
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Di et al. Cancer Cell International          (2023) 23:186 
https://doi.org/10.1186/s12935-023-03019-0

Cancer Cell International

†Sichen Di, Min Gong, Jianmin Lv and Qiwei Yang contributed 
equally to this work and should be considered cofirst authors.

*Correspondence:
Jian Chu
doctor_chu@126.com
Sishun Gan
gansishun20101111@163.com
Xiuwu Pan
panxiuwu@126.com
Xingang Cui
cuixingang@xinhuamed.com.cn

Full list of author information is available at the end of the article

Abstract
Background  Renal cell carcinoma (RCC) is a hypermetabolic disease. Abnormal up-regulation of glycolytic signaling 
promotes tumor growth, and glycolytic metabolism is closely related to immunotherapy of renal cancer. The aim 
of the present study was to determine whether and how the glycolysis-related biomarker TCIRG1 affects aerobic 
glycolysis, the tumor microenvironment (TME) and malignant progression of clear cell renal cell carcinoma (ccRCC).

Methods  Based on The Cancer Genome Atlas (TCGA, n = 533) and the glycolysis-related gene set from MSigDB, we 
identified the glycolysis-related gene TCIRG1 by bioinformatics analysis, analyzed its immunological properties in 
ccRCC and observed how it affected the biological function and glycolytic metabolism using online databases such 
as TIMER 2.0, UALCAN, LinkedOmics and in vitro experiments.

Results  It was found that the expression of TCIRG1, was significantly increased in ccRCC tissue, and that high TCIRG1 
expression was associated with poor overall survival (OS) and short progression-free interval (PFI). In addition, TCIRG1 
expression was highly correlated with the infiltration immune cells, especially CD4+T cell Th1, CD8+T cell, NK cell, and 
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Background
Renal cell carcinoma (RCC) is one of the most com-
mon malignancies of the genitourinary system [1] and 
the most common solid lesion in the kidney, account-
ing for approximately 90% of all renal malignancies [2]. 
The principle of clinical treatment for localized tumors is 
nephrectomy or radical nephrectomy followed by post-
operative individualized and precise adjuvant therapy to 
reduce the risk of tumor recurrence and metastasis and 
improve the postoperative survival rate. Based on cur-
rent evidence, smoking tobacco, obesity and hyperten-
sion remain established risk factors for renal cancer [3, 
4]. Renal cancer is considered to be one of the models 
for studying metabolic reprogramming [1, 5–8]. During 
renal tumorigenesis, genes which are mutated, inacti-
vated, or hyperactivated involved in regulating metabolic 
events such as glycolysis, tricarboxylic acid (TCA) cycle, 
glutamine metabolism, and lipid metabolism [1, 5–8]. 
As a result, renal cancer has been referred to as a “Meta-
bolic Disease” [8, 9]. In ccRCC, the enzymes responsible 
for replenishing the metabolic flux to the TCA cycle 
from other pathways are frequently down-regulated [10]. 
These pathways include glycolysis, lipid metabolism, and 
glutamine metabolism [10]. Research has indicated that 
advanced stages of ccRCC are linked to elevated levels 
of glutamine and increased activity in the glutathione/
oxidized glutathione pathways [10]. Additionally, ccRCC 
patients often exhibit higher levels of cholesterol ester 
accumulation in their kidneys [10]. In recent years, meta-
bolic signatures associated with RCC has also stimulated 
interest in targeted metabolism as a novel therapeutic 
strategy and in the treatment of RCC, the first metabolic 
target is mammalian target of rapamycin (mTOR), in 
addition to promoting HIF1 translation, mTOR complex 
1 also drives protein and lipid processing by intercept-
ing signals from glucose, growth factors, and amino acids 
[5]. Abnormal upregulation of glycolysis signals in RCC 
can promote tumor growth and tumor cell interaction 
with immune cells in the immune microenvironment 
(IME), resulting in an imbalance between pro-tumor and 
anti-tumor immunities, resulting in suppression of the 
IME, which mediates tumor immune escape [11]. ​RCC 
consists of three major histological subtypes, in par-
ticular ccRCC is most closely related to glycolysis [8]. In 

previous studies, RCC of different tissue subtypes have 
been compared by using gene expression signatures of 
the major metabolic pathways [8]. Expression levels of 
the gene signatures for the Krebs cycle and the electron 
transport chain (ETC) were low in ccRCC compared 
with intermediate expression in papillary RCC (pRCC) 
and high expression in chromophobe RCC (chRCC). In 
ccRCC, the loss of gene expression of the Krebs cycle 
and ETC was paired with an increased expression of gly-
colysis pathway genes that is consistent with the warburg 
effect of aerobic glycolysis and suppression of oxida-
tive phosphorylation [8]. In an era of rapid advances in 
advanced renal cancer treatment, immune checkpoint 
inhibitors are gaining ground to replace anti-VEGFR-TKI 
as a current first-line treatment [12]. Therefore, further 
understanding of the role of tumor glucose metabolism 
in the IME is of great significance to explore biomarkers 
of tumor immune infiltration in glycolysis and improve 
the efficacy of immunotherapy.

Tumor initiation and progression are closely related 
to tumor metabolism and the tumor microenvironment 
(TME) [13]. Tumor cells reprogram their metabolism to 
promote tumor growth, metastasis and survival. They 
exhibit a dependence on glycolysis, mainly manifested 
as increased glucose uptake and lactate to meet the 
increased anabolic demands of cancer cell proliferation 
[14]. This metabolic reprogramming provides sufficient 
energy for tumor cells, promotes their growth and pro-
liferation, and helps tumor cells escape [15]. Tumor cells 
and tumor-infiltrating T lymphocytes compete for glu-
cose, and massive glucose consumption by tumor cells 
change the metabolic microenvironment of T lympho-
cytes, inhibit IFN-γ, and promote tumor progression and 
immune escape [16]. Changes in cancer cell metabolism 
provide insights into the development of specific thera-
peutic targets and anticancer drugs. Currently, thera-
peutic strategies for glycolysis and cancer cell-specific 
biosynthetic pathways have become a major focus of 
cancer research. The increased dependence of tumor cell 
glycolysis suggests a potential therapeutic effect of glyco-
lytic inhibitors in cancer therapy, but glycolytic inhibition 
alone is ineffective in clinical practice [17]. Therefore, 
regulating metabolism in combination with immunother-
apy is expected to improve treatment response and may 

M1 macrophage, and positively correlated with PDCD1, CTLA4 and other immunoinhibitors, CCL5, CXCR3 and other 
chemokines and chemokine receptors. More importantly, TCIRG1 may regulate aerobic glycolysis in ccRCC via the 
AKT/mTOR signaling pathway, thereby affecting the malignant progression of ccRCC cell lines.

Conclusions  Our results demonstrate that the glycolysis-related biomarker TCIRG1 is a tumor-promoting factor by 
affecting aerobic glycolysis and tumor immune microenvironment in ccRCC, and this finding may provide a new idea 
for the treatment of ccRCC by combination of metabolic intervention and immunotherapy.
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help overcome drug resistance [18]. The enhancement of 
aerobic glycolysis in tumor cells and its by-product, lac-
tic acid, can regulate tumor matrix and tumor immune 
microenvironment, and lactic acid can induce the polar-
ization of tumor-associated macrophages (TAM) into 
M2-like type, thus promoting tumor progression [19]. 
Targeting glycolytic changes in the TME has been shown 
as a safe and effective strategy to improve therapeutic 
efficacy [20, 21]. T-cell immune regulator 1 (TCIRG1), 
also known as V-type proton atpase 116 kDa subunit a3 
or T-cell immune response cDNA 7 protein (TIRC7), 
was first identified in osteosclerosis, and mutations in 
TCIRG1 are a common cause of human autosomal reces-
sive osteosclerosis [22]. Previous studies reported that 
up-regulation of TIRC7 could prevent human T cell pro-
liferation and interleukin-2 (IL-2) secretion, and anti-
TIRC7 antibody could specifically inhibit membrane 
protein encoding, thus enabling crucial type 1 subtype-
specific IFN-γ expression [23]. In addition, in hepatocel-
lular carcinoma (HCC), TCIRG1 can act as a metastasis 
enhancer by regulating HCC cell growth, death and epi-
thelial–mesenchymal transition (EMT), and may also be 
a therapeutic target for cancer and metastasis [24].

The aim of the present study was to screen the glycol-
ysis-related biomarker TCIRG1 associated with immune 
infiltration by bioinformatics analysis based on The 
Cancer Genome Atlas (TCGA) database and MSigDB 
database. Our preliminary validation of HPA, TIMER 

2.0, UALCAN and other databases suggested that high 
TCIRG1 expression was associated with poor prognosis 
in ccRCC patients and verified the correlation between 
TCIRG1 expression and immune features in ccRCC. 
Furthermore, we explored the effects of the glycolysis-
related biomarker TCIRG1 on the proliferation, migra-
tion, invasion and apoptosis of ccRCC in vitro. The effect 
of TCIRG1 on glycolytic metabolism in ccRCC and its 
relation to the AKT/mTOR signaling pathway were also 
investigated. Our study may provide a tumor immuno-
biomarker that could affect aerobic glycolysis in ccRCC.

Materials and methods
Public datasets acquisition
Gene expression data and corresponding clinical infor-
mation were obtained from The Cancer Genome Atlas 
(TCGA) public database provided by UCSC Xena 
(https://xenabrowser.net/, accessed on August 2, 2022) 
[25]. A total of 607 samples were analyzed, including 535 
ccRCC samples and 72 normal kidney tissue or adjacent 
tissue samples. We excluded patients who lacked OS time 
or PFI time, after removing patients who were not eligi-
ble, 525 patients were finally left for analysis. They were 
randomized to a training cohort and a validation cohort 
in an approximate 1:1 ratio. Their clinical characteristics 
are shown in Table 1. Proteomic expression data and cor-
responding clinical information were obtained from 232 
tumor and adjacent non-tumor tissue pairs from Chinese 
ccRCC patients [26], and their expression data and clini-
cal information were shown in Supplementary Table  3. 
The primary outcomes were OS and PFI. OS was defined 
as the follow-up time from surgery to the date of death or 
the last clinical visit. PFI was defined as survival without 
further disease progression after treatment, and the out-
come measure was tumor death. We include the ccRCC 
of scRNA-seq for the analysis of TCIRG1 scRNA expres-
sion in renal tumor and normal renal tissues, and their 
expression data and clinical information were shown 
in Supplementary Tables  4 [27]. All the final raw count 
matrices were analyzed by R software version 4.1.3, and 
p < 0.05 was considered statistically significant.

Gene set enrichment analysis (GSEA)
MSigDB (http://www.gsea-msigdb.org/gsea/index.jsp) 
is a resource of tens of thousands of annotated gene sets 
for use with GSEA software, divided into Human and 
Mouse collections [28]. Combined with the selection 
strategy of previous studies related to glycolysis [29], we 
used “glycolysis” as the search term in the MSigDB data-
base and searched 21 glycolysis-related gene sets. These 
gene sets included hallmark glycolysis, reactive body 
glycolysis, and others. The details are described in Sup-
plementary Table 2. In addition, the extracted glycolysis-
related genes were intersected with KIRC up-regulated 

Table 1  Clinicopathologic characteristics of patients with clear 
cell renal cell carcinoma (ccRCC) (n = 525)
Characteristics Training 

cohort
Validation 
cohort

Com-
bined 
cohort

(n = 262) (n = 263) (n = 525)
Age

  <60 119 125 244

  ≥ 60 143 138 281

Gender

  Male 180 163 343

  Female 82 100 182

TNM stage

  I-II 158 159 317

  III-IV 102 103 205

  NA 2 1 3

Pathological grade

  1–2 117 121 238

  3–4 140 139 279

  NA 5 3 8

Overall survival

  Alive 181 173 354

  Dead 81 90 171

Progression Free Interval

  Free of progression 186 179 365

  Progressed 76 84 160

https://xenabrowser.net/
http://www.gsea-msigdb.org/gsea/index.jsp
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differentially expressed genes (DEGs) to obtain glycoly-
sis-related differentially expressed genes (DEGs) in KIRC. 
We also used GSEA 4.2.3 software to investigate poten-
tial pathways for the activation of 6 DEGs associated 
with glycolysis in KIRC. When both normalized enrich-
ment score (NES) > 1 and false discovery rate (FDR) q 
value < 0.05 were satisfied, the number of permutations 
was set to 1000 and the gene set was considered signifi-
cantly enriched in RCC samples.

Protein-protein interaction (PPI) network, Cox regression 
analysis and ROC curve
The String (https://cn.string-db.org/) database was used 
to further analyze the interactions between 124 glycoly-
sis-related genes [30]. Cytoscape software was used for 
network visualization to screen 124 hub genes associ-
ated with glycolysis. Knowing that relevant factors such 
as patients, tumors and treatment are associated with 
OS, we further performed univariate and multivariate 
analyses of the remaining glycolysis-related hub genes 
using Cox regression models, and then used the “Forest 
Map” package to display the p value, hazard ratio (HR), 
and 95% confidence interval (CI) for each variable in 
the forest map. P < 0.05 was considered statistically sig-
nificant. Finally, the diagnostic value of the 19 glycoly-
sis-related hub gene expressions was evaluated by using 
receiver operating characteristic (ROC) curve. Knowing 
that a high area under curve (AUC) corresponds to a 
high predictive power, we selected hub genes with AUC 
value > 0.9 for further analysis.

Public database analysis
Public databases including HPA, TIMER, TIMER 2.0, 
UALCAN, LinkedOmics, TISIDB and TISCH2 were used 
to analyze and visualize the expression of TCIRG1 and its 
relationship with immune cell infiltration level based on 
KIRC data set (n = 533).

HPA (https://www.proteinatlas.org/) Among them, tis-
sue and pathological maps provide information about the 
expression profiles of specific genes in normal and tumor 
tissues at the protein level. All tissue images in HPA data-
base were stained by immunohistochemistry [31].

TIMER (https://cistrome.shinyapps.io/timer/) Corre-
lations between gene expression (log2TPM) in the KIRC 
dataset and infiltration of 6 immune cells (infiltration 
estimates) were shown based on Gene module. P < 0.05 
was considered statistically significant [32].

TIMER 2.0 (http://timer.cistrome.org/) Correla-
tion between TCIRG1 gene expression (log2TPM) and 
immune cell infiltration (infiltration estimates) in KIRC 
dataset was analyzed by XCELL algorithm based on 
Gene module. Based on the Gene_Corr module analysis, 
the correlation between the expression of TCIRG1 and 
the indicated immune cell marker genes was shown. The 

partial Spearman’s correlation was used to perform this 
association analysis. P < 0.05 was considered statistically 
significant [33].

UALCAN (http://ualcan.path.uab.edu/) Based on 
KIRC or ccRCC data sets, we analyzed the differences 
of TCIRG1 mRNA in tumor differentiation level, lymph 
node metastasis stage, different tumor stages, and the dif-
ferences of TCIRG1 proteomic expression. The degree of 
tumor differentiation was defined as: Grade 1, well dif-
ferentiated; Grade 2, moderately differentiated; Grade 3, 
poorly differentiated; Grade 4, undifferentiated [34].

CellMarker (http://xteam.xbio.top/CellMarker/) It 
provides a user-friendly interface for browsing, searching 
and downloading markers of diverse cell types of differ-
ent tissues [35].

LinkedOmics (http://www.linkedomics.org/login.php) 
This database was used to perform and visualize biologi-
cal processes in GO analysis and KEGG analysis to dem-
onstrate TCIRG1 enrichment in biological processes and 
pathways [36].

TISIDB (http://cis.hku.hk/TISIDB/) Correlations 
between KIRC gene expression and immunoinhibitors, 
chemokines, and chemokine receptors were analyzed 
[37].

TISCH2 (http://tisch.comp-genomics.org/home/) We 
used this database to perform single cell analysis to inves-
tigate the TCIRG1 expression in different immune cell 
types [38].

We also used the ESTIMATE algorithm to assess the 
Stromal Score, Tumor Purity, Immune Score and Esti-
mate Score of TCIRG1.

Cell culture
The RCC cell lines used in this study were obtained from 
the cell bank of the Typical Culture Preservation Center 
of the Chinese Academy of Sciences (Shanghai, China) 
in 2020. All cells were cultured according to the recom-
mended procedures according to the American Type 
Culture Collection (ATCC) as we reported in a previ-
ous study [39]. In short, HK-2(ATCC, CRL-2190) cells 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM), a high sugar medium (Gibco). ACHN (ATCC, 
CRL-1611) and A498 (ATCC, HTB-44) cells were cul-
tured in Minimum Essential Medium (Gibco). 786-O 
(ATCC, CRL-1932), 769-P (ATCC, CRL-1933) and 
OS-RC-2 cells were kept in RPMI-1640 medium (Gibco). 
All culture media were supplemented with fetal bovine 
serum (FBS, 10%, Gibco) and 1% penicillin/streptomycin 
(Gibco). All cell lines were cultured at 37 °C and 5% CO2. 
All cell lines used in this study were cultured within 40 
passages.

https://cn.string-db.org/
https://www.proteinatlas.org/
https://cistrome.shinyapps.io/timer/
http://timer.cistrome.org/
http://ualcan.path.uab.edu/
http://xteam.xbio.top/CellMarker/
http://www.linkedomics.org/login.php
http://cis.hku.hk/TISIDB/
http://tisch.comp-genomics.org/home/
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Gene knockdown
The general procedure of this section was previously 
reported [40]. Briefly, the OS-RC-2 cells or 769-P cells 
were cultured in 6-well plates, inoculated at a density 
of 5 × 104 cells/ml, and transfected with the small inter-
ference RNA (siRNA) of TCIRG1 or negative control 
siRNA (negative control, NC) using Lipofectamine 3000 
reagents (L3000015, Invitrogen) according to the manu-
facturer’s introductions. After 72-h transfection, they 
were harvested for further experiments after RT-qPCR 
validation of transfection efficacy and specificity (supple-
mentary Figure S2K). The sequences for siRNA are as 
follow:

TCIRG1 siRNA 1:
F: GGGUGGAAUUCCAGAACAAGU,
R: UUGUUCUGGAAUUCCACCCAG;
TCIRG1 siRNA 2:
F: GCGUGAGCACCACGCACAAGU,
R: UUGUGCGUGGUGCUCACGCUG;
TCIRG1 siRNA 3:
F: AGAUGAAGAUGUCCGUCAUCC,
R: AUGACGGACAUCUUCAUCUUG.

Real time flurocent qualitative PCR (RT-qPCR)
RT-qPCR assay was performed according to the manu-
facturer’s instructions as we previously described [41]. 
Total RNA was extracted with Trizol reagents (Invitro-
gen) and cDNA was obtained using First-Strand cDNA 
Synthesis Kit (Invitrogen). The resulting cDNA was sub-
jected to RT-qPCR with the indicated primer sets. RT-
qPCR analysis was conducted by Power SYBR Green PCR 
Master Mix (Applied Biosystems, Foster City, CA, USA). 
Relative gene expression was normalized to GAPDH with 
the 2−ΔΔCT assay. The primer sequences used are as fol-
lows: TCIRG1-F: CCGTGATGACCGTGGCTATCCT; 
TCIRG1-R: CATCTGTGGCAGCGAAGGTGAA; 
GAPDH-F: TCAGACACCATGGGGAAGGT; GAPDH-
R: CTTCCCGTTCTCAGCCATGTA.

Western blot
As we reported earlier [41], western blot analysis was 
performed, total protein was firstly extracted using 
SDS-PAGE and then transferred to a PVDF membrane 
(Termo, USA). Afterwards, the PVDF membrane was 
incubated with antibody: TCIRG1 (12649-1-AP, pro-
teintech), GAPDH (#5174S, cell signal technology), 
AKT3 + AKT2 + AKT1 (ab32505, abcam), p-AKT (28731-
1-AP, proteintech), mTOR (28273-1-AP, proteintech), 
and p-mTOR (80596-1-RR, proteintech).

Cell proliferation assays
The proliferation of RCC cells was measured using the 
CCK-8 kit (Dojindo) according to the manufacturer’s 
instructions. 1 × 103 cells were cultured in each well of the 

96-well plate. After adherence, 10 ul CCK-8 was added 
to each well, and the cell samples were then incubated at 
37 °C for 2 h. The optical density (OD) value was recorded 
at 450  nm with a microplate reader (EXL800, BioTek 
Instruments). The proliferation rates are expressed as a 
proportion of the control value, which was obtained from 
the normal control (NC) groups.

Transwell assays
800 μl 1640 (including 10% FBS) was put in the bottom 
wells, and about 1.5 × 104 cells resuspended in 200  μl 
serum-free medium were put into the upper chambers. 
In addition, the invasion assay was carried out with 100 μl 
1:8 diluted matrixgel in the upper chambers. After 36 h 
incubation with 5% CO2 at 37 ℃, cells were treated with 
4% paraformaldehyde at room temperature for 20  min, 
stained with 0.1% crystal violet at room temperature for 
30  min, washed with PBS, counted and photographed 
under the light microscope.

Apoptosis assessment
Apoptotic cells were evaluated through ANNXIN-V 
FITC and PI staining (Beyotime, C1062L) according to 
the manufacturer’s instructions, and then analyzed by 
flow cytometry (FACS Calibur).

Metabolism assays
Cells were seeded in a 6-well plate and cultured for 24 h. 
The medium was collected and tested for glucose, lactate 
and pyruvate with the glucose assay kit, lactate assay kit 
and pyruvate assay kit, respectively. Intracellular ATP 
was detected using the ATP determination kit (Nanjing 
Jian Cheng Bioengineering Institute, Nanjing, China) 
according to the manufacturer’s protocol. The results 
were normalized by protein concentration, and triple-
independent experiments were performed.

Statistical analysis
Statistical analysis and graphic visualization of data 
were performed with R 4.1.3, GraphPad Prism 8.0 and 
SPSS 22.0 (IBM corporation) software. Numerical data 
are expressed as the mean ± standard deviation (SD). 
Paired Student’s t-test was used to analyze mRNA lev-
els of TCIRG1 in RCC cell lines. Pearson or Spearman 
coefficients were used to calculate correlations between 
variables. Independent Student’s t-tests were used to 
compare all statistical calculations, including the cell 
growth rate, glucose consumption, lactate production, 
pyruvate production, ATP production and TCIRG1 
scRNA expression. Results with p < 0.05 were considered 
statistically significant.
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Results
7 Glycolysis-related hub genes are identified as 
independent prognostic indicators in KIRC
By analyzing the gene expression profiles and 

corresponding clinical data of 535 RCC samples and 72 
normal kidney tissue controls from TCGA, we obtained 
8894 DEGs by using R, including 4687 up-regulated 
genes and 4207 down-regulated genes (Fig.  1A). Then, 

Fig. 1  Glycolysis-related hub genes were screened by TCGA database and MSigDB database. (A) In TCGA-KIRC (|log (FC)|>1, P < 0.05), compared with 
normal tissues, 4687 up-regulated genes and 4207 down-regulated genes were selected. (B) The intersection of 4687 up-regulated genes and 753 
glycolysis-related genes was used to select 124 glycolysis-related differentially expressed genes (DEGs). (C) By analyzing the association between 124 
glycolysis-related DEGs, a PPI network was established, and 86 hub genes were ultimately screened. (D-G) Incorporating 86 hub genes and 7 clinico-
pathological information into univariate cox regression analysis, 38 hub genes were selected. (H-I) Incorporating 19 hub genes into the receiver operating 
characteristic (ROC) curve, and selecting 12 hub genes with area under curve (AUC) > 0.9. TCGA, The Cancer Genome Atlas; MSigDB, Molecular Signatures 
Database; KIRC, Kidney Renal clear Cell Carcinoma; DEGs, differentially expressed genes; PPI, Protein-Protein interaction; ROC, receiver operating charac-
teristic; AUC, Area under curve
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21 glycolysis-related gene sets were searched from the 
MSigDB database, including 753 glycolysis-related genes 
(Supplemental Table 2). In order to search for biomarkers 
that promoted tumor progression, we intersected 4687 
up-regulated DEGs with 753 glycolysis-related genes and 
screened out 124 glycolysis-related DEGs (Fig.  1B). To 
clarify the associations between these glycolysis-related 
genes, we constructed a PPI network for 124 glycolysis-
related DEGs using the String database and Cytoscape 
software. We then screened 86 glycolysis-related hub 
genes in RCC (Fig. 1C). To further screen for glycolysis-
related hub genes affecting the progression of RCC, we 
included 86 glycolysis-related hub genes and 7 clinical 
parameters in the univariate cox regression analysis. The 
results showed that age, stage, grade, TNM stage, and 
the high expression of 38 glycolysis-related hub genes 
predicted poor OS in KIRC (Fig.  1D-G). Therefore, we 
further included 38 glycolysis-related hub genes and 6 
clinical parameters with p < 0.05 into the multivariate cox 
regression analysis. The results showed that 19 glycolysis-
related hub genes were independent prognostic indica-
tors of poor OS in KIRC (Supplementary Figure S1A). 
The diagnostic potential of the 19 glycolysis-related hub 
genes for KIRC was estimated by ROC curve (Fig.  1H-
I), and 12 genes with AUC > 0.9 were selected for further 
analysis. To screen out glycolysis-related hub genes with 
histological differences between normal renal tissue and 
renal tumor tissue, we analyzed 12 glycolysis-related 
hub genes previously screened through HPA database, 
and the results showed that the protein expression level 
of ENO2, P4HB, CDC45, TCIRG1, SLCA1, ERO1A and 
PLOD1 in renal tumor tissue was higher than that in nor-
mal renal tissue (Supplementary Figure S1B). However, 
the protein expression level of BEST1, KIF20A, CHEK2 
and LAT in normal renal tissue was higher than in renal 
tumor tissue (Supplementary Figure S1C), while there 
were no data for RBCK1 to be analyzed. So far, the 7 gly-
colysis-related hub genes were highly expressed in renal 
tumor tissue and were identified as independent prog-
nostic indicators in renal tumor tissues.

The glycolysis-related hub gene TCIRG1 is associated with 
the immune response in ccRCC
To explore glycolysis-related biomarkers associated with 
immunotherapy response, we included 7 previously 
selected glycolysis-related DEGs into the GSEA soft-
ware for enrichment analysis, and found that 6 DEGs 
were mainly associated with interferon gamma response 
(Fig. 2A, Supplementary Figure S2A). Knowing that acti-
vation of T cells, especially by CD4+T (Th1) cells, can 
activate IFN-γ [42], we further screened TCIRG1 through 
the online TIMER database and found that it had the 
highest correlation with CD4+T cell immune infiltration 
(partial.cor = 0.437, P < 0.001) (Fig.  2B, Supplementary 

Figure S2B). In tumors, the ratio of immune cells to stro-
mal cells also has a significant effect on prognosis, which 
is vital for tumor diagnosis and prognostic assessment 
[43]. Therefore, we used the ESTIMATE algorithm to cal-
culate Stromal Score, Tumor Purity, Immune Score, and 
Estimate Score in ccRCC tissue based on the TCGA tran-
scriptome data, and found that they had a significant cor-
relation with TCIRG1 expression (Fig.  2C). In addition, 
higher Immune and Estimate Scores and lower Tumor 
Purity were associated with poorer OS in ccRCC patients 
(Fig. 2D), suggesting that the expression of TCIRG1 may 
be associated with changes in the TME during the diag-
nosis and prognosis of ccRCC.

High expression of TCIRG1 in KIRC is associated with poor 
prognosis
Next, we explored the expression of TCIRG1 in differ-
ent normal and tumor tissues using the TIMER 2.0 data-
base, and found the expression of TCIRG1 in renal tumor 
tissues was higher than that in normal renal tissues 
(Fig.  3A). This finding is consistent with the KIRC data 
set based on TCGA and CPTAC samples (Fig. 3B-C). In 
addition, we also investigated the relationship between 
TCIRG1 expression and the clinicopathological charac-
teristics in KIRC patients, and found that the expression 
level of TCIRG1 was higher in KIRC patients with poorer 
tumor differentiation, lymph node metastasis, and high 
clinical stage (Fig. 3D-F). To further investigate the effect 
of TCIRG1 expression on OS and PFI in KIRC patients, 
they were randomly divided into a training cohort and a 
validation cohort in a ratio of approximately 1:1 (Table 1). 
Patients in the three cohorts were then divided into a 
TCIRG1 high-expression group and a TCIRG1 low-
expression group according to the optimal cut-off value 
of TCIRG1 (Supplementary Tables S1-S3). Similar to the 
previous analysis results, in the training cohort (Fig. 3G, 
I), validation cohort (Fig.  3H, J), and combined cohort 
(Fig.  3K, L), patients with high TCIRG1 expression had 
shorter OS and PFI than those with lower TCIRG1 
expression, indicating that high TCIRG1 expression 
was associated with poor prognosis in KIRC patients, 
and demonstrated that TCIRG1 expression could be an 
independent risk factor (Tables 2 and 3, Supplementary 
Tables S4). And we analyzed a proteogenomic data of 
clear cell renal cell carcinoma in a Chinese population, it 
was also found that high TCIRG1 expression predicted 
poor OS in ccRCC patients (Supplementary Figure S2C) 
[26].

Correlation between TCIRG1 expression and immune 
characteristics in ccRCC
The above results demonstrated that the glycolysis-
related biomarker TCIRG1 was associated with the 
immune therapy response through a series of approaches. 
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To further explore the relationship between TCIRG1 
and the immune properties of ccRCC, we analyzed the 
LinkedOmics database and found that the expression of 
TCIRG1 was closely related to the immune process via 
the KEGG pathway and the biological process of GO in 
RCC. In addition, TCIRG1 was associated with antigen 
processing and presentation, response to interferon-
gamma, adaptive immune response, and positive regu-
lation T cell activation (Fig.  4A, B). Then, we used the 
XCELL algorithm of TIMER 2.0 to evaluate the rela-
tionship between TCIRG1 expression and infiltration 

of different immune cell types in ccRCC. Scatter plots 
showed that TCIRG1 expression was significantly posi-
tively correlated with the infiltration of CD4+T cell 
Th1 (Rho = 0.277, P < 0.001), CD8+T cell (Rho = 0.341, 
P < 0.001), NK cell (Rho = 0.418, P < 0.001), and M1 mac-
rophage (r = 0.261, P < 0.001) (Fig.  4C), suggesting that 
TCIRG1 may promote the tumor immune response in 
ccRCC by positively regulating CD4+T cell Th1, CD8+T 
cell, NK cell, and M1 macrophage. To explore the cor-
relation between TCIRG1 expression and immune cell 
markers, we determined the markers of immune cells 

Fig. 2  Correlation between glycolysis-related hub gene TCIRG1 and immune response. (A) GSEA enrichment analysis shows that TCIRG1 is significantly 
enriched on the Interferon gamma response. (B) TIMER database shows the correlation between TCIRG1 expression level (log2 TPM) and CD4 + T Cell 
(Infiltration Level). (C) Correlation between the expression of TCIRG1 and the immune score of ccRCC (Stromal Score, Tumor Purity, Immuno Score, and 
Estimate Score) based on Pearson correlation analysis. (D) K-M survival curve, relationship between OS of ccRCC and Stromal Score, Tumor Purity, Im-
mune Score, and Estimate Score. (all p values were defined as *p < 0.05, **p < 0.01 and ***p < 0.001, log rank test). TCIRG1, T-cell immune regulator 1; GSEA, 
Gene Set Enrichment Analysis; TIMER, Tumor Immune Estimation Resource; K-M, Kaplan-Meier; ccRCC, clear cell renal cell carcinoma; OS, Overall survival
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Fig. 3  Differential expression of TCIRG1 in renal tumor tissue and normal renal tissue and Kaplan-Meier survival analysis of Overall survival(OS)and Pro-
gression Free Interval (PFI) in KIRC patients. (A) The TIMER 2.0 Gene_DE module was used to detected the difference in TCIRG1 mRNA expression between 
tumor tissues and adjacent normal tissues in TCGA cancer types. The distribution of gene expression levels is shown in a box plot. The result of the KIRC 
dataset is marked with a red box. (B-C) UALCAN analysis showed that in the KIRC dataset of TCGA, the differential expression of TCIRG1 mRNA in primary 
tumor tissue and adjacent normal tissue was analyzed; In the ccRCC dataset of CPTAC, there is a difference in the expression of TCIRG1 protein between 
primary tumor tissue and adjacent normal tissue. (D-F) UALCAN analysis showed that in the KIRC dataset, there were differences in the expression of 
TCIRG1 at different tumor differentiation levels (D), lymph node metastasis (E), and different tumor stages (F). Tumor differentiation levels are defined 
as: Grade 1, well-differentiated; Grade 2, moderately differentiated; Grade 3, poorly differentiated; Grade 4, undifferentiated. There are differences in the 
expression of undifferentiated tumor differentiation level (E) and lymph node metastasis (F). (G-L) K-M survival curve analysis showed that in the training 
cohort (n = 262; G, I), validation cohort (n = 263; H, J), and combined cohort (n = 525; K, L), KIRC patients with high TCIRG1 expression had short OS and 
PFI. (all p values were defined as *p < 0.05, **p < 0.01 and ***p < 0.001, log rank test). KIRC, Kidney Renal Carcinoma; mRNA, messenger RNA; UALCAN, The 
University of ALabama at Birmingham Cancer data analysis Portal; CPTAC, Clinical Proteomic Tumor Analysis Consortium
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based on the CellMarker database, and then evalu-
ated TCIRG1 expression and Th1 markers (IFNG and 
CXCR3), CD8+T cell markers (CD8A and CD8B), NK 
cell markers (KIR2DL4 and KLR3DL2), and M1 macro-
phage markers (IRF5 and IL12A) through the TIMER 
2.0 database (Fig. 4D). The results suggest that TCIRG1 
was significantly correlated with markers of four immune 
cells, especially with markers of CD4+T cell Th1. We 
also found that TCIRG1 was mainly localized in mono-
nuclear macrophage and NK cell based on the single cell 
RNA-seq (scRNA-seq) dataset GSE11136 of the TISCH2 
database, which is consistent with our previous results 
(Fig.  4E). In addition, we used the scRNA-seq dataset 
GSE139555 from renal cancer patients and found that 
TCIRG1 expression was higher in renal tumors tissues 
than in normal renal tissues (Supplement Figure S2D-F) 
[27], which is consistent with our results in TCGA-KIRC. 
Knowing that immunocheckpoint inhibitors (ICIs) are 
a significant new group of tumor immunotherapy drugs 
[44], we used the TISIDB database to analyze the cor-
relation between the expression level of TCIRG1 and 
ICIs in different human cancer types (Fig. 4F). The heat 
map results showed that TCIRG1 was significantly posi-
tively correlated with the expression of some ICIs in 
KIRC including PDCD1 (rho = 0.542, p < 0.001), LAG3 
(rho = 0.536, p < 0.001), CTLA4 (rho = 0.496, p < 0.001), 
and TIGIT (rho = 0.419, p < 0.001) (Fig.  4G). Moreover, 
chemokines and chemokine receptors were also reported 
to play crucial roles in the infiltration of immune cells 
into tumors [43]. Therefore, we also analyzed the cor-
relation between TCIRG1 expression and immune cell 
chemokines and chemokine receptors using the TISIDB 
database. The heatmap results showed that TCIRG1 
was significantly positively correlated with the expres-
sion of some chemokines and chemokine receptors in 
KIRC (Supplementary Figure S2G, I), including CCL5 
(rho = 0.497, p < 0.001), XCL2 (rho = 0.457, p < 0.001), 
CXCL13 (rho = 0.444, p < 0.001), XCL1 (rho = 0.412, 
p < 0.001), CXCR3 (rho = 0.497, p < 0.001), CXCR5 
(rho = 0.41, p < 0.001), CCR10 (rho = 0.355, p < 0.001), and 
CCR5 (rho = 0.31, p < 0.001) (Supplementary Figures S2H, 
J). These results suggest that TCIRG1 may play an essen-
tial role in regulating tumor immunity.

Downregulation of TCIRG1 expression inhibits the 
proliferation, migration and invasion of ccRCC cell lines 
and induces their apoptosis
Based on the previous finding in the online database 
that the high TCIRG1 expression was associated with 
poor prognosis in KIRC patients, we conducted in vitro 
experiments to further investigate the effect of TCIRG1 
expression in ccRCC cell lines. First, we investigated 
the expression of TCIRG1 in common ccRCC cell lines 
769-P, 786-O, OS-RC-2, A498 and ACHN, using renal Ta
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tubular epithelial cell line HK-2 as a control group. The 
results of RT-qPCR and western blot showed that the 
expression of TCIRG1 in ccRCC cell lines was higher 
than that of HK-2, especially in OS-RC-2 and 769-P cell 
lines (Fig. 5A, B). To determine whether TCIRG1 affected 
the growth of ccRCC cell lines, we used small interfering 
RNA (siRNA) to knockdown TCIRG1 in OS-RC-2 and 
769-P cells, screened out si-TCIRG1#1 and si-TCIRG1#2 
through RT-qPCR (Supplementary Figure S2K), and 
verified the knockdown efficiency using Western blot 
(Fig. 5C, D). Then, the proliferation ability of ccRCC cell 
lines (OS-RC-2 and 769-P) was measured by cell count-
ing kit 8 (CCK-8) proliferation experiment. The results 
showed that downregulation of TCIRG1 (si-TCIRG1#1, 
si-TCIRG1#2) inhibited the proliferation of ccRCC cells 
(Fig.  5E). We then used transwell and matrix gel analy-
sis to detect the effect of TCIRG1 on the migration and 
invasion of OS-RC-2 and 769-P cells. Compared with 
the control group, TCIRG1 knockdown decreased the 
migration and invasion of OS-RC-2 and 769-P cells 
markedly (Fig.  5F). Subsequent flow cytometry analysis 
showed that TCIRG1 knockdown increased the apopto-
sis of ccRCC cells as compared with the corresponding 
control cells (Fig. 6A). In summary, the results show that 
downregulating the expression of TCIRG1 inhibited the 
proliferation, migration and invasion of ccRCC cell lines 
and promoted their apoptosis, suggesting that TCIRG1 
played an extremely critical role in the growth and devel-
opment of ccRCC cell lines.

Downregulation of TCIRG1 inhibits glycolysis and AKT/
mTOR signaling pathway in ccRCC cell lines
TCIRG1 is a biomarker selected from the set of genes 
associated with glycolysis. To investigate the effect of 
TCIRG1 on glycolytic process in ccRCC cell lines, we 
measured glucose uptake, lactate production, pyruvate 
production, and ATP production in ccRCC cell lines 
after TCIRG1 knockdown. As shown in Fig. 6B-E, down-
regulation of TCIRG1 decreased glucose uptake, lactate 
production, pyruvate production, and ATP production, 
suggesting that downregulation of TCIRG1 could inhibit 
glycolysis in ccRCC cell lines. To examine the effect of the 
glycolysis-related gene TCIRG1 on the AKT/mTOR sig-
naling pathway, we performed western blot analysis and 
found that down-regulation of TCIRG1 reduced phos-
phorylated AKT (p-AKT) and phosphorylated mTOR 
(p-mTOR) (Fig. 6F). All these results suggest that down-
regulation of TCIRG1 could inhibit aerobic glycolysis of 
ccRCC through the AKT/mTOR signaling pathway.

Discussion
Tumor cells are metabolically reprogrammed to pro-
mote their own growth, metastasis and survival. Decades 
of genomic research on RCC have shown that RCC is Ta
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Fig. 4  Correlation between expression of TCIRG1 and immune characteristics of ccRCC. (A) LinkedOmics database analysis shows that in the KEGG 
pathway, TCIRG1 was enriched in immune related pathway antigen processing and presentation. (B) Biological processes in gene ontology (GO) analysis 
indicates that TCIRG1 is enriched in immune related biological processes, including response to interferon-gamma, adaptive immune response, positive 
regulation T cell activation. (C) TIMER 2.0 Gene_DE module analysis shows the correlation between TCIRG1 gene expression (log2 TPM) and indicated 
immune cell infiltration level in the KIRC dataset based on the XCELL algorithm. The partial Spearman’s correlation is used to perform this association 
analysis. (D) TIMER 2.0 Gene_Corr module analysis shows that TCIRG1 expression was correlated with the indicated immune cell marker genes (Th1: IFNG, 
CXR3; CD8 + T cell: CD8A, CD8B; NK cell: KIR2DL4, KIR3DL2; M1 macrophage: IRF5, IL12A). (E) Single-cell expression matrix and corresponding statistical 
chart from TISCH2 database illustrating the expressive abundance of TCIRG1 in different clusters of immune cells based on KIRC_GSE111360 data set. 
(F-G) TISIDB analysis shows a correlation between TCIRG1 expression and Immunoinhibitors in the KIRC dataset. KEGG, Kyoto Encyclopedia of Genes and 
Genomes; TISCH2, Tumor Immune Single-cell Hub 2; TISIDB, Tumor-immune system interactions data types
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Fig. 5  Downregulation of TCIRG1 expression inhibits the proliferation, migration and invasion of ccRCC cell lines. (A-B) RT-qPCR results of TCIRG1 (A) and 
representative Western blot images with relative gray values and histograms (B) for TCIRG1 mRNA and protein in different ccRCC cell lines (769-P, 786-O, 
OS-RC-2, A498, ACHN), using normal human renal cell line (HK-2) as normal controls. (C-D) RT-qPCR results of TCIRG1 (C) and representative Western blot 
images with relative gray values and histograms (D) showed that siRNA silenced the mRNA and protein expression of TCIRG1 in OS-RC-2 or 769P, respec-
tively. (E) CCK-8 was used to detect the proliferation of OS-RC-2 or 769P cells during TCIRG1 knockdown. The proliferation rate showed a multiple change 
relative to the control group. (F) In the renal cell carcinoma cell lines (OS-RC-2 and 769-P) transfected with TCIRG1 (control and si-TCIRG1), the migration 
ability was detected by Transwell, and the invasion ability was detected by matrigel. (All p values are defined as: *p < 0.05, **p < 0.01 and ***p < 0.001). 
ccRCC, clear cell renal cell carcinoma; RT-qPCR, real-time polymerase chain reaction; siRNA, Small interfering RNA; CCK‐8, Cell Counting Kit‐8; FITC, fluo-
rescein isothiocyanate; PI, propidium iodide
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a hypermetabolic disease [45]. The histology of RCC 
shows that metabolic activity increases with disease 
progression, especially aerobic glycolysis [46]. Differen-
tial regulation of glycolysis between tumor and immune 
cells provides an opportunity for selective inhibition of 
glucose metabolism in tumors and a unique window in 
the search for more effective cancer immunotherapies 

[47]. Tumor cells exhibit increased glycolytic depen-
dence by increasing glucose uptake and glucose fermen-
tation into lactate to meet the high anabolic demand 
for tumor cell proliferation [14]. Study has shown that 
metabolic interventions can significantly improve the 
efficacy of immunotherapy [48, 49]. Thus, the combina-
tion of immunotherapy and metabolic interventions is a 

Fig. 6  Downregulation of TCIRG1 expression inhibits migration, invasion, glycolysis processes, and the AKT/mTOR signaling pathway in the ccRCC cell 
lines. (A) Annexin V-FITC/PI double-staining of OS-RC-2 or 769-P cells with or without TCIRG1 knockdown was performed, and flow cytometry assays were 
employed to detect the percentage of apoptotic cells. (B-E) Glucose consumption (B), lactate production (C), pyruvate production (D), and intracellular 
ATP production (E) were detected in TCIRG1 transfected (control and si-TCIRG1) renal cell carcinoma cell lines (OS-RC-2 and 769-P). (F) The expression level 
of AKT/mTOR signaling pathway related proteins in renal cell carcinoma cell lines (OS-RC-2 and 769-P) transfected with TCIRG1 (control and si-TCIRG1) was 
detected. (All p values are defined as: *p < 0.05, **p < 0.01 and ***p < 0.001). ccRCC, clear cell renal cell carcinoma; mTOR, Mechanistic Target of Rapamycin; 
ATP, Association of Tennis Professionals
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promising strategy for improving therapeutic outcomes 
[50]. To improve the efficacy of immune checkpoint ther-
apies in RCC, we identified TCIRG1, a biomarker that 
regulates aerobic glycolysis in ccRCC.

Many studies have demonstrated that increased glu-
cose metabolism caused by glycolysis can promote the 
growth, proliferation and long-term maintenance of 
tumor cells, which is an important marker of malignant 
progression of cancer [51]. Downregulation of SPTBN1 
was found to promote the progression of ccRCC by acti-
vating GPT2-dependent aerobic glycolysis [52]. TCIRG1 
was first identified in osteosclerosis, and study has shown 
that TCIRG1 mutation is a common cause of human 
autosomal recessive osteosclerosis [22]. TCIRG1 acts as 
a metastasis enhancer by regulating growth and EMT 
in HCC cells [24]. In glioblastoma multiforme (GBM), 
TCIRG1 is considered as a prognostic biomarker and an 
indicator of immune infiltration [53].

To the best of our knowledge, there is no study on 
TCIRG1 and aerobic glycolysis in renal cancer. It was 
found in our study that TCIRG1 was biomarker asso-
ciated with glycolysis and an independent prognostic 
risk factor for ccRCC. In addition, high expression of 
TCIRG1 was associated with malignancy progression 
and poor prognosis in ccRCC patients, and positively 
correlated with the immunoinhibitors PDCD1 and 
CTLA4 (Fig.  4G), and IFN-γ as well (Fig.  2A). PDCD1 
and CTLA4 are two key T cell immune checkpoint mol-
ecules, which can negatively regulate T cell glycolysis 
and mitochondrial metabolism [54], and PD-1 blockage 
can restore aerobic glycolysis and IFNγ production in T 
cells [55]. As described in our previous findings, down-
regulation of TCIRG1 could inhibit aerobic glycolysis in 
ccRCC cell lines (Fig. 6B-F). In acute myeloid leukemia, 
high expression of PD-L1 was found to promote aerobic 
glycolysis via the Akt/mTOR/HIF-1α axis [56]. In ccRCC 
cell lines, knockdown PBRM1 was found to activate the 
AKT/mTOR signaling pathway and increase the expres-
sion of key glycolytic enzymes at mRNA and protein 
levels [57]. Therefore, we speculate that TCIRG1 may 
inhibit aerobic glycolysis in ccRCC, thereby regulating 
the malignant progression of ccRCC. This speculation 
may provide a new idea for the treatment of ccRCC by 
combining metabolic intervention with immunotherapy.

It is for the first time that we identified TCIRG1 as a 
potential biomarker of aerobic glycolysis in ccRCC cell 
lines and found that TCIRG1 could regulate aerobic gly-
colysis in ccRCC, thereby modulating its malignancy 
progression. In addition, we also explored the diversity of 
TCIRG1 and immune cell infiltration, as well as the rela-
tion of TCIRG1 with immunotherapy by using various 
bioinformatics methods, including clinical information 
analysis, GSEA enrichment analysis, immune infiltration 
analysis, and multi-omics data.

However, the study has some limitations. First, our 
study did not elucidate the specific mechanism by which 
TCIRG1 affected aerobic glycolysis in ccRCC cell lines 
through the AKT/mTOR signaling pathway. In addition, 
the enrolled patient information and multiple data sets 
that we analyzed should be derived from a real-world 
cohort to more accurately validate the prognostic impact 
of biomarkers on the response to immunotherapy.

Conclusion
In this study, we identified a glycolysis-related bio-
marker TCIRG1 in ccRCC and found that the expres-
sion of TCIRG1 was closely related to immune response 
and immunotherapy. Our data have shown that high 
expression of TCIRG1 predicts malignancy progression 
and poor prognosis for ccRCC. We found that TCIRG1 
knockdown inhibited the proliferation, migration and 
invasion of ccRCC cell lines and promoted cell apoptosis, 
suggesting that TCIRG1 may regulate aerobic glycoly-
sis and malignant progression of ccRCC. These findings 
reveal the relationship between aerobic glycolysis and 
immunotherapy in ccRCC, thus providing a novel direc-
tion for the treatment of ccRCC by combination of meta-
bolic intervention and immunotherapy.
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