
BH method of multiple testing correction was used.

TCGA and GEO datasets
Clinical information, TCGA RNA-seq data, and probe 
annotation files were collected from the TCGA HNSCC 

dataset (https://portal.gdc.com). Samples without clinical 
information were disregarded. Using the R tool “GEO-
query,” the GSE32877, GSE10300, and GSE41613 data-
sets were obtained from the Gene Expression Omnibus 
(GEO) database.

Establishment of the LMRS model
Gene counts from the TCGA HNSCC patients who had 
received systematic therapy were converted to TPM. The 
data were normalized using log2 (TPM + 1), and only 
samples with available clinical data were analyzed. There 
were 173 samples included in further analyses.

Subgroup division
The data were analyzed over 100 times with the R pack-
age “ConsensusClusterPlus (version 1.54)”, with cluster-
Alg = “hc” and innerLinkage = “ward. D2” to cluster two 
subgroups. The R package “pheatmap” (version 1.0.12) 
was then used to construct the heatmaps, and only 
gene expression with SD > 0.1 was included. If the input 
gene count exceeded 1,000, the top 25% of genes were 
extracted, and the SD was filtered. The prcomp function 
in the R environment was used to perform PCA.

Establishment of the 8-gene signature LMRS model
There were 751 lipid metabolism-related genes shared 
between the two groups. Integrated with the CRISPR/
cas9 library screening results, the top 50 genes related 
to lipid metabolism were adopted. The package “glmnet” 
was used for the least absolute shrinkage and selection 
operator (LASSO) algorithm as well as the feature selec-
tion and 10-fold cross-validation. Based on the median 
score, the samples were divided into high and low groups. 
Each patient’s score was calculated using a formula 
weighted by their regression coefficient from the above 
analysis.

Score = (− 2.7486) * ACSBG2 + (1.7158) * APOB + 
(− 0.3216) * IKBKB + (0.4612) * MAPK9 + (− 0.8421) * 
MOGAT2 + (0.6413) * PLA2G10 + (− 0.2157) * PIK3R3 
+ (− 0.2355) * SREBF1.

Analysis of prognosis
For Kaplan‒Meier curves, log-rank tests were used to 
assess p values and hazard ratios (HRs). To select the 
appropriate terms, univariate and multivariate Cox 
regression analyses were used for the nomogram. The 
forest plot was used to display the p value, HR, and 95% 
CI of each variable using the package “forestplot”. Then, 
using the R package “rms”, a nomogram was developed 
based on the results of the multivariate Cox proportional 
hazards analysis to predict the 1-, 3-, and 5-year overall 
recurrence rates.

To compare the predictive power of the established 
lipid metabolism subgroups, the 8-gene LMRS model, 

https://portal.gdc.com
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individual genes in the LMRS model, and other clinical 
risk factors, the package “timeROC (version 0.4)” was 
used. Prediction accuracy was measured using a time-
dependent receiver operating characteristic (ROC) curve 
and area under the curve (AUC).

The decision curve analysis R package “ggDCA” was 
applied to generate diagnostic models for 1-, 3-, and 
5-year survival.

Immune function analysis
We used the R package “immuneeconv” to assess the 
reliability of the results of the immune score. This pack-
age combines six of the most recent algorithms, includ-
ing quanTIseq, CIBERSORT, xCell, MCP-counter, and 
TIMER. These algorithms have distinct advantages and 
have been benchmarked.

The immune checkpoint-related transcripts SIGLEC15, 
TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and 
PDCD1LG2 were selected. The expression profiles of 
these genes were obtained from the TCGA HNSCC 
cohort. The “TIDE” algorithm was used to forecast the 
potential immune checkpoint blockade (ICB) responses. 
Correlations between gene expression and immu-
nological score were visualized using the R package 
“ggstatsplot”. Multigene correlation was visualized by the 
R package “pheatmap”.

GEO dataset validation
The GEO datasets GSE32877 and GSE10300 were mined 
for the expression profiles of the LMRS genes, which 
were used to determine the prognosis scores. The rela-
tionship between the prognosis score to the outcomes 
of response to systematic therapy and survival outcomes 
was further examined.

Sample collection and immunohistochemical and 
immunofluorescence staining analysis
Primary tissue samples (HNSCC, n = 30) and biochemi-
cal data were anonymized and obtained in accordance 
with the policies of the Ruijin Hospital (Shanghai, China) 
Institutional Review Board. After fixing in 4% parafor-
maldehyde, samples were cut into 4  μm-thick sections 
and embedded in paraffin blocks. Following hematoxy-
lin-eosin (HE) staining, a second tumor slice was incu-
bated overnight in SREBF1, PIK3R3, MAPK9, IKK2, 
APOB, ACSBG2, MOGAT2, and PLA2G10 antibodies 
(SREBF1/PIK3R3; Abcam, Boston, MA, U.S. A; MAPK9: 
CST, Boston, MA, U.S. A; APOB/IKBKB: Beyotime Bio-
tech Inc., Shanghai, China; ACSBG2: BBI, Shanghai, 
China; MOGAT2: Bioss, Beijing, China) at 4 °C. The next 
day, the samples were treated with secondary antibodies 
at room temperature for two hours before imaging. Slices 
were imaged using the Zeiss Zen 3.3 system followed by 
ImageJ software.

Statistical analyses
R software (version 4.0.3) and ggplot2 (version 3.3.2) were 
used for statistical analyses (R Foundation for Statisti-
cal Computing, Vienna, Austria). Spearman’s correlation 
method, which evaluates the correlation between non-
normally distributed numerical variables, was employed 
to investigate the relationships between the immunologi-
cal score and gene expression. Statistical significance was 
defined as a p value of less than 0.05.

Results
Lipid metabolism genes associated with HNSCC 
chemotherapy resistance were identified via CRISPR/Cas9 
library screening
The GeCKO 2.0 CRISPR/Cas9 library for loss-of-func-
tion screening covers 3–6 sgRNAs per gene and is based 
on whole-population mRNA. GeCKO 2.0 was trans-
fected into the HNSCC cell lines Fadu and Detroit 562 
for loss-of-function screening to understand the func-
tions and pathways involved in chemotherapy resistance 
in HNSCCs (Fig. 1B). To select the appropriate concen-
tration for drug screening, the IC20 concentrations of 
cisplatin and 5-FU were then used for drug screening 
(Supplementary Table S1). The IC20 values of cisplatin 
in Fadu and Detroit 562 cells were 2.5 and 1.25  µg/ml, 
respectively, while those of 5-FU were 6 and 0.07 µg/ml, 
respectively. Treated cells were then employed for next-
generation sequencing to obtain the DEGs. The related 
drug resistance candidate genes were narrowed to 6,848 
DEGs that were expressed in all comparison groups; of 
these DEGs, 731 had significant differences (639 posi-
tively screened genes and 92 negatively screened genes 
with a significance threshold of p < 0.05 and a false dis-
covery rate (FDR) < 0.25) (Fig. 1C). The top-ranking genes 
included those that contribute to tumor development and 
drug resistance, such as AKT1, KLF6, and NCOR2. Fur-
thermore, the results revealed several commonly upreg-
ulated genes in HNSCC, such as KRT5 and TGFBRAP1 
(Supplementary Figure S1), confirming that the identified 
genes from screening were highly related to drug resis-
tance in HNSCCs. Moreover, the results also confirmed 
that the knockout of some genes, such as BEX2, signifi-
cantly decreased the survival and proliferation rates and 
induced death in HNSCC tumor cells.

GO functional enrichment and KEGG pathway analysis 
revealed a significant enrichment of genes related to lipid 
metabolism functions and pathways (Fig.  1D–G; Sup-
plementary Figure S2), especially genes involved in the 
PPAR pathway and glycerin and fatty acid metabolism. 
The analysis of the protein‒protein interaction network 
for DEGs associated with lipid metabolism showed sev-
eral clusters (Fig.  1H). Heatmaps of lipid-related DEGs 
showed that their expression slightly differed accord-
ing to cell lines and drugs (Fig.  1I). Our findings imply 
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that lipid metabolism reprogramming is a crucial factor 
in the drug response of HNSCCs as the combination of 
cisplatin and lipid metabolism regulation drugs lead to 
enhanced apoptosis in HNSCC cell lines (Supplementary 
Figure S3). Biochemical analysis of the clinical samples 
validated that the chemotherapy responder cohort had 
notably elevated serum triglyceride levels compared to 
the nonresponder group (Table  1). As triglycerides use 
fatty acids as one of their primary substrates, we further 
hypothesize that lipid metabolism-related genes may 
serve as prognostic markers for predicting the overall 
outcome and drug response of HNSCCs.

We next investigated the functions of all 751 known 
lipid metabolism genes in HNSCC. Patients from the 
TCGA-HNSCC cohort with a history of chemotherapy or 
targeted therapy (n = 173; Supplementary Table S2) were 
divided into two subtypes (group Cluster 1, C1, n = 117; 
group Cluster 2, C2, n = 56) according to the varying 
expression levels of the 751 genes related to lipid metabo-
lism (Fig. 2A). The heatmap revealed noticeable variances 
in the lipid metabolism-associated gene expression pat-
terns between the C1 and C2 groups (Fig.  2B). Survival 

analysis, combined with clinical data, showed that the 
C1 group had a significantly worse clinical prognosis 
(median survival: 2.3 years) than the C2 group (median 
survival: 6.1 years), with p values < 0.05 (Fig.  2C). Fur-
thermore, the clinical characteristics also showed some 
differences between the groups. The C1 group showed a 
larger proportion of female patients than the C2 group 
(Fig. 2D). Moreover, the C1 group had a higher propor-
tion of well- and moderately differentiated patients and a 
lower proportion of poorly and undifferentiated patients 
(Fig. 2E). The other clinical characteristics were not dif-
ferent between the two subgroups (Fig.  2F; Supplemen-
tary Figure S4A). Additionally, GO and KEGG analyses 
indicated that the C1 group had more genes enriched 
in keratinocyte differentiation and cytokine‒cytokine 

Table 1  Characteristics of clinical samples
Characteristic Responder Nonresponder P 

Value
Number, n 10 20

Gender, n (%) 1.000
Male 10 (33%) 20 (67%)

Female 0 (0%) 0 (0%)

Smoke, n (%) 0.008
No 4 (40%) 0 (0%)

Yes 6 (60%) 20 (100%)

Alcohol, n (%) 0.045
No 7 (70%) 5 (25%)

Yes 3 (30%) 15 (75%)

Weight, median 
(IQR)

75 (62, 75) 67 (65.6, 74) 0.219

BMI, mean ± SD 23.544 (21.765, 
24.212)

23.128 (22.501, 
24.102)

0.947

Triglycerides, 
mmol/L, mean ± SD

2.25 (2.055, 2.6475) 1.05 (0.905, 
1.4425)

< 0.001

Free fatty acid, 
mmol/L, mean ± SD

0.399 ± 0.093506 0.43176 ± 0.13347 0.502

T stage, n (%) 0.861
T2 2 (20%) 4 (20%)

T3 7 (70%) 11 (55%)

T4 1 (10%) 5 (25%)

N stage, n (%) 0.563
N0 1 (10%) 4 (20%)

N1 4 (40%) 4 (20%)

N2 5 (50%) 12 (60%)

M Stage, n (%) 1.000
M0 10 (33%) 20 (67%)

M1 0 (0%) 0 (0%) Fig. 2  The prognosis of HNSCC patients undergoing systemic ther-
apy using lipid metabolism genes showed different outcomes and 
metabolic characteristics. A, Principal component analysis revealed 
two subgroups in all 173 TCGA-HNSCCs samples. B, Heatmap of the lipid 
metabolism genes in the two subgroups. C, Survival curve of the two 
subgroups. D, Gender distribution between the C1 and C2 groups. E, Pa-
thology grade distribution between the C1 and C2 groups. F, Tumor status 
distribution between the C1 and C2 groups. G, GO and KEGG enrichment 
analyses for upregulated DEGs. H, GO and KEGG enrichment analyses for 
downregulated DEGs. I, Heatmap of the expression of metabolism-related 
genes in the two subgroups
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receptor interactions, whereas the C2 group had a greater 
number of genes enriched in fatty acid metabolism and 
DNA replication (Fig. 2G and H). The heatmap of metab-
olism-related genes demonstrated that genes related to 
drug metabolism, platinum drug resistance, glutathione 
metabolism, and fatty acid metabolism had relatively 
lower expression levels in the C1 group, whereas only 
those related to lipid transportation showed a relatively 
lower expression in the C2 group (Fig. 2I). These results 
support our hypothesis that lipid metabolism-related 
genes play vital roles in drug responses.

A polygenic prognostic model with lipid metabolism 
characteristics was generated
A comprehensive testing panel encompassing 751 genes 
is not only time-consuming but also expensive. Hence, 
a succinct and efficient evaluation model can signifi-
cantly diminish the consumption of resources in terms of 
time, funds, and human effort. Through LASSO regres-
sion analysis in conjunction with previous CRISPR/cas9 
library screening findings, the number of genes incor-
porated in this assessment model was minimized. Fea-
ture selection was accomplished through the application 
of the least absolute shrinkage and selection operator 
regression (LASSO regression), supplemented with ten-
fold cross validation. Ultimately, the LMRS model com-
prises eight genes related to lipid metabolism (ACSBG2, 
APOB, IKBKB, MAPK9, MOGAT2, PLA2G10, PIK3R3, 
and SREBF1), as depicted in Fig. 3A, B. These genes are 
involved in various lipid metabolism processes and their 
regulatory pathways, particularly fatty acid metabolism 
since lipid metabolism regulation drugs significantly con-
tribute to the expression of LMRS model genes (Supple-
mentary Figure S3). The model calculation formula was:

Score = (− 2.7486) * ACSBG2 + (1.7158) * APOB + 
(− 0.3216) * IKBKB + (0.4612) * MAPK9 + (− 0.8421) * 
MOGAT2 + (0.6413) * PLA2G10 + (− 0.2157) * PIK3R3 
+ (− 0.2355) * SREBF1.

The scores were determined based on the LMRS gene 
expression levels. Then, they were separated into two 
groups, LMRS-High and LMRS-Low, based on their high 
and low LMRS scores, respectively (Fig. 3C, D). Notably, 
the LMRS-High group exhibited lower overall survival 
rates and increased death rates with a median survival 
of 2.1 years. The LMRS-Low group demonstrated higher 
overall survival rates, with a median survival of 6.1 years 
and a p value < 0.05 (Fig.  3E). These survival outcome 
results were also observed in subgroups categorized by 
the 751 lipid metabolism-related genes. The prognos-
tic evaluation model based on the LMRS was diagnosti-
cally effective, as its area under the curve (AUC) metrics 
exceeded 0.7 at one, three, and five years (1 year = 0.714. 
95% CI, 0.613–0.815; 3 year = 0.789. 95% CI, 0.713–0.865; 
5 year = 0.793. 95% CI, 0.681–0.905.). Additionally, the 

model exhibited greater effectiveness over medium time 
frames relative to shorter ones (Fig. 3F).

The LMRS model had an outperformed prognostic value in 
HNSCCs
Except for ACSBG2, MAPK9, PIK3R3, and SREBF1, the 
remaining genes in the LMRS model exhibited no signifi-
cant expression variations in the whole TCGA-HNSCC 
patient cohort, which could be attributed to the diverse 
treatments undertaken by each patient. Additionally, 
most genes were upregulated in HNSCCs (as depicted in 
Fig.  3G). A nomogram and calibration curve were con-
structed using these eight genes and demonstrated good 
consistency and a c-index of 0.672 (0.651–0.692) (Fig. 3H, 
I). Univariate and multivariate regression results revealed 
the significance of these genes. ACSBG2, IKBKB, and 
PIK3R3 were protective factors, whereas APOB and 
MAPK9 were hazard factors in HNSCCs (Fig.  3J-K). 
However, MOGAT2, PLA2G10, and SREBF1 showed no 
significant differences. Regarding the efficacy of diag-
nosis, only ACSBG2, MAPK9 and SREBF1 exhibited 
AUCs greater than 0.7 (ACSBG2 AUC = 0.704; MAPK9 
AUC = 0.709; SREBF1 AUC = 0.704) (Fig. 3L).

In addition, MAPK9, MOGAT2, and PIK3R3 in the 
LMRS model exhibited significant survival differences 
in survival analysis among all TCGA-HNSCC patients 
with a p value < 0.05 (Fig. 4A–H). Moreover, low expres-
sion of MOGAT2 and PIK3R3 correlated with worse sur-
vival outcomes (Fig. 4E and G). These findings not only 
indicate that a single gene in the LMRS model could not 
serve as a diagnostic marker for HNSCCs but also sup-
port the theory that a higher LMRS score correlates 
with a worse survival outcome in HNSCCs. Combining 
these results, we infer that individuals with low LMRS 
may benefit more from chemotherapy or targeted drugs 
for the treatment of HNSCCs. In this LMRS model, the 
calculated weight of multiple genes was negative, and 
their relatively high expression was more likely to obtain 
a lower score, which is consistent with the prediction 
result. The DCA results demonstrated that, compared to 
other clinical characteristics, such as age, gender, clini-
cal stage, pathological classification, and smoking status, 
the LMRS model, derived from eight lipid metabolism-
related genes, had better evaluation efficiency. Notably, 
at three years, the LMRS model displayed significantly 
higher diagnostic decision benefits (Fig.  4I–K). There-
fore, the LMRS model comprising eight lipid metabo-
lism-related genes could have a similar evaluation effect 
to that of the 751 lipid-related gene classification model 
and outperform the single gene model in prognosis and 
drug response prediction for HNSCC.
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The LMRS model predicts the response to immune therapy 
and infiltration of immune cells
Further investigation was conducted to evaluate the effi-
cacy of the LMRS model in predicting immune-related 
functions. Our findings revealed a robust predictive 
effect of the LMRS model on immune cell infiltration 
that was particularly evident in T cells. CIBERSORT 
analysis results indicated that the LMRS-Low group had 
higher percentages of T-helper and T-reg cells and lower 
M0 macrophage infiltration (Fig. 5A, B). It is worth not-
ing that not all genes in the LMRS model corresponded 
to immune cell infiltration levels (Fig. 5C). Therefore, the 
utilization of the eight-gene model for daily assessment is 

indispensable. The expression levels of ICB-related genes 
were examined, and the LMRS-Low group exhibited 
upregulation of PDCD1 and TIGIT and downregulation 
of PDCD1LG2. (Fig.  5D). Consistent with these find-
ings, TIDE scores [23] demonstrated a better therapeu-
tic response to immune checkpoint inhibitors and longer 
posttreatment survival in the LMRS-Low group with a p 
value < 0.05 (Fig. 5E). Conversely, the LMRS-High group 
was associated with elevated CD4 + T cells and reduced 
CTLs, M2 macrophages, NK cells, and Treg cells, with p 
values < 0.05 (Fig. 5F–J), suggesting that the LMRS-High 
groups were less likely to benefit from immune ther-
apy. Our findings support the proficiency of the LMRS 

Fig. 3  The LMRS model was generated and predicted the prognosis of HNSCC. A-B, The LMRS model was constructed using the eight signature 
genes found to be highly linked with overall survival (OS) in LASSO Cox regression. C, The scores of patients with TCGA-HNSCCs who received systematic 
therapy. D, Survival status of patients among TCGA-HNSCCs who received systematic therapy. E, Survival time of patients among TCGA-HNSCCs who re-
ceived systematic therapy. F, The ROC curve and AUC for the LMRS model at 1, 3, and 5 years. G, The differences in LMRS model gene expression between 
normal and tumor groups in the TCGA HNSCC dataset. H, OS nomogram; I, OS nomogram model calibration curve. J, Forest plot of the univariate analysis 
for the LMRS model. K, Forest plot for multivariate analysis of the model. L, ROC curve for genes included in the LMRS model
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model in predicting the effectiveness of systemic therapy, 
including ICB, and the prognosis of HNSCCs.

The efficacy of the LMRS model was validated in external 
HNSCC datasets
A limited number of datasets in GEO provide both treat-
ment information and prognostic data for HNSCC. This 
study involved three HNSCC datasets from GEO, includ-
ing a study examining the effectiveness of chemotherapy 
in HNSCC patients (GSE32877, n = 23; Fig. 6A), a study 
examining the survival and prognosis of HNSCC patients 
(GSE10300, n = 42; Fig.  6B), and a study examining the 
chemotherapy and survival information (GSE41613, 
n = 97; Fig.  6C). Gene expression data were retrieved 
from the GEO database, and corresponding LMRS scores 
were evaluated for each case using the formula of the 
model (Fig.  6D–F). Our findings revealed that patients 
who responded well to chemotherapy had a lower LMRS 
score (p value = 0.0032; n = 13), and those with prolonged 
survival exhibited a lower LMRS score (p value = 0.0151; 
n = 27). Moreover, the results of GSE41613 are consistent 
with the overall trend that patients with a higher LMRS 
score had a worse prognosis.

The LMRS model predicts HNSCC chemotherapy response 
in clinical samples
In addition to the GEO datasets, we also verified the effi-
ciency of the LMRS model in HNSCC specimens (n = 30). 
After the rounds of induction chemotherapy, we divided 
the patients into two subgroups. Those who exhibited a 
reduction greater than 50% fulfilled the responder sta-
tus (Fig.  6G), whereas those with a decrease below 50% 
assumed the nonresponder status. Validation was per-
formed using MRI and electronic laryngoscopy. Immu-
nohistochemical (IHC) and immunofluorescence (IF) 
staining of the eight LMRS proteins corroborated the 
aforementioned bioinformatic findings in both cohorts 
(Fig. 6H–J). In the responder subgroup, the LMRS score 
was significantly lower than that in the nonresponder 
cohort (p value = 0.0097) (Fig. 6J). These findings further 
demonstrate the suitability of the LMRS model as an 
investigative tool to assess HNSCC treatment outcomes 
and drug response.

Discussion
The significant contribution of glucose and glutamine 
metabolism reprogramming has been well established in 
a variety of cancers [29–32]. Recently, lipid metabolism 
has emerged as a factor related to treatment resistance 

Fig. 4  The LMRS model had independent prognostic value when compared with single genes and other clinical characteristics. A–H, Overall 
survival curve of the low- and high-expression subgroups for LMRS factors: ACSBG2, APOB, IKBKB, MAPK9, MOGAT2, PLA2G10, PIK3R3, and SREBF1. I–K, 
Decision curve analysis (DCA) for drug response prediction for HNSCCs with and without the LMRS model at 1, 3, and 5 years
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in cancer cells, as it facilitates energy supply, the modu-
lation of membrane fluidity, and the activation of sig-
naling pathways [17]. Consequently, understanding the 
underlying mechanisms of lipid metabolism can help 
identify novel therapeutic targets for drug resistance in 
HNSCC. Despite the importance of metabolic conditions 
of HNSCC in relation to treatment response, few stud-
ies have investigated the potential links between chemo-
therapy resistance and lipid metabolism reprogramming. 
Therefore, an integrated analysis of predictive models for 
systematic therapy in HNSCCs is of significant value. In 
this study, we utilized CRISPR/Cas9 genome-wide library 
drug screening to identify key differentially expressed 
genes affecting chemotherapy resistance. In addition 

to DNA damage repair and traditional drug resistance 
pathways, our analysis revealed the crucial role of lipid 
metabolism in therapeutic resistance, as supported by 
functional enrichment analysis. Recent research has 
revealed the significance of lipid metabolism reprogram-
ming in HNSCCs [17] and has indicated that it could 
promote tumor proliferation and metastasis [33–35], 
further underscoring the importance of lipid metabo-
lism reprogramming. Our study demonstrated that 
lipid metabolism, particularly in chemotherapy-treated 
HNSCC patients, has a significant impact on survival.

In conjunction with TCGA database analysis, our find-
ings suggest that lipid metabolism-related genes serve as 
valuable biomarkers for drug response in patients with 

Fig. 5  Immune function-related evaluation of the eight-gene LMRS model. A–B, Variation in immune cell infiltration between groups with high 
and low LMRS. C, Correlation between each immune cell infiltration and the genes in the LMRS model. D, Correlation between immune checkpoint 
marker expression levels and genes in the LMRS model. E, TIDE analysis of LMRS-high and -low groups. F–J, LMRS and correlation with CD4+, CD8+, M2 
macrophages, NK cells, and T regulatory cells
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HNSCCs. Generally, we identified 751 lipid metabolism-
related genes that effectively divide HNSCC patients who 
received chemotherapy or targeted therapy into two sub-
groups, with each category exhibiting different clinical 
characteristics. Specifically, the C2 group had superior 
survival rates compared to the C1 group. However, the 
application of next-generation sequencing as a diagnostic 

tool for therapy decisions poses a significant challenge 
in identifying critical genes 31; this would be difficult to 
realize in daily clinical practice. Subsequently, combined 
with the results of sgRNA library screening and bioinfor-
matics analysis, we reduced the number of genes to eight 
lipid metabolism-related genes. Remarkably, the subse-
quent analysis found that the established LMRS model 

Fig. 6  Model verification and functional analysis of HNSCC data in other datasets. A, LMRS scores of the GSE32877 HNSCC dataset between re-
sponder and nonresponder patients. B, LMRS scores of the GSE10300 HNSCC dataset between surviving and nonsurviving patients. C, Survival curve of 
the low- and high-LMRS groups in the GSE41613 HNSCC dataset. D, LMRS and chemotherapy response status of each patient in GSE32877. E, LMRS and 
survival status of each patient in GSE10300. F, LMRS and survival status of each patient in GSE41613. G, MRI and electronic laryngoscopy photographs 
of representative responder and nonresponder HNSCC patients. H, IF staining of ACSBG2 (green)/MOGAT2 (red), IKK2 (green)/MAPK9 (red) and PLA2G10 
(green)/APOB (red) in the two groups. I, IHC staining of SREBF1/PIK3R3 in the two groups. J, Average IOD for the LMRS scores in responder and nonre-
sponder groups
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performed well in evaluating the survival outcome and 
drug response of HNSCCs and performed with similar 
efficacy to that of the 751 lipid metabolism gene model. 
Although not every gene was differentially expressed in 
the TCGA-HNSCC database, the LMRS model high-
lighted frequently altered genes in HNSCCs, such as 
IKBKB [32], MAPK9 [38], and APOB [34]. Moreover, 
when combined with age, gender, tumor stage, pathologi-
cal classification, and smoking status, the LMRS model 
effectively predicted short-term and medium-term diag-
nostic values, surpassing other clinical parameters, such 
as age and gender. However, additional research will be 
required to observe its long-term diagnostic potential. 
Our study demonstrates the significance of LMRS in pre-
dicting drug responses in HNSCC treatment.

It is worth noting that IKBKB [24], APOB [35] and 
MAPK9 [41] are not only vital cholesterol metabolism 
regulation genes but are also often upregulated in can-
cer, which implies that the use of cholesterol-lowering 
drugs in HNSCC patients with the overexpression of 
these genes may be helpful. The remaining genes, such as 
ACSBG2 [42], MOGAT2 [43], SREBF1 [44], PIK3R3 [45] 
and PLA2G10 [46], are involved in fatty acid metabolism; 
however, few studies have investigated their roles in the 
drug response to HNSCC chemotherapy. Our results in 
the present study were similar, since two different lipid 
metabolism-regulating drugs affect different LMRS 
genes.

Additionally, we found that immune cell infiltration 
and ICB-related gene expression were associated with 
the LMRS score. As the score increases, CD4 + T cells 
increase, and CTLs, M2 macrophages, NK cells, and 
Treg cells decrease. Moreover, the LMRS-High group 
was associated with the downregulated expression of 
immune checkpoints, such as TIGIT and PDCD1. TIGIT, 
a CD28 family member [42], inhibits T-cell activation by 
binding to CD155 [48]. TIGIT inhibition improved CD8 
T-cell activation and prognosis in gastric cancer [44]. 
This association implies that both innate and acquired 
immunity are suppressed in the LMRS-High group. This 
immunological status in the LMRS-High group may 
explain why the LMRS-High group is associated with a 
worse prognosis. Many challenges are still unsolved for 
cancer immunotherapies in HNSCC [45]. Our LMRS 
model not only helps in identifying predictive biomark-
ers but also may enhance the prediction of the clinical 
response to HNSCC immunotherapy. More importantly, 
our results in the present study show the importance of 
lipid metabolism in the tumor microenvironment and 
the therapeutic potential of lipid-lowering drugs or lipid 
supplementation during the chemotherapeutic treatment 
of HNSCC.

The diagnostic accuracy of the LMRS model was 
validated through the examination of clinical HNSCC 

samples and the GEO database. Given the potential for 
frequent monitoring and reduced costs, a diagnostic kit 
incorporating the eight identified genes could poten-
tially assist in drug response assessments for patients 
with HNSCC, aiding in tailored treatment selection. 
For patients in the LMRS-High group who are not sen-
sitive to drug treatment, alternative treatment strate-
gies or therapeutic sensitizer should be offered [46, 47], 
such as dietary intervention, or blocking downstream 
lipid metabolism. Considering that the expression lev-
els of risk factors are higher, and the expression levels 
of protective factors might be lower in the LMRS-High 
group, lipid-lowering drugs or drugs targeting risk factor 
genes would be a potential choice. For sensitive patients 
in the LMRS-Low group, successful introduction of drug 
therapy is critical for improving overall patient survival 
rates, achieving locoregional control, decreasing cancer 
fatalities [48], and downstaging tumors into a resectable 
size. Specific lipid supplementation may also be helpful, 
although more specific and in-depth studies are needed 
to clarify its effects. Postradiotherapy or postsurgery, 
chemotherapy and immunotherapy may be useful as 
potential adjuvant treatments based on the individual 
patient’s needs. Importantly, reducing tumor size can 
facilitate inoperable HNSCC cases to become operable 
and further aid in preserving language, respiratory, and 
swallowing functions.

Conclusion
In conclusion, this study employed a combination of 
CRISPR/Cas9 library screening and bioinformatics data-
base mining to investigate lipid metabolism genes associ-
ated with drug response in HNSCCs. Utilizing the data 
obtained, an LMRS model capable of evaluating the clini-
cal outcomes and drug responses of HNSCCs was devel-
oped, facilitating the recognition of individuals who are 
unlikely to respond to drug therapy. This not only saves 
time and costs for patients but also provides a founda-
tion for the development of novel drugs. Furthermore, 
the LMRS model showed potential as a predictive tool for 
ICB therapy for HNSCCs. Our results imply that target-
ing these genes may hold potential as a viable therapeu-
tic strategy for HNSCC treatment. Additional research is 
needed to assess the long-term value and effectiveness of 
the LMRS model under different nutritional statuses.
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