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Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. 
Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer 
tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, 
which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis 
is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-
mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On 
the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding 
RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed 
the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000–2023 to find reports concerning 
miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting 
invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis 
pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and 
lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the 
effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create 
innovative therapeutic methods for the control of oral cancer metastases.
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Introduction
Oral cancer is the 11th most frequent carcinoma world-
wide, which has drawn interest from all across the world 
[1]. Oral cancer led to 177,757 new fatalities and 377,713 
new cases in 2020 [2]. The majority of individuals are 
diagnosed with oral cancer at an advanced stage [3]. This 
late diagnosis leads to a poor prognosis and a greater 
prevalence of lymphatic metastasis [4, 5].

Differentiated oral squamous cell carcinoma (OSCC), 
which tends to spread to lymph nodes [6], is the 6th most 
frequent type of cancer in the world, with more than 
200,000 new cases each year. OSCC occurs in three main 
anatomical sites: lip SCC (LSCC), tongue SCC (TSCC), 
and buccal mucosal SCC (BMSCC) [7, 8]. Males have 
morbidity and fatality rates of 6.6 and 3.1 per 100,000 
persons, respectively, while females have rates of 2.9 and 
1.4 per 100,000 persons. Also, the prevalence of OSCC 
is increasing in young caucasians between the ages of 
18 and 44, especially in women [9, 10]. OSCC is a major 
problem for both individual health and socioeconomic 
well-being on account of risk factor exposure, limited 
treatment options, and high mortality.

Oral cancer carcinogenesis is influenced by a number 
of risk factors, like genetic variations, smoking, betel nut 
chewing, radiation exposure, and other lifestyle factors 
[11]. One additional potential risk factor for OSCC is 
infection with the human papillomavirus (HPV). As early 
as 2007, the International Agency for Research on Can-
cer recognized HPV16 as a risk factor for OSCC. OSCC 
has been linked to other sub-types of the virus such as 
HPV33, HPV35, that are also seen in cervical cancer [12]. 
Treatment for oral cancer may involve surgery, targeted 
therapy or chemotherapy depending on the tumor stage. 
Despite advances in treatment and detection methods 
over the last ten years, the five year survival rate, which 
averages between 45 and 50%, has not significantly 
increased [13]. Generally speaking, oral cancer still has a 
poor prognosis and a low survival rates [14]. It has a high 
likelihood of migration to nearby lymph nodes, adjacent 
tissues, and distant metastasis, and an unusually high 
chance of recurrence over the patient’s lifespan in those 
diagnosed with advanced-stage tumors [15].

MicroRNAs (miRNAs) are short (19–25 nt) single-
stranded non-coding RNAs (ncRNAs) which specifically 
bind to the 3′ untranslated region (UTR) of the targeted 
gene mRNA to control its expression [16]. In light of 
the fact that numerous genes can be targeted by a single 
miRNA and a single target gene can have several miRNA 
binding sites, more than 60% of the genes in humans are 
thought to be controlled by miRNAs [17, 18]. Therefore, 
miRNAs play a critical role as regulators in almost all 
biology, including normal physiological and pathological 
processes, most notably cancer. It is accepted that miR-
NAs are crucial for preventing the growth and spread of 

cancer [19–21]. Additionally, increasing evidence sug-
gests that the circRNA/lncRNA-miRNA-mRNA regula-
tory axis controls how oral cancer spreads [22–26]. In 
this overview, we summarize the role of specific miRNAs 
in the metastatic spread of oral cancer. Additionally, we 
discuss the function of lncRNA/circRNA-miRNA-mRNA 
networks in regulating signaling pathways and associated 
genes that are linked to the spread of oral cancer. These 
networks are becoming recognized as crucial regulators 
of carcinogenesis.

Cancer metastasis
The process through which cancer cells detach them-
selves from the primary tumor, and go on to establish 
additional tumors at sites distant from the original tumor, 
is known as cancer metastasis. The initial tumor is gener-
ally not the principal reason for cancer death, but most 
fatalities are caused by metastasis. Around 9/10 of cancer 
deaths are caused by cancer metastasis, which also pro-
duces most morbidity [27, 28]. In 1889 Stephen Paget, a 
surgeon from the UK, first proposed the theory that the 
secondary sites of tumor dispersal are not due to chance 
alone, but instead, by an interaction between “seeds” 
(cancer cells) and the “congenial soil” (organs that certain 
tumor types spread to). This theory has now been widely 
accepted [29]. Up until recently, most cancer research 
was devoted to early tumor detection techniques and 
new therapeutic agents, as well as tumor growth inhibi-
tors. If detected and treated early enough, the majority of 
solid tumors are now considered treatable or even cur-
able, thanks to advances in early cancer detection and 
treatment. Howevert, once cancer has spread beyond the 
primary site, it is typically considered incurable and fatal 
[30, 31]. The mechanisms underlying the metastatic pro-
cess are poorly understood, and in terms of preventing 
and controlling cancer metastasis, very little progress has 
yet been made.

There is still much to learn about the complex pro-
cess of metastasis, which entails a number of sequential 
and connected steps as well as many biochemical reac-
tions. The four crucial processes of detachment, invasion, 
migration, and adhesion all work togther in the formz-
tion of metastases. Following their initial separation from 
the primary tumor, cancer cells initially migrate, invade, 
and travel through blood and lymphatic vessels to various 
locations. When the arrive at their destination, they settle 
(adhere), proliferate, and the secondary tumor spreads 
[32]. Multiple signaling mechanisms control metastatic 
growth, and the extracellular matrix (ECM) in the desti-
nation site has an efffect. The genes that respond to stress 
are now thought to act as metastatic genes to support 
inflammation, stress-induced wound healing, and angio-
genesis [32, 33].
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Prior to spreading, cells must initially detach from 
the primary tumor [28]. When normal cells endothe-
lial or epithelial) become separated from their ECM, 
they undergo a type of cell death known as anoikis (cell 
death brought on by ECM detachment) [34]. Both the 
mitochondrial route of apoptosis and the death recep-
tor pathways are engaged during anoikis [34]. Metastatic 
cancer cells are able create a defense against anoikis [35, 
36]. The term “epithelial-mesenchymal transition” (EMT) 
describes the resistance of tumor cells to anoikis, as well 
as a number of other properties, including alterations 
in the adherence of cells and tissues, cell invasion and 
migration, and cell polarity. The majority of metastatic 
cells share the defining characteristics of EMT [36]. From 
being highly differentiated, polarized, and structured 
cells, epithelial cells are transformed into a mesenchy-
mal-like immature state, as isolated cells with the poten-
tial for invasion and migration [37].

Two essential components of the metastatic cascade 
are the cell’s ability to migrate and invade. There are two 
different ways that metastatic cells can infiltrate through 
the ECM, mesenchymal (fibroblastoid) and amoeboid 
cellular migration. Protease-dependent enzyme activities 
are required for mesenchymal cell migration in order to 
break down the ECM structure and allow the cells to pass 
through. Mesenchymal cell migration can be stopped by 
blocking ECM-degrading proteases, e.g. matrix metallo-
proteinases (MMPs), which are important in wound heal-
ing. In the protease-independent method of amoeboid 
cell migration, cells use mechanical forces rather than 
enzymatic degradation to build a passageway. The ability 
to move chemotactically (to follow a chemokine gradi-
ent), total loss of cell polarity, and loose ECM attachment 
are characteristics of amoeboid cell invasion [36].

Single metastatic cancer cells or large clusters of cells 
can move throughout the body [36, 38]. In contrast to 
the collective migration of cell clusters, which only uses 
mesenchymal cell migration, both mesenchymal migra-
tion mediated by proteases and protease-independent 
amoeboid-like migration are capable of facilitating the 
movement of individual cancer cells. Epithelial cell polar-
ity is lost and an EMT-induced mesenchymal state is pro-
duced in single cells, which leave a primary tumor from 
its periphery. A solid epithelial tumor may release one or 
more single cells as a result of EMT, which is character-
ized by interference with tight cell-cell junctions, adopt-
ing a fibroblastoid spindle-shaped morphology, increased 
cell-stromal interactions, and slower cell division rates 
and invasiveness [38].

Cells which migrate collectively maintain their cell-cell 
connections by ongoing production of adhesion mol-
ecules, in contrast to solitary cells that migrate on their 
own. They may migrate as unattached cell clusters or 
groups, and move as strands, tubes, sheets, or clusters 

(cohort migration), or they may keep their attachment to 
the parent tumor (coordinated invasion) [36]. Cancer cell 
migration in a clustered cohort appears to be very effec-
tive at obliterating lymphatic or blood vessels and pre-
serving the cells under flow conditions. Mostly squamous 
cell carcinoma and basal cell carcinoma from various ori-
gins undergo collective cell migration [36, 38].

Throughout the past 30 years, major improvements 
have been made in understanding cancer metastasis at 
the molecular, cellular, and signaling pathway levels, thus 
opening up a variety of potential targets for preventing 
cancer metastasis. These may involve modifying the bio-
chemical mechanisms and signaling pathways that con-
trol cell adhesion, dissociation, invasion, migration, and 
interaction with the tumor microenvironment [28]. The 
present review aims to provide a comprehensive expla-
nation of how various miRNAs and other ncRNAs could 
regulate the process of invasion, migration, and adhesion 
in oral cancer cells.

MicroRNA biogenesis
The stability and translation of messenger RNAs (mRNA) 
are controlled by a class of endogenous ncRNAs called 
microRNAs (miRNAs), which are 19–25 nucleotides (nt) 
in length. Ambros et al. originally discovered miRNAs 
in 1993, completely overturning previous theories about 
mRNA translation [39]. Canonical miRNA process-
ing starts with RNA polymerase II converting a miRNA 
gene into a stem-loop-structured primary miRNA 
(pri-miRNA). The Drosha and DGCR8 microproces-
sor complex cleaves this pri-miRNA using endonuclease 
activity to produce a hairpin miRNA precursor with a 
70 nt length [40, 41]. Exportin-5 facilitates the cytoplas-
mic entry of pre-export miRNAs [42], plus within the 
cytoplasm, the TRBP and Dicer(double-stranded) com-
plex converts the pre-miRNA into a miRNA duplex. The 
complex that induces silencing via RNA appears to con-
tain either both mature miRNA duplex strands, accord-
ing to in vitro experiments (RISC). One strand of this 
duplex must be destroyed to cause the intended mRNA 
to be repressed, possibly depending on thermodynamic 
stabilities [43]. The mature miRNA is directed to a target 
mRNA by the RISC complex, and this complex contains 
the key component Argonaute 2, after strand selection. 
Here, the interactions promote target mRNA destabili-
sation and translational repression by cleaving the target 
mRNA or deadenylating (shortening the 3′ poly-A tail) 
the target mRNA [44, 45].

Alterations in miRNA expression in cancer cells
George Calin, Carlo Croce, and associates reported the 
loss of miR-16 and miR-15a expression within B-cell 
chronic lymphocytic leukemia (CLL) in 2002, provid-
ing the first proof that human tumors express abnormal 
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miRNAs [46]. There are no protein-coding genes in this 
area, which is lost in most B-cell CLL specimens. Since 
that first report miRNA expression in human cancers 
has been extensively studied to discover any new miR-
NAs associated with cancer. Many investigations have 
analyzed miRNA expression in various types of can-
cer, and reported miRNA profiless that differ in expres-
sion between healthy and malignant cells or tissues. In 
334 samples of tumors and healthy tissue, Jun Lu, Todd 
Golub, et al. evaluated the expression of 217 miRNAs as 
well as 16,000 mRNAs. It was shown that a number of 
miRNAs were either up-regulated or down-regulated in 
cancer, and these miRNA expression patterns were more 
accurate in distinguishing different cancer types com-
pared to mRNA expression patterns [47].

A variety of mechanisms, including chromosomal 
abnormalities, amplification, deletion, mutation, and 
translocation, can affect the production of miRNAs in 
human cancer. Activation or repression of transcrip-
tion, epigenetic modifications, and structural flaws in 
the genes that produce miRNAs could also be involved. 
The Croce group examined the chromosomal position of 
various miRNAs, and found that miRNA genes are fre-
quently located in those genetic regions that are altered 
in cancer [48]. These DNA sequences contain insertion 
sites or chromosomal translocation for tumor-associated 
viruses like HPV, regions of deletion that might encode 
tumor-suppressor genes, and regions of amplification 
that may contain oncogenes [49].

Chromosome 13q14 is where the miR-15a/miR-16-1 
cluster is located, an area that is often eliminated in CLL. 
The family of miR-29 miRNAs, which is found in the 
areas 7q32 and 1q30 and is often lost in acute myeloid 
leukemia, is another example. Other factors in addition 
to genetic changes, are involved in the downregulation 
or deletion of particular miRNAs. For example, the mir-
34 miRNA group was found to be epigenetically silenced 
via CpG island hypermethylation in a variety of cancer 
types, resulting in downregulation of miR-34 expression 
[49]. Unusual transcription factor activity may potentially 
contribute to deregulation of miRNA expression, which 
could involve either decreased or increased transcrip-
tion from the miRNA gene. As one example, the tumor 
suppressor transcription factor p53, binds to the pro-
moter for mir-34 and activates it. This may lead to miR-
34 downregulation in those human cancers, where p53 is 
commonly altered or deleted. Moreover, p53 also favor-
ably regulates the clusters miR-29 and miR-15a/miR-16-1 
[50]. However, Oncoproteins which are frequently over-
expressed or upregulated in human cancer, include cer-
tain transcription factors. For instance, the mir-29 group 
mir-26a and let-7a, every one of whom are downregu-
lated in cancer, are transcriptionally repressed by MYC 
[49].

MiRNAs as either tumor suppressors or oncomiRs 
in cancer
By affecting the expression of tumor oncogenes or tumor 
suppressors respectively, miRNAs can either promote 
or suppress the cancer phenotype. Typically, tumor-
suppressor miRNAs are underexpressed in cancer, while 
tumors generally exhibit an overexpression of oncogenic 
miRNAs (oncomiRs). Depending on the type of cancer 
and the particular miRNA that is affected, cancer cell 
invasion, progression and/or survival could be drastically 
affected when these tumor-suppressor or oncomiR miR-
NAs are suppressed or activated, respectively. It is also 
conceivable that cancers can become totally dependent 
on, or “addicted” to, a specific oncomiR, in which case 
suppressing the oncomiR could cause the tumor to com-
pletely regress [51]. As a result, miRNAs can be catego-
rized as either tumor-promoters or tumor-suppressors, 
and this distiction would govern whether to alter their 
expression for therapeutic purposes.

Nonetheless, there are arguments in favor of caution 
in therapeutic approaches involving miRNAs. There are 
contradictory reports in the literature about whether 
or not any particular miRNA is a tumor-suppressor or 
tumor-promoter. Some miRNAs have repeatedly been 
demonstrated to be tumor suppressive in one situa-
tion yet carcinogenic in another. Given the wide array of 
genes that any specific miRNA can affect, the variety of 
consequences is not surprising. It implies that any des-
ignation of a miRNA as tumor suppressive or oncogenic 
should always be carefully examined because it may con-
stitute an oversimplification [52].

MiRNAs as inhibitors of metastasis in oral cancer
Table 1 provides a summary of the main miRNAs which 
have been implicated in the process of metastasis. In 
2007, it was first discovered that miRNAs and metastasis 
were connected to each other. Li Ma, Robert Weinberg, 
and coworkers evaluated the miRNA expression profiles 
in breast cancer cells, both metastatic and non-meta-
static, as well as in healthy human mammary epithelial 
cells. This resulted in the discovery of numerous miRNAs 
linked to metastasis [53]. One of them, miR-101 also pre-
vented the spread of oral cancer by inhibiting migration 
and invasion [54, 55].

The CX chemokine receptor 7 (CXCR7) recognizes its 
ligand CXCL12, and affects cell adhesion, viability, and 
tumor growth [56]. Furthermore, the stimulation of the 
CXCR7 signaling pathway caused by CXCL12 increases 
the proliferation, invasion and metastasis of tumor cells. 
CXCR7 is broadly expressed in many types of cancer 
[57, 58]. CXCL12 and CXCR7 are both concurrently 
increased in rapidly proliferating oral cancer [59]. Hui 
et al. [60] discovered that miR-101 could act as a tumor 
suppressor in OSCC, by targeting CXCR7. According 
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to their findings, OSCC cell lines and tissues showed 
strongly increased expression of CXCR7 and downregu-
lation of miR-101. Furthermore, OSCC tumor metastasis 
and growth were inhibited in vivo by either deletion of 
CXCR7 or overexpression of miR-101. Moreover, both in 
vitro and in vivo, miR-101 inhibited invasion and migra-
tion, which lowered OSCC metastasis [60]. It was later 
discovered that the expression of exosomal miR-101-3p, 
which was produced from human bone marrow mesen-
chymal stem cells (hBMSCs), could inhibit oral cancer 
invasion and migration by downregulating COL10A1 
(type X alpha 1 chain of collagen) [61]. Different cel-
lular processes and reactions are controlled by TGF-β 
signaling pathways, including proliferation, differen-
tiation, cell death, and migration. TGF-β signaling oper-
ates in a different way depending on the tumor stage. In 
pre-malignant cells, it initially acts as a tumor suppres-
sor, but as the disease progresses, it promotes invasion 
and metastasis [62]. Recent studies have also shown that 
miR-101 may play a significant role in TGF-R1 activity, 
as a miR-101-mediated modulator of OSCC cell motility 
by inhibiting TGF-R1-induced OSCC cell invasion and 
metastasis [63]. Additionally, the ectopic expression of 
miR-101 might block the AKT/mTOR pathway to attenu-
ate the EMT in OSCC, providing a theoretical foundation 
for targeted treatment of OSCC to lower metastasis and 
recurrence and improve patient cure rates [64].

MiR-34a is the 2nd most investigated metastasis-asso-
ciated miRNA, with a variety of functional roles that are 
related to metastasis (Table  1). According to reports, 
OSCC cells showed a dramatic downregulation of miR-
34a expression [65–67]. On the other hand, increas-
ing miR-34a expression could prevent OSCC cells from 
metastasizing by affecting MMP9 and MMP14 activity 
[66], as well as IL6R expression [67]. Interestingly, Li et 
al. [65] reported that oral cancer cells showed increased 
proliferation and metastasis as a result of miR-34a-5p 
exosome-mediated paracrine signaling in cancer-associ-
ated fibroblasts (CAFs). They discovered that exosomes 
produced from CAFs had much lower miR-34a-5p levels, 
and that fibroblasts could deliver exosomal miR-34a-5p 
into OSCC cells. Their findings showed that miR-34a-5p 
overexpression in CAFs could prevent OSCC cells from 
developing into tumors during mouse xenograft experi-
ments. One direct downstream target of miR-34a-5p is 
AXL, to which it can bind in order to inhibit OSCC cell 
proliferation and metastasis. The miR-34a-5p/AXL axis 
could support the progression of OSCC via the AKT/
GSK-3/β-catenin signaling pathway, and may promote 
the EMT to encourage the spread of oral cancer cells. 
Nuclear translocation of β-catenin was promoted by the 
miR-34a-5p/AXL axis, which also increased the Snail 
transcription factor. thus triggering MMP-9 and MMP-2. 
In oral cancer cells, the miR-34a-5p/AXL axis increased 

aggressiveness and could be a therapeutic target for 
OSCC by affecting AKT, GSK-3, β-catenin, and Snail sig-
naling (Fig. 1) [65].

Recently, Dharavath et al. [68] reported that miR-944 
showed potential anti-metastatic activity in vivo and in 
vitro. They observed that miR-944 inhibited migration, 
invasion, and EMT of TSCC cells by targeting MMP-10. 
Hence they suggested that this miRNA could be a thera-
peutic target in TSCC patients [68].

Cancer stem cells (CSCs), or tumor-initiating cells 
comprise a very small fraction of all the cells in a tumor. 
CSCs possess the ability of adult stem cells for self-
renewal and differentiation. According to some theories, 
CSCs are mainly responsible for tumor growth, the ini-
tiation of invasion and metastasis, as well as recurrence 
[69, 70]. The development of both primary and meta-
static cancers is caused by CSCs [71]. Tumorigenesis and 
metastasis have been reported to be inhibited by miRNAs 
which suppress CSC properties. In oral cancer, miR-495 
could suppress tumor progression [72]. The regulation of 
miR-495 is disrupted in a variety of stem cells and cancer 
cells [73–75]. For example, in OSCC, miR-495 expression 
was markedly downregulated, and when it was expressed 
ectopically in CSCs, it reversed the EMT process, inhib-
ited cellular migration, proliferation, and invasion, and 
promoted cell death via the HOXC6-mediated TGF-β 
signaling pathway [72].

As was previously mentioned, the mesenchymal-epi-
thelial transition (MET), which is the opposite of the 
EMT process, encourages metastatic colonization in cer-
tain cancer types while facilitating tumor cell invasion 
and dissemination in carcinoma cells [76, 77]. According 
to several experimental studies, cancer cells interact with 
the chemokine (C-C motif ) ligand 21 (CCL21)/chemo-
kine (C-C motif ) receptor type 7 (CCR7). This interaction 
(along with CXCL5/CXCR2) activates Snail and glyco-
gen synthase kinase (GSk)-3 to promote the EMT [78]. 
Furthermore, it has been suggested that TGF-β interacts 
with the NF-kB signaling system to promote EMT in can-
cer cells [79]. In oral cancer, certain metastatic miRNAs 
control the EMT process. MiR-153-3p targets Snail in 
OSCC cells to block activation of EMT (Fig. 2) [80], while 
miR-532-3p targets CCR7 to reduce EMT, migration, 
and invasion [81]. Nevertheless, miR-940 overexpres-
sion prevented TSCC cells from metastasizing by inhibit-
ing EMT, invasion and migration because it targeted the 
IL-8/CXCR2/NF-B pathway [82][83].

The process of angiogenesis governs tumor develop-
ment and metastasis, and significantly promotes cancer 
growth [84]. Neuropilin 1 (NRP-1) is a vascular endothe-
lial growth factor (VEGF) co-receptor [85, 86] that shows 
increased expression in OSCC [87, 88], and esophageal 
carcinoma [89]. NRP1 overexpression has been found 
to affect immunity, angiogenesis, tumor invasion, and 
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Type 
of oral 
cancer

miRNA 
(expression)

miRNA 
Target

Inhibition/ 
Induction of 
metastasis

Samples Results Ref

OSCC miR-23a-3p 
(Down)

Runx2 Inhibition Human (OSCC tissues), 
In vitro (TSCCA & CAL-27)

Upregulation of miR-23a-3p inhibits metastasis of 
OSCC by targeting Runx2 and inhibiting PI3K/Akt 
signaling pathway

[120]

OSCC miR-18a
(Down)

HIF-1α Inhibition Human (OSCC tissues), In 
vitro (HSC-2 and YD-10B 
cell)

MiR-18a inhibits OSCC metastasis by targeting 
HIF-1α.

[121]

TSCC miR-320b
(Down)

IGF2BP3 Inhibition Human (TSCC tissues), In 
vitro (SCC9 & CAL-27)

MiR-320b downregulation is related to lymphatic 
metastasis in TSCC patients. Upregulated miR-320b 
inhibits TSCC cell growth.

[122]

OSCC miR-186 & 
miR-655
(Down)

PTTG1 Inhibition In vitro (HSC2 & Ca9-22 
cell)

MiR-186 and miR-655 regulate invasion by targeting 
PTTG1 & negatively regulating MMP-2 & MMP-9 
activity.

[123]

OSCC miR-655
(Down)

Metadherin Inhibition Human (TSCC tissues), In 
vitro (SCC9 & CAL-27)

MiR-655 may suppress metastasis by inhibiting inva-
sion and PTEN/AKT pathway.

[124]

OSCC miR-198
(Down)

CDK4 Inhibition Human (OSCC tissues), In 
vitro (SCC-9 & Cal-27 cell)

Overexpression of miR-198 inhibits invasion, EMT and 
metastasis of OSCC by targeting CDK4.

[125]

OSCC miR-489-3p TWSIT Inhibition In vitro 
(SCC-4)

Ectopic miR-489-3p expression prevents OSCC inva-
sion, migration, and metastasis by inhibiting TWSIT 
expression.

[126]

OSCC miR-5580-3p
(Down)

LAMC2 Inhibition Human (OSCC tissues), In 
vitro (SCC-4 & Cal-27 cell)

MiR-5580-3p suppresses migration of OSCC by 
targeting LAMC2.

[127]

OSCC miR-29c SERPINH1 Inhibition In vitro (SCC25 cells) MiR-29c prevents migration, invasion, and metastasis 
of OSCC cells by targeting SERPINH1.

[128]

OSCC miR-132 TGF-β1 Inhibition Human (OSCC tissues), 
In vitro (CAL-27/CDDP)

MiR-132 prevents OSCC invasion and increases che-
mosensitivity to cisplatin by inhibiting TGF-β1.

[129]

OSCC miR-504
(Down)

CDK-6 Inhibition Human (OSCC tissues), 
In vitro (Cal27 & Tca8113 
cells)

Upregulated miR-504 prevents OSCC migration and 
invasion by targeting CDK-6

[130]

OSCC miR-519d
(Down)

MMP3 Inhibition Human (OSCC tissues), In 
vitro (HN30 & HN4 cells)

MiR-519d inhibits metastasis of OSCC cells by sup-
pressing invasion and migration through targeting 
MMP-3.

[131]

OSCC miR-149-5p
(Down)

TGFβ2 Inhibition Human (OSCC tissues), In 
vitro (CAL-27 & CAL-27/
CDDP)

MiR-149-5p prevents OSCC cells from metastasizing 
by targeting TGFβ2.

[132]

TSCC miR-149
(Down)

Specificity 
protein 1

Inhibition Human (TSCC tissues), In 
vitro (CAL-27 & Tca8113 
cells)

MiR-149 can prevent metastasis of TSCC cells by 
inhibiting invasion and migration by targeting speci-
ficity protein 1

[133]

OSCC miR-365-3p
(Down)

EHF Inhibition Human (OSCC tissues), In 
vitro (OC-3-IV-M), In vivo 
(CB17-SCID mice)

MiR-365-3p prevents OSCC cells from metastasizing 
by targeting EHF.

[134]

OSCC miR-107
(Down)

TRIAP1 Inhibition In vitro (OSC-4 and CAL-27 
cells)

Upregulated miR-107 may suppress metastasis of 
OSCC cells by inhibiting migration through targeting 
TRIAP1.

[135]

OSCC miR-532-3p
(Down)

CCR7 Inhibition Human (OSCC tissues), In 
vitro (CAL-27 & TCA8113 
cells)

MiR-532-3p decreases invasion, migration, and OSCC 
EMT by targeting CCR7.

[81]

TSCC miR-940 CXCR2 Inhibition In vitro (TSCCA & Tca8113 
cells)

Overexpressed miR-940 may inhibit metastasis of 
TSCC cells by inhibiting invasion, migration and EMT 
process through targeting IL-8/CXCR2/NF-κB axis.

[82]

TSCC miR-320a
(Down)

MRP2 Inhibition Human (TSCC tissues), In 
vitro (SCC4 cells)

MiR-320a can suppress metastasis of OSCC cells by 
inhibiting migration and invasion by targeting MRP2.

[136]

OSCC miR-300
(Down)

- Inhibition Human (OSCC tissues), 
In vitro (Cal-27 & Tca8113 
cells)

MiR-300 inhibits metastasis of OSCC cells by sup-
pressing EMT.

[137]

OSCC miR-34a-5p
(Down)

AXL Inhibition In vitro (SCC1 & CAL27 
cells), In vivo (BALB/c nude 
mice)

MiR-34a-5p can prevent OSCC cells from metastasiz-
ing by targeting AXL.

[65]

Table 1 MiRNAs inhibiting the metastasis of oral cancer
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Type 
of oral 
cancer

miRNA 
(expression)

miRNA 
Target

Inhibition/ 
Induction of 
metastasis

Samples Results Ref

TSCC miR-34a MMP9 & 
MMP14

Inhibition Human (TSCC tissues), In 
vitro (CAL27 cells)

MiR-34a suppresses metastasis of TSCC cells by 
inhibiting invasion and migration through targeting 
MMP9 and MMP14.

[66]

OSCC miR-34a
(Down)

IL6R Inhibition Human (OSCC tissues), In 
vitro (Tca8113 cells)

Ectopic expression of miR-34a prevents metastasis of 
OSCC cells.

[67]

OSCC miR-1-3p
(Down)

DKK1 Inhibition Human (OSCC tissues), In 
vitro (SCC-4 cells)

MiR-1-3p suppresses metastasis of OSCC cells by 
inhibiting migration through DKK1.

[138]

OSCC miR-218-5p CD44 Inhibition In vitro (UM-SCC6) MiR-218-5p may inhibit metastasis of OSCC cells by 
suppressing invasion through targeting CD44-ROCK 
pathway.

[139]

OSCC miR-375
(Down)

PDGF-A Inhibition In vitro (UM1 & CAL-27) MiR-375 targets PDGF-A to prevent OSCC cells from 
metastasizing by reducing invasion and migration.

[140]

OSCC miR-376c-3p
(Down)

HOXB7 Inhibition Human (OSCC tissues), In 
vitro (SCC-25 cells)

MiR-376c-3p inhibits metastasis of OSCC cells by 
reducing invasion and migration through targeting 
HOXB7.

[141]

OSCC miR-376c - Inhibition Human (OSCC tissues), In 
vitro,
In vivo

Upregulated miR-376c inhibits invasion, migration 
and metastasis of OSCC cells via regulating RUNX2-
INHBA axis.

[142]

OSCC miR-377
(Down)

HDAC9 Inhibition Human (OSCC tissues), In 
vitro (UPCI-SCC-116cells)

MiR-377 can inhibit metastasis by suppressing migra-
tion through targeting HDAC9.

[143]

OSCC miR-143
(Down)

HK2 Inhibition Human (OSCC tissues), 
In vitro (Tca8113 cells & 
OECM-1)

MiR-143 can suppress metastasis of OSCC cells by 
inhibiting invasion and migration through targeting 
HK2.

[118]

OSCC miR-143
Down)

CD44 v3 Inhibition Human (OSCC tissues), In 
vitro (Tca-8113 & CAL-27 
cells)

Upregulated miR-143 inhibits invasion and migration 
in Tca-8113 and CAL-27 cells.

[119]

OSCC miR-195-5p
(Down)

TRIM14 Inhibition Human (OSCC tissues), In 
vitro (Cal27 & Tca83 cells)

MiR-195-5p prevents OSCC cells from migrating and 
invading by targeting TRIM14.

[144]

Oral 
cancer

miR-30 family mGluR5 Inhibition In vitro (SDF-1 stimulated 
B88 cells)

MiR-30 family may inhibit metastasis of oral cancer 
by targeting mGluR5.

[145]

OSCC miR-101
(Down)

CXCR7 Inhibition Human (OSCC tissues), In 
vitro (SCC-9, Fadu, Cal-27, & 
SCC-4 cells)

OSCC metastasis can be prevented by overexpres-
sion of miR-101 because it blocks migration and 
invasion via CXCR7.

[146]

OSCC miR-20a
(Up)

- Inhibition Human (OSCC tissues), In 
vitro (Cal27 cells)

MiR-20a is elevated in HPV positive OSCCC samples. 
MiR-20a is overexpressed by HPV-16 E7, which pre-
vents Cal27 cells from migrating and invading.

[147]

OSCC miR-204-5p
(Down)

CXCR4 Inhibition Human (OSCC tissues), In 
vitro (Cal27 cells)

MiR-204-5p suppresses metastasis in OSCC cells. [148]

OSCC miR-204
(Down)

SLUG and 
SOX4

Inhibition In vitro (SAS & OECM1 
cells), 
In vivo (nude mice)

MiR-204 is decreased in tissues from lymph node 
metastases. MiR204 disrupts EMT properties of OSCC 
cells.

[149]

OSCC miR-23b & 
miR-27b
(Down)

- Inhibition Human (OSCC tissues), In 
vitro (SAS & HSC3 cells)

Invasion and migration of OSCC cells are inhibited by 
upregulation of miR-23b or miR-27b.

[150]

OSCC miR-216a
(Down)

EIF4B Inhibition Human (OSCC tissues), In 
vitro (SCC-4 & CAL 27 cells)

By targeting EIF4B, miR-216a prevents OSCC cells 
from metastasizing.

[151]

OSCC miR-338
(Down)

NRP1 Inhibition Human (OSCC tissues), In 
vitro (SCC-15 & Tca-8113 
cells)

MiR-338 prevents OSCC cells from metastasizing by 
inhibiting NRP1.

[88]

OSCC miR-433
(Down)

HDAC6 Inhibition Human (OSCC tissues), In 
vitro (SAS & HSC2 cells), In 
vivo (BALB/c nude mice)

MiR-433 targets HDAC6. When miR-433 is expressed 
ectopically it prevents OSCC cells from migrating and 
invading.

[152]

OSCC miR-506 GATA6 Inhibition Human (OSCC tissues), In 
vitro (SCC-4 & SCC-9 cells)

MiR-433 prevents OSCC cells from migrating and 
invading by targeting GATA6.

[153]

Table 1 (continued) 
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growth [90, 91]. The molecular pathways of NRP1 activ-
ity, however, have not yet been clarified. Recently, mul-
tiple studies showed that NRP1 expression in human 
cancer may be controlled by a variety of miRNAs [87, 90, 
92]. MiR1247 was found to target NRP1 and reduce cell 
growth in pancreatic cancer models both in vivo and in 
vitro [90]. Cui et al. [93] found that by targeting NRP1, 
miR-9 and miR-181b prevented vascular endothelial cells 
in oral cancer from migrating, adhering to one another, 
and forming tubes. This report was consistent with Shang 
et al. [94] who reported that ectopic expression of miR-9 
led to the induction of apoptosis, cell cycle arrest, and 

inhibited invasion of OSCC cells by targeting CDK 4/6 
pathways [94]. Moreover, Wu et al. demonstrated that 
miR-320 also carried out the same function [87]. Liu and 
colleagues [88] discovered that miR-338 targeted NRP1 
in OSCC cells, and that overexpression of NRP1 could 
significantly reduce the ability of miR-338 to prevent pro-
liferation in these cells. Moreover, miR-338 overexpres-
sion prevented OSCC metastasis by inhibiting NRP1, 
suggesting that miR-338 could be a possible therapeutic 
target in OSCC [88].

Recent research suggests that miRNAs may also be 
involved in lymphangiogenesis, the creation of new 

Type 
of oral 
cancer

miRNA 
(expression)

miRNA 
Target

Inhibition/ 
Induction of 
metastasis

Samples Results Ref

OSCC miR-320
(Down)

NRP1 Inhibition Human (OSCC tissues), In 
vitro (OC2 & HUVECs), In 
vivo (mice)

MiR-320 targets NRP1 to prevent OSCC cells from 
migrating.

[87]

OSCC miR-101
(Down)

AKT Inhibition Human (OSCC tissues), 
In vitro

Upregulated miR-101 decreases EMT and colony 
formation by suppressing AKT/mTOR.

[64]

OSCC miR-101
(Down)

TGF-βR1 Inhibition Human (OSCC tissues), 
In vitro (Tca8113 & SCC-9 
cells)

OSCC metastasis is reduced by miR-101 by inhibiting 
TGF-βR1.

[154]

OSCC miR-101-3p
(Down)

COL10A1 Inhibition Human (OSCC tissues), In 
vitro (TCA8113 cells)

Upregulated miR-101-3p may reduce OSCC metasta-
sis by inhibiting migration and invasion.

[61]

OSCC miR-142 
miR-128
(Down)

HOXA10 Inhibition Human (OSCC tissues), In 
vitro (SSC-25 & SCC-9 cells)

Upregulation of miR-128 and miR-142 suppressed 
metastasis of OSCC by targeting HOXA10.

[155]

OSCC miR-153-3p Snail Inhibition Human (OSCC serum), In 
vitro (SCC4 cells)

MiR-153-3p suppressed activation of EMT via target-
ing Snail.

[88]

OSCC miR-495
(Down)

Notch1 Inhibition Human (OSCC tissues), 
In vitro (SCC-9, CAL-27, & 
Tca8113)

MiR-495 may inhibit metastasis by suppressing OSCC 
cell invasion by targeting Notch1.

[74]

OSCC miR-137
(Down)

BRD4 Inhibition Human (OSCC tissues), In 
vitro (Cal-27, SCC1 & SCC4)

Upregulated miR-137 promotes metastasis by 
increasing OSCC cell migration and invasion

[156]

OSCC miR-9
(Down)

CDK 4/6 Inhibition Human (OSCC tissues), In 
vitro (Tca8113)

Upregulated miR-9 induces apoptosis, cell cycle 
arrest and inhibits invasion of OSCC cells by targeting 
CDK 4/6 pathways.

[94]

OSCC miR-144/451a 
cluster
(Down)

- Inhibition In vitro (UM-SCC083A & 
UPCI-SCC029B cells)

The miR-144/451a cluster prevents OSCC cells from 
migrating, invading, and metastasizing by lowering 
MIF and CAB39 levels.

[157]

Oral 
cancer

miR-30a-5p
(Down)

Fibroblast 
activation 
protein α 
(FAP)

Inhibition Human (oral cancer 
patients), In vitro (SCC-15 & 
Tca-8113 cells)

MiR-30a-5p prevents OSCC cells from metastasizing 
by reducing invasion and migration through target-
ing FAP.

[158]

TSCC miR-29b
(Down)

Sp1 Inhibition Human (TSCC tissues), In 
vitro (SCC-15 and CAL27)

MiR-29b reduces the invasion and migration of TSCC 
cells by targeting Sp1.

[159]

TSCC miR-200a DEK Inhibition In vitro (SCC15 cells) Ectopic miR-200a expression prevents TSCC from 
migrating and invading by targeting DEK.

[160]

TSCC miR-27b
(Down)

ITGA5 Inhibition In vitro (SCC-9 & CAL 27 
cells)

When MiR-27b is upregulated, it inhibits TSCC cell 
migration by targeting ITGA5, which stops the EMT 
process.

[161]

TSCC miR-200b or 
miR-15b
(Down)

BMI1 Inhibition In vitro (SCC25-res & 
CAL27-res cells), In vivo 
(TSCC xenograft mice)

Upregulated miR-200b or miR-15b suppresses 
metastasis in chemo-resistant TSCC xenografts by 
targeting BMI1.

[162]

TSCC miR-944 MMP10 Inhibition In vivo (mice),
In vitro (AW13516 cell)

Upregulated miR-944 inhibits EMT, invasion, and 
migration of TSCC cells by targeting MMP10.

[68]

Table 1 (continued) 
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mature lymphatic tubes from already-existing lymphatic 
vessels. MiR-126 is the best example of a lymphangio-
genic miRNA. MiR-126 downregulation was shown to 
support oral cancer angiogenesis and lymphangiogenesis 
by increasing the expression of the genes for VEGF-A 
and VEGF-C, respectively [95]. Another example is miR-
300 which can regulate the interaction between WISP-1 
(protein 1 of the WNT1-inducible signaling pathway) 
and CCN4 (a member of the CCN family of cysteine-
rich matrix proteins) [96]. It was reported that WISP-1 
is responsible for downregulating miR-300, resulting in 
increased VEGF-C production [96]. As a result, OSCC 
lymphatic vessel formation will be increased, which 
would encourage cancer metastasis. In contrast, WISP-1 
also controls VEGF-A [96]. Further investigation into 
the relationship between WISP-1 and miR-126 would be 
interesting [97].

Recently, niclosamide (an anthelmintic medication) has 
been shown to decrease vasculogenic mimicry (VM) by 
affecting miR-124 expression levels [98]. VM is the ability 
of an aggressive tumor to spontaneously produce blood 
vessels containing tumor cells but without any endo-
thelial cells. This will guarantee that there is a sufficient 
blood supply for the growth and metastasis of oral cancer 

[99]. Niclosamide could inhibit VM by upregulating miR-
124, which in turn has anti-tumor effects [98].

Mammalian species have five Notch ligands (Jagged 1 
& 2, and Delta-like 4, 3, & 1), as well as four Notch recep-
tors (Notch 1, 2, 3 & 4). When Notch ligands and recep-
tors interact, the signaling pathway is triggered. Two 
important proteolytic enzymes are involved in this pro-
cess. The first is an enzyme that converts tumor necrosis 
factor (also known as ADAM, a distintegrin and metal-
loprotease), which breaks down the receptor extracellu-
lar region. Then secretase catalyzes the second hydrolysis 
process to release the Notch intracellular domain (NICD) 
in the nucleus, which then attaches to the transcrip-
tion factor CSL to activate downstream genes [100]. It 
was discovered that OSCC cells and tissues overexpress 
Notch1, and it has been found that this overexpression 
was related to the clinical stage, TNM-stage, differentia-
tion, degree of invasion, metastasis to lymph nodes, and 
localized recurrence [101–103]. According to studies, 
Notch1 activation increases OSCC cell migration, inva-
sion, and EMT, while inhibiting apoptosis, [101, 104]. 
These findings suggest that treatment of OSCC by specif-
ically targeting Notch1 could be beneficial. Recently, Lv 
et al. [74] showed that in vitro invasion and proliferation 

Fig. 1 Exosomal miR-34a-5p can suppress metastasis of OSCC cells by targeting AXL. Transfer of CAF-derived exosomal miR-34a-5p to OSCC cells pro-
motes by fibroblasts and miR-34a-5p inhibits metastasis and proliferation of OSCC cells through inhibiting EMT and MMP-2/9 activation by targeting AXL 
[65]
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of OSCC cells were inhibited by exogenous expression 
of miR-495. They investigated the inhibitory mechanism 
of miR-495 activity. They found that Notch1 was a direct 
functional target of miR495 in OSCC. By reactivating 
Notch1, the inhibitory effects of miR495 on OSCC cell 
invasion and proliferation were reversed. Their findings 
revealed that miR495 played a major role in the control of 
OSCC metastasis, in part by targeting Notch1 [74].

In order to spread to distant regions of the human 
body, epithelial tumor cells lose their characteristic mark-
ers, such as cytokeratins and E-cadherin, and instead 
express proteins found in mesenchymal cells, such as 
vimentin, N-cadherin and fibronectin in a process called 
the EMT [105]. After spreading to distant regions of the 
body, these mesenchymal cancer cells can then undergo 
the MET (reverse of EMT), which enables them to revert 

to expressing epithelial markers. The “c-MET tyrosine 
kinase” is encoded by the c-MET proto-oncogene, and 
promotes tumor migration and metastasis, [106, 107], 
This could be a significant factor in treatment resistance 
in oral cancer [108–111]. c-MET is often increased in a 
range of cancers to encourage the spread and growth of 
tumors. A poor prognosis and increased tumor metas-
tasis have been associated with expression of the HGF 
receptor, also known as c-Met [112, 113]. It has been sug-
gested that CD44v3 might encourage phosphorylation 
of c-Met in response to HGF. Additionally, OSCC has an 
upregulation of CD44 v3 and c-Met [114–117]. The abil-
ity of OSCC cell lines to invade and migrate is closely 
linked to the overexpression of miR-143 [118]. Xu et al. 
[119] reported that miR-143 overexpression in OSCC cell 
lines may inhibit invasion and migration while having 

Fig. 2 Regulation of EMT activation by miR-153-3p and WISP-1. WNT1-inducible-signaling pathway protein 1 (WISP-1) promotes the activation of EMT 
by upregulating Snail expression and regulating the integrin αvβ3/FAK/ILK/Akt signaling pathway. MiR-153-3p inhibits OSCC cell EMT and metastasis by 
targeting Snail, in return WISP-1 and induces metastasis [80]
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little to no effect on proliferation. OSCC often exhibits a 
significant downregulation of miR-143 expression. They 
also found that inhibition of CD44v3 decreased migra-
tion in OSCC cells, which was directly linked to the acti-
vation of c-Met via the CD44 v3/HGF signaling pathway. 
Additionally, miR-143 may target CD44v3 to prevent 
phosphorylation of c-Met, which would inhibit OSCC 
cell invasion and migration. This investigation sug-
gested that miR-143 might play a role in a new treatment 
approach for OSCC.

MiRNAs as promoters of metastasis during oral cancer
While some miRNAs promote metastasis, the bulk of 
those that have been investigated so far have inhibitory 
effects (Table 2).

One of the most well known tumour suppressors in 
squamous cell carcinoma is called phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN), a 
phosphatase enzyme whose primary substrate is phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) [163, 164]. 
PTEN controls the PI3K/AKT pathway via phosphati-
dylinositol 3-kinase [165]. When AKT is phosphory-
lated it becomes activated, and then controls cell death, 
migration and invasion [166]. PIP3 is dephosphorylated 
by PTEN, which converts it into phosphatidylinositol-
4,5-bisphosphate (PIP2), which inactivates AKT by 
dephosphorylating it. This regulation of PTEN can have 
anti-cancer effects. According to earlier research, PTEN 
expression is suppressed by some miRNAs, which also 
contribute to the growth of cancer [167, 168]. Lizumi and 
associates [169] demonstrated that miR-142-5p increased 
the amount of active AKT by targeting PTEN (p-AKT). 
This shows that PTEN effectively inhibits PIP3 dephos-
phorylation to accelerate cancer growth by regulating the 
PI3K/AKT pathway. Additionally, in OSCC cells, PTEN 
expression was decreased when miR-142-5p was over-
expressed which then stimulated proliferation and inva-
sion. Additionally, PTEN-deficient OSCC cells exhibited 
the same behavior as cells that had been treated with a 
miR-142-5p mimic [169]. Various miRNAs stimulate the 
PTEN/AKT pathway to inhibit the invasion and growth 
of many cancer types [170]. According to additional 
research, increased miR-655 expression prevented OSCC 
cells from proliferating and invading while also prevent-
ing the PTEN/AKT pathway from becoming activated 
[124, 171]. Zheng et al showed that the miR-24 seed 
sequence bound to the 3’ UTR of PTEN mRNA, thereby 
inhibiting PTEN translation by activating the PI3K/Akt 
pathway. The AKT pathway is involved in the control of 
PTEN expression by miR-24. MiR-24 increases cell inva-
sion, viability, and chemoresistance via targeting the 
PTEN/Akt pathway [172]. Moreover, OSCC patients have 
higher miR-155 levels, and BMSCs displaying increased 

expression of miR-155 might promote the proliferation 
and spread of OSCC by inhibiting PTEN12 [173].

While certain miRNAs, such as miR-29b-1-5p, target 
E-cadherin directly to promote the EMT, other miR-
NAs indirectly stimulate the EMT [174]. For example, 
miR-134 targets PDCD7 thereby decreasing E-cadherin 
expression, promoting EMT, and stimulating oral cancer 
metastastasis [175]. Li et al. [176] asked whether or not 
miR-424 or miR-19a could regulate the expression of the 
TGFBR3 gene (transforming growth factor beta receptor 
3). They discovered that in CAL-27 cells, miR-19a and 
miR-424 overexpression facilitated migration and EMT. 
When CAL-27 cells were transfected with a plasmid 
expressing the TGFBR3 gene, this reversed the increased 
migration that was induced by miR-19a or miR-424, and 
prevented EMT from progressing by decreasing p-p65 
expression in comparison to the control group. These 
findings demonstrated that miR-424 or miR-19a overex-
pression could trigger EMT and encourage cell migration 
by targeting TGFBR3 [176].

Dickkopf-1 (DKK1) is a transcriptional target of the 
Wnt/β-catenin pathway, and acts as a suppressor of Wnt 
signaling [177]. According to research, lithium chlo-
ride usually encourages the spread of cancer cells, while 
Wnt signaling suppression via DKK1 reduces invasion 
in many cancers [177]. Since antagonist molecules may 
negatively control the Wnt/β-catenin signalling pathway, 
miRNAs that target these molecules could act as EMT 
drivers. It was discovered that the DKK gene complex 
(DKK1-4) inhibited tumor migration and invasion via 
negatively regulating β–catenin [178, 179]. It was found 
that DKK1 was targeted by miR-373-3p in TSCC tissues. 
MiR-373-3p increased TSCC metastases caused by EMT 
and constitutively activated Wnt/β-catenin signaling 
by specifically targeting DKK1 [180]. Secreted frizzled-
related protein 1 (SFRP1) is a Wnt signaling antagonist, 
which interacts with Wnt proteins via its CRD domain, in 
contrast to the transmembrane frizzled receptor [181]. It 
was discovered that miR-27a-3p targeted SFRP1 and ini-
tiated EMT in OSCC stem cells [182].

The metastasis suppressor gene known as metastasis 
suppressor-1 (MTSS1), also referred to as MIM (missing 
in metastasis), was first shown to be a tumor suppres-
sor gene in non-metastatic bladder cancer cell lines. Its 
expression is restricted to chromosome 8q24.1 in humans 
[183]. In metastatic cells, MTSS1 expression is typically 
diminished, whereas its relative expression is unclear 
in primary cancers. For example, it was confirmed that 
MTSS1 expression is decreased in esophageal, ovar-
ian, prostate, colorectal, and breast cancers [184, 185], 
although hepatocellular carcinoma and breast cancer 
were found to have higher levels of MTSS1 expression 
[186, 187]. Recent studies revealed that both bladder 
and kidney cancer displayed low or nonexistent MTSS1 



Page 12 of 25Eslami et al. Cancer Cell International          (2023) 23:182 

Type 
of oral 
cancer

miRNA 
(Expression)

Target of 
miRNA

Inhibition/ 
Induction of 
metastasis

Samples Results Ref

TSCC miR-675-5p
(Up)

- Induction In vitro (SCC9 cell) MiR-675-5p ectopic expression caused TSCC to 
metastasize.

[212]

TSCC miR-17-5p - Induction In vitro (CAL-27 cells) MiR-17-5p may promote metastasis of TSCC cells 
via increasing migration.

[213]

OSCC miR-222
(Up)

CDKN1B Induction Human (OSCC tissues), 
In vitro (TCA-83, CAL-27, 
SOC-9 & CAL-27)

MiR-222 may promote OSCC metastasis, and inva-
sion by targeting CDKN1B.

[203]

OSCC miR-155
(Up)

PTEN12 Induction Human (OSCC tissues), 
In vitro

PTEN12 is a target of overexpressed miR-155, 
which causes OSCC cells to metastasize.

[173]

OSCC miR-626
(Up)

RASSF4 Induction Human (OSCC tissues), In 
vitro (HSC2 & Ca9-22 cell)

MiR-626 expression was significantly correlated 
with lymph node metastasis.
Uppregulated miR-626 promotes EMT, migration, 
and invasion of OSCC cells by targeting RASSF4.

[214]

OSCC miR-5100
(Up)

SCAI Induction In vitro (TCA-8113 cells) MiR-5100 promotes invasion and migration of 
OSCC cells by targeting SCAI.

[215]

OSCC miR-142-5p PTEN Induction Human (OSCC tissues), In 
vitro (HSC3-M3 & SAS cells)

Upregulated miR-142-5p increased OSCC invasion 
by targeting PTEN.

[169]

OSCC miR-211
(Up)

Bridging 
integrator-1 
(BIN1)

Induction Human (OSCC tissues), In 
vitro (HN6, HN4m SCC6, 9, 
& 25 cells)

MiR-211 may induce metastasis by promoting 
migration and invasion.

[216]

OSCC miR-133 PDE1C Induction In vitro (SAS & OSC20) MiR-133 promotes EMT phenotype. [217]

OSCC miR-182-5p
(Up)

MTSS1 Induction Human (OSCC tissues), 
In vitro (Tca8113 & Cal27 
cells)

MiR-182-5p promotes invasion and migration of 
OSCC cells by targeting MTSS1.

[218]

OSCC miR-222-3p
(Up)

CDKN1B Induction Human (OSCC tissues), In 
vitro (SCC-15 & Tca-83 cells)

MiR-222-3p promotes invasion and migration of 
SCC-15 and Tca-83 cells by targeting CDKN1B.

[202]

OSCC miR-146b
(Up)

HBP1 Induction Human (OSCC tissues), In 
vitro (SCC25 & SCC9 cells)

MiR-146b promotes SCC25 and SCC9 cell invasion 
and migration by targeting HBP1.

[219]

OSCC miR-155-5p
(Up)

ARID2 Induction Human (OSCC tissues), In 
vitro (Cal27 & HN4)

Patients with OSCC had a positive correlation 
between miR-155-5p levels and lymph node 
metastases.
MiR-155-5p promotes OSCC cell invasion and 
migration by targeting ARID2.

[220]

OSCC miR-223-3p
(Up)

SHOX2 Induction Human (OSCC tissues), In 
vitro (Tca-8113, SCC-9, Cal-
27, & SCC-25 cells)

MiR-223-3p causes OSCC cells to metastasize by 
targeting SHOX2.

[221]

OSCC miR-223
(Up)

FBXW7 Induction Human (OSCC tissues), 
In vitro (SCC15 & OECM1 
cells)

MiR-223-3p may induce metastasis of OSCC cells 
by increasing migration by decreasing FBXW7 
expression.

[211]

OSCC miR-29b-1-5p
(Up)

Cadherin-1 Induction Human (OSCC tissues), In 
vitro (KON cell)

MiR-29b-1-5p could enhance metastasis of OSCC 
cells by inducing EMT.

[174]

OSCC miR-29b CX3CL1 Induction In vitro (TW2.6 MS-10 cells), 
In vivo (SCID mice injected 
with SAS/amiR-29b#4 cells)

MiR-29b induces migration of OSCC cells by 
decreasing CX3CL1 expression.

[222]

OSCC miR-134 PDCD7 Induction Human (OSCC tissues), 
In vitro (SAS and OECM1 
cells)

MiR-134 can induces metastasis by inhibiting 
migration and EMT by decreasing expression of 
PDCD7 and E-cadherin.

[175]

OSCC miR-200c-3p - Induction In vitro (SQUU-B & SQUU-A 
cells)

MiR-200c-3p may contribute to metastasis by pro-
moting invasion in the OSCC microenvironment.

[223]

OSCC miR-654-5p
(Up)

Grb2-related 
adaptor pro-
tein (GRAP)

Induction Human (OSCC tissues), 
In vitro (CAL-27/CDDP & 
Tca-8113/CDDP)

MiR-654-5p promotes metastasis of OSCC cells by 
increasing invasion and migration by regulating 
GRAP-mediated Ras/MAPK signaling.

[224]

OSCC miR-625-3p
(Up)

SCAI Induction Human (OSCC tissues), In 
vitro (WSU-HN6 & SCC25 
cells)

MiR-625-3p may encourage migration by target-
ing SCAI to cause OSCC cells to metastasize.

[225]

OSCC miR-196b
(Up)

- Induction Human (OSCC tissues), In 
vitro (SAS & CAL-27 cells)

In SAS and CAL-27 cells, ectopic expression of miR-
196b promotes EMT, migration, and invasion.

[226]

Table 2 MiRNAs promoting metastasis in oral cancer
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protein staining [188, 189]. The MTSS1 gene was found 
to be down-regulated in TSCC tissues. According to 
functional and mechanistic studies, the MTSS1 protein 
might be associated with the spread of cancer to various 
organ sites, most likely by interaction with the actin cyto-
skeleton, or by being regulated by miRNAs [190–192]. 
Guo et al. [193] analyzed the effect of the MTSS1 gene 
on the proliferation and invasion of Tca8113 cells using 
MTT, scratch wound healing, and invasion assays. They 
also examined whether miR-96 targeted MTSS1 and how 
it affected the biological changes caused by the MTSS1 
gene in Tca8113 cells. They discovered that Tca8113 cells 
and TSCC tissues both showed down-regulated MTSS1 
expression. Moreover, forced expression of MTSS1 
resulted in reduced numbers of migrating cells, slower 
wound healing, and hindered proliferation. Moreover, 
Tca8113 cell proliferation and spread may be regulated 
by miR-96 through the activity of MTSS1. MiR-96 was 
unable to fully reverse Tca8113 cell propensity to invade. 
Therefore, they hypothesized that miR-96 targeting and 

MTSS1 suppression may hasten the development of 
TSCC by evading the regulation of proliferation and 
metastasis. Another study looked at connections between 
MTSS1 and miR-182-5p in OSCC [194]. Higher TNM 
grades were linked to elevated miR-182-5p expression 
in OSCC, so miR-182-5p was proposed to be involved in 
invasion and migration of OSCC. MiR-182-5p directly 
targeted MTSS1, and by down-regulating MTSS1 expres-
sion levels it may promote invasion and migration in oral 
cancer [194].

Cyclin-dependent kinases (CDKs). are sequentially 
activated and inactivated during the cell cycle progres-
sion. Cyclin-CDK inhibitors inactivate CDKs and work 
together with positive regulators (cyclins) to activate 
them. One cyclin-CDK inhibitor is P27 (also known 
as CDKN1B, KIP1, or cyclin-dependent kinase inhibi-
tor 1B), and prevents the cell cycle from entering the 
S-phase. Ubiquitin-mediated protein degradation con-
trols the levels of p27 at the post-translation level [195]. 
The substrate recognition element that binds to and 

Type 
of oral 
cancer

miRNA 
(Expression)

Target of 
miRNA

Inhibition/ 
Induction of 
metastasis

Samples Results Ref

Oral 
cancer

miR-196a and b - Induction Human (oral cancer tis-
sues), In vitro (OECM1 & 
SAS cells)

MiR-196a and miR-196b induce migration and 
invasion of OECM1 and SAS cells by regulating the 
NME4-JNK-TIMP1-MMP signaling pathway.

[227]

OSCC miR-448
(Up)

MPPED2 Induction Human (OSCC tissues), In 
vitro (CAL-27 cells)

Silencing miR-448 leds to inhibition of migration 
in Cal-27 cells.

[228]

OSCC miR-424-5p
(Up)

SOCS2 Induction Human (OSCC tissues), In 
vitro (OEC-M1 and SCC-9 
cells)

MiR-424-5p promotes OSCC cell migration and 
invasion by targeting SOCS2.

[229]

OSCC miR-187
(Up)

BARX2 Induction In vitro (SAS cells) When MiR-187 was expressed ectopically, it pro-
moted OSCC cell migration.

[230]

OSCC miR-155 - Induction Human (OSCC tissues), In 
vitro (CAL27 cells )

MiR-155 induces invasion and migration of OSCC 
cells by regulating BCL6/cyclin D2 axis.

[231]

OSCC miR-221
(Up)

MBD2 Induction In vitro (CAL-27 & UM1 
cells),

MiR-221 expression was increased in metastatic 
cells compared to less metastatic OSCC cell lines. 
Downregulated miR-221 inhibits invasion and 
migration of metastatic cell lines (UM1 cells).

[232]

Oral 
cancer

miR-518c-5p
(Up)

- Induction In vitro (B88-SDF-1 cells 
& CAL27 cells), In vivo 
(BALB/c nude mice)

Upregulated miR-518c-5p promotes migration 
and metastasis of OSCC cells.

[233]

TSCC miR-21
(Up)

DKK2 Induction Human (TSCC tissues), In 
vitro (SCC25)

MiR-21 induces invasion of oral cancer cells by 
targeting DKK2.

[234]

TSCC miR-96 MTSS1 Induction In vitro (Tca8113 cells), MiR-96 promotes metastasis of Tca8113 cells by 
targeting MTSS1.

[193]

TSCC miR-424 & 
miR-19a
(Up)

TGFBR3 Induction Human (TSCC tissues), In 
vitro (CAL-27 cells)

Upregulated miR-19a and − 424 induce EMT and 
migration of TSCC cells.

[83]

TSCC miR-373-3p
(Up)

DKK1 Induction Human (TSCC tissues), In 
vitro (SCC-9 & UM1 cells)

MiR-373-3p induces metastasis and EMT by target-
ing the Wnt/β-catenin pathway.

[235]

TSCC miR-24
(Up)

FBXW7 Induction Human (TSCC tissues), In 
vitro (SCC15 & SCC25 cells)

MiR-24 can promote metastasis of TSCC cells by 
inducing migration and invasion by targeting 
FBXW7.

[210]

TSCC miR-24 PTEN Induction Human (TSCC tissues), In 
vitro (CAL-27 cells)

MiR-24 induces invasion and migration of TSCC 
cells.

[172]

Table 2 (continued) 



Page 14 of 25Eslami et al. Cancer Cell International          (2023) 23:182 

marks p27 for ubiquitination and eventual degradation 
was identified as the F-box protein SKP2 [195]. In certain 
malignancies, low levels of p27 have been linked to faster 
tumor growth and a poor prognosis [195, 196]. MiRNA-
221 was found to target CDKN1B (cyclin-dependent 
kinase inhibitor 1B, also known as p27) [197][198]. More-
over, CDKN1B/p27 has been suggested to be a potential 
therapeutic target and prognostic marker in ovarian can-
cer [199–201]. Yang et al. [202], investigated how miR-
222-3p affected cell division, invasion, migration and 
apoptosis. They found that compared to healthy tissues, 
OSCC tissues had higher levels of miR-222-3p. Also, 
they claimed that miR222-3p might inhibit cell division, 
migration, and invasion as well as cause the death of Tca-
83 and SCC-15 cells. Moreover, testing with luciferase 
reporters showed that miR-222-3p specifically targeted 
CDKN1B in OSCC cells. As a result, OSCC cell migra-
tion, invasion, and proliferation were reduced while the 
rate of cell death was increased when CDKN1B was over-
expressed. Overall, they demonstrated that miR-222-3p, 
which targeted CDKN1B, caused OSCC cells to invade 
and metastasize by acting as an oncomiR, and could be 
used as a predictive biomarker in OSCC patients [202]. 
Chen et al. [203] found that OSCC tissues showed over-
expression of miR-222, and that by targeting CDKN1, it 
could promote invasion and metastasis [203].

The Fbxw7 protein, also known as Sel-10, hCdc4, 
or hAgo, is a substrate for the ubiquitin ligase complex 
called Skp1-Cul1-F-box protein-Rbx1 (SCF), which 
binds to its receptor [204]. SCF is an E3-ubiquitin ligase 
which ubiquitinates certain proteins and leads to pro-
teasome degradation [204, 205]. Moreover, FBXW7 
controls many biological processes, such as cell cycle 
progression, differentiation, and stemness of brain cells, 
maintenance of genomic stability, and cell proliferation 
[206]. In a number of human cancers, FBXW7 acts as a 
tumor suppressor. Recent studies suggested that FBXW7 
contributes to tumor metastasis, because increasing 
FBXW7 reduces cancer metastasis and EMT [204, 207]. 
FBXW7 was recently discovered to be a target gene for 
some miRNAs in various cancers. For example, miR-
223 controlled acute lymphoblastic leukemia by reduc-
ing FBXW7 expression [208]. MiR-27a increased lung 
cancer cell growth by inhibiting FBXW7, demonstrating 
that FBXW7 could act as a tumor suppressor [209]. In 
TSCC cells, proliferation, migration, and invasion were 
markedly reduced when miR-24 was inhibited. When 
FBXW7 was suppressed, this caused TSCC cells to pro-
liferate, migrate, and invade more readily. Conversely, 
when FBXW7 was restored, it significantly reduced the 
oncogenic effect of miR-24. They concluded that miR-24 
could target FBXW7 especially in TSCC cells. As a result, 
miR-24 can promote TSCC cell metastasis by targeting 
FBXW7 and increasing migration and invasion [210]. In 

a different investigation, Jiang et al. demonstrated that by 
reducing the expression of FBXW7 in OSCC cells, miR-
223 could encourage OSCC cell migration [211].

CircularRNA/lncRNA/miRNA networks and oral 
cancer metastasis
Noncoding RNAs (ncRNAs) are crucial for most cell 
biology processes, and also contribute to the growth and 
spread of malignancies. The ncRNAs that control can-
cer cell proliferation, cell death, invasion, and metasta-
sis can be divided into circular RNAs (circRNAs), long 
noncoding RNAs (lncRNAs), as well as miRNAs (dis-
cussed above) [236–238]. NcRNAs control the growth 
of cancer by affecting target gene e asxpression (mRNA) 
[239]. Both lncRNAs and circRNAs contain binding sites 
for specific complementary miRNAs, so they can act 
as competing endogenous RNAs or miRNA sponges, 
thereby enhancing the expression of the miRNA target 
genes. If the miRNAs are removed, they can no longer 
block the translation of mRNAs and silence their target 
gene expression. The regulatory networks for ceRNAs are 
associated with the biological basis of cancer [240, 241]. 
Additionally, circRNAs and lncRNAs may directly inter-
act with various specific proteins to regulate gene tran-
scription [242]. Several studies have examined the role 
of circRNA-lncRNA-miRNA-gene regulatory networks 
in oral cancer metastasis, which we summarize below. 
This research increases our understanding of oral can-
cer pathogenesis, and could provide new opportunities 
for less invasive early detection methods and improved 
therapeutic options.

LncRNA/miRNA networks
LncRNAs are RNA sequences that are over 200 nucleo-
tides long and do not code for any specific proteins. 
LncRNAs are important for the growth, development, 
and metastasis of many different cancers, according to 
accumulating evidence. They are also becoming prom-
ising molecular biomarkers for the prognosis and early 
diagnosis of cancer patients [243, 244]. A variety of tumor 
types may have lncRNAs intriguing therapeutic targets in 
and the pathways that they affect (Fig. 3).

A number of human cancers show aberrant expression 
of LncRNA-H19 [245, 246], which is typically connected 
to the spread of cancer, a poor prognosis, and cancer 
recurrence. H19 has also been shown to control the inva-
sion, metastasis, and migration of different malignancies 
by functioning as a ceRNA [245, 247, 248]. An essential 
mechanism for how H19 controls OSCC metastasis is 
its interaction with certain specific miRNAs. Kou et al. 
[249] discovered that the expression of H19 was higher 
in metastatic TSCC tissues compared to non-metastatic 
TSCC tissues, and that H10 knockdown may reduce 
TSCC cell invasion and migration. According to the 



Page 15 of 25Eslami et al. Cancer Cell International          (2023) 23:182 

proposed mechanism, let-7 was targeted by H19 in order 
to enhance the expression of HMGA2, a crucial regula-
tor of tumor metastasis. In contrast, TSCC cell migra-
tion and invasion were less inhibited by H19 knockdown 
when let-7a was inhibited [249]. According to a different 
study, the expression of H19 was inversely connected 
to overall survival and was favorably associated with 
the TNM stage. According to another study, H19 could 
sponge miR-138, thereby increasing the expression of its 
target gene EZH2, thus promoting OSCC cell invasion, 
migration, and EMT [32].

LncRNA-MEG3 mostly acts as a tumor suppressor, in 
contrast to H19. MEG3 is not highly expressed in an all 
types of cancer according to various studies [250, 251], 
but when it is expressed it inhibits their invasion, metas-
tasis, and migration. By acting as a ceRNA, it has been 
shown that MEG3 could also prevent OSCC from migrat-
ing and invading. Tan et al. [252], showed that OSCC 
tissues generally had low MEG3 expression. In return, 
MEG3 overexpression promoted OSCC cell invasion 

and migration by downregulation of miR-548d-3p. MiR-
548d-3p is inhibited by MEG3, which in turn promotes 
the production of SOCS5 (cytokine signaling suppressor 
5), and SOCS6 (cytokine signaling suppressor 6). Sec-
ondly, the JAK/STAT (Janus kinase/signal transducer 
and activator of transcription) pathway is inhibited by 
SOCS5/SOCS6 to prevent OSCC invasion and migra-
tion [252]. According to a different study, miR-21 and 
MEG3 were inversely associated in OSCC tissues. The 
subsequent dual luciferase assay proved that MEG3 and 
miR-21 directly interacted with each other. Additionally, 
lowering miR-21 would reduce OSCC cell migration, but 
inhibiting MEG3 would partially undo the effect of miR-
21 downregulation on the migration of OSCC cells [253]. 
They suggested that MEG3 may sponge miR-21 thereby 
preventing the OSCC cells from migrating. However, fur-
ther investigations into the underlying molecular mecha-
nisms are necessary, and confirming the role of MEG3 in 
OSCC metastasis will require more in vivo experiments.

Fig. 3 LncRNAs act as competitive endogenous RNAs (ceRNAs). The interactions between lncRNAs and miRNAs play critical roles in the regulation of oral 
cancer metastasis pathways [285]
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LncRNAs-TUG1 is an lncRNA which has been inten-
sively studied. TUG1 has been found to enhance the 
proliferation of OSCC cells by sponging some miR-
NAs which have an inhibitory effect on the cancer cells. 
According to Liu et al., OSCC cells showed high TUG1 
expression levels which could increase the ability of these 
cells to migrate. TUG1 and DLX1 (distal-less homeobox 
1) may compete with one another for binding to miR-
524-5p and thus upregulating DLX1 expression [254]. 
Additionally, Yan et al. found that TUG1 overexpression 
boosted OSCC cell capacity to metastasis in vivo while 
TUG1 knockdown decreased the OSCC cells ability to 
migrate and invade. Further investigation revealed that 
TUG1 and miR-219 inhibited one another in a reciprocal 
fashion, suggesting that suppressing miR-219 in OSCC 
cells might counteract the inhibitory effects of TUG1 
knockdown. They concluded that TUG1 encourages 
metastasis by functioning as a ceRNA to scavenge miR-
219 and increase the expression of the miR-219 target 
FMNL2 (formin-like protein 2) [255].

LncRNA-UCA1 was first identified in bladder can-
cer and has since been shown to facilitate bladder can-
cer cell invasion and migration [256, 257]. Recently, 
OSCC metastasis has also been linked to aberrant 
UCA1 expression. UCA1 is overexpressed in TSCC tis-
sues, according to Fang et al., and its degree of expres-
sion was strongly linked with lymph node metastasis 
[258]. Similarly, Zhang et al. found a link between UCA1 
overexpression and a poor prognosis in TSCC patients, 
especially the occurrence of lymph node metastasis and 
shorter survival. Unexpectedly, UCA1 could sponge 
miR-124 in TSCC cells and therefore negatively regulate 
itself. Further research suggested that UCA1 could acti-
vate the JAG1/Notch pathway by targeting miR-124 to 
increase the production of TGF-1, thus promoting TSCC 
cell invasion and EMT [259]. Additionally, in a different 
study, it was found that UCA1 competitively bound to 
miR-143-3p and affected MYO6 (myosin VI) expression 
thus enhancing TSCC cell invasion, EMT and migration 
[260].

CircRNA/miRNA networks
CircRNAs are a group of closed circular single-stranded 
RNA molecules that can regulate gene expression at 
both the transcriptional and posttranscriptional levels 
[261]. In 2012, Salzman et al. [262] reported that more 
than 10% of expressed genes have the potential to cre-
ate circRNAs. Circular transcripts of the protein linked 
to cerebellar degeneration 1 (CDR1, also called ciRS-7) 
antisense RNA were discovered to act as miR-7 sponges, 
according to a 2013 study by Hansen et al., and Memc-
zak et al. [263, 264]. These studies made circRNAs a new 
focus for scientific investigation in the noncoding RNA 
field. CircRNAs significantly contribute to signaling 

networks that promote the growth and spread of cancer. 
For example, lncRNA-WDFY3-AS2 suppressed OSCC 
cell metastasis by targeting the Wnt/β-catenin signaling 
pathway [265]. The migration, invasion, and metastasis 
of OSCC are likewise affected by dysregulated circRNA 
expression since these genes are regulated by sponging 
of various miRNAs (Table 3; Fig. 4) For instance, Xia et 
al. reported that circ-0001162 (circ-MMP9), a metasta-
sis-associated circRNA, was elevated in OSCC samples 
[266]. Given its strong relationship with MMP9 expres-
sion, circ-MMP9 may serve as a sponge for miR-149 
to target AUF1. This was shown to be correct both in 
vitro and in vivo. Circ-MMP could prevent OSCC from 
spreading by inhibiting MMP9 expression. CircUHRF1 
may up-regulate c-Myc by acting as a miR-526b-5p 
sponge, which may enhance the transcription of ESRP1 
and TGF-1. In OSCC, CircUHRF1 was markedly overex-
pressed [267]. Additionally, it was found that circUHRF1 
could circularize and increase with the aid of ESRP1, cre-
ating a feedback loop between those two factors, as well 
as TGF-1, c-Myc, miR-526b-5p, and ESRP1 that working 
together could promote OSCC carcinogenesis and EMT 
[267]. Studies conducted in vitro have shown that inhibi-
tion of circUHRF1 could reduce the ability of OSCC cells 
to migrate, proliferate, invade, and undergo the EMT. 
Additionally, in vivo functional tests demonstrated that 
blocking circUHRF1 could effectively halt OSCC tumor 
growth. When circ-PKD2 was overexpressed the ability 
of miR-204 to promote cancer metastasis was dramati-
cally reduced, because OSCC migration and and inva-
sion was inhibited. An in vivo study showed that the size 
and weight of OSCC xenografted tumors were greatly 
reduced by overexpression of circ-PKD2 [267]. Dual-
luciferase reporter analysis confirmed that miR-204-3p 
and circ-PKD2 directly interacted, and miR-204-3p tar-
geted APC2 through a downstream signaling pathway 
[22]. The extracellular signal-regulated kinase 1/2, pro-
tein kinase B, and β-catenin pathways were all inhibited 
by circ-PKD2 because it up regulated APC2 and reduced 
the inhibitory effect of miR-204-3p. Moreover another 
circRNA called circDOCK1 was found to strongly 
expressed in OSCC cells, and it was discovered that circ-
DOCK1 targeted miR-196a-5p [22].

Circ-0000140 showed markedly decreased expres-
sion in OSCC patient samples [268]. According to one 
study, low circ-0000140 expression might function as a 
biomarker for OSCC progression, because it is strongly 
associated with OSCC patient poor prognosis [23, 269]. 
However, further research into the function and mecha-
nism of circ-0000140 in OSCC is needed. Recently, 
Peng et al. [269] reported that OSCC patients showed 
downregulation of circ 0000140, and low circ-0000140 
expression was correlated with lymph node metastasis 
and more advanced TMN stage. Additionally, survival 
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analysis revealed that OSCC patients with low circ-
0000140 expression levels had a significantly worse 5-year 
survival rate. Mechanistic studies in vitro showed that 
OSCC cell proliferation, invasion and migration were all 

inhibited by the overexpression of circ-0000140. Further 
evidence that circ0000140 inhibited the EMT in OSCC 
cells was provided by the higher E-cadherin and lower 
N-cadherin protein levels observed in OSCC cells with 

Table 3 LncRNA/circRNA/miRNA networks in oral cancer metastasis
Oral 
can-
cer 
type

circRNA/
lncRNA 
(expression)

miRNA 
(Expression)

Target 
of 
miRNA

Inhibition/ 
Induction of 
metastasis 
by miRNA

Results Ref

OSCC circVAPA
(Up)

miR-132
(Up)

HOXA7 Inhibition CircVAPA promoted OSCC growth by sponging miR-132, which likely 
suppressed the invasion, migration, and metastasis of oral cancer cells by 
targeting HOXA7.

[272]

OSCC LINC00662
(Up)

miR-144-3p
(Down)

EZH2 Inhibition LINC00662 caused EMT, migration, and invasion of OSCC by sponging 
miR-144-3p.

[25, 
26]

OSCC LINC00319
(Up)

miR-199a-5p
(Down)

FZD4 Inhibition LINC00319 promoted OSCC metastasis by sponging miR-199a-5p. [273]

OSCC ZEB1-AS1
(Up)

miR-23a
(Down)

- - Lnc-ZEB1-AS1 induced OSCC metastasis by decreasing the expression of 
miR-23a.

[274]

OSCC circIGHG
(Up)

miR-142-5p
(Down)

IGF2BP3 Inhibition MiR-142-5p prevented OSCC metastasis possibly by targeting IGF2BP; 
conversely, circIGHG promoted EMT of OSCC cells by sponging 
miR-142-5p.

[275]

TSCC LTSCCAT
(Up)

miR-103a-2-5p
(Down)

SMYD3 Inhibition MiR-103a-2-5p prevented TSCC cells from metastasizing by targeting 
SMYD3, whereas lnc-LTSCCAT promoted TSCC metastasis.

[276]

Oral 
can-
cer 
stem 
cell

Lnc-MEG3
(Up)

miR-421
(Down)

- Inhibition Lnc-MEG3 promoted the ability of oral cancer stem cells to invade, but 
co-transfection with miR-421 mimics suppressed the effect of lnc-MEG3.

[277]

TSCC Lnc-AD-
AMTS9-AS2
(Up)

miR-600
(Down)

EZH2 Inhibition Lnc-ADAMTS9-AS2 promoted TSCC migration and EMT by targeting 
miR-600.

[278]

OSCC circDHTKD1
(Up)

miR-326
(Down)

GAB1 Inhibition miR-326 may inhibit OSCC metastasis by downregulating GAB1 expres-
sion, conversely, circDHTKD1 induced metastasis of OSCC by sponging 
miR-326.

[279]

OSCC circ_0020377 miR-194-5p KLF7 Inhibition circ_0020377 promoted invasion and migration of OSCC cells by upregu-
lating KLF7 expression levels through sponging of miR-194-5p.

[271]

OSCC lnc- SNHG5
(Up)

miR-655-3p
(Down)

FZD4 Inhibition Lnc-SNHG5 promoted OSCC invasion and migration by sponging 
miR655-3p.
MiR-655-3p targeted FZD4 and competed with lnc-SNHG5 to suppress 
the invasion and migration of SCC-4 cells.

[280]

OSCC lnc-RC3H2
(Up)

miR-101-3p EZH2 Inhibition Lnc-RC3H2 promoted migration and invasion of OSCC cells by sponging 
miR-101-3p, .
Upregulation of miR-101-3p targeted EZH2 to reduce RC3H2-induced 
invasion and migration in OSCC.

[281]

OSCC linc01234
(Up)

miR-433-3p PAK4 Inhibition Linc01234 targeted miR-433-3p to promote OSCC metastasis [282]

OSCC lnc-TIRY
(Up)

miR-14
(Down)

- Inhibition Lnc-TIRY activated the Wnt/β-catenin pathway and promoted OSCC 
metastasis by sponging miR-14.

[283]

OSCC Lnc-GAS5 miR-21 PTEN Induction Lnc-GAS5 inhibited invasion, migration, and EMT of OSCC cells by target-
ing miR-21/PTEN axis.

[24]

OSCC circ_0000140
(Down)

miR-31
(Up)

LATS2 Induction Circ_0000140 blocked OSCC invasion and migration by sponging miR-
31, which in turn blocked the Hippo signaling pathway. On the other 
hand, miR-31 encouraged OSCC cell invasion and migration by inhibiting 
LATS2.

[284]

OSCC circ_0000140
(Down)

miR-182-5p
(Up)

CDC73 Induction Circ_0000140 inhibited metastasis of OSCC by increasing CDC73 through 
targeting miR-182-5p.

[23]

OSCC circ-PKD2
(Down)

miR-204‐3p
(Up)

APC2 Induction Upregulation of miR-204‐3p promoted metastasis by increasing invasion 
and migration.
CircPKD2 reduced OSCC migration and invasion by targeting miR204-3p

[22]



Page 18 of 25Eslami et al. Cancer Cell International          (2023) 23:182 

overexpressed circ-0000140 [269]. When circ0000140 
was overexpressed in a xenograft mouse model, in addi-
tion to shrinking the tumor, it also prevented lung metas-
tasis of tumors grown from two separate OSCC cancer 

cell lines. Moreover, it was shown that overexpression of 
circ-0000140 caused a > 50% reduction in metastatic lung 
nodules in an in vivo model. Furthermore, circ-0000140 
was found to bind to miR-31 and thus increase the 

Fig. 4 Interaction between circIGHG and miR-142- 5p/IGF2BP3 in OSCC. CircIGHG is a circRNA derived from the IGHG locus. The expression of circIGHG is 
increased in OSCC cells and is positively correlated with poor prognosis in OSCC. MiR-142-5p can inhibit OSCC metastasis by targeting IGF2BP3, in return, 
circIGHG promotes EMT activation of OSCC cells by sponging miR-142-5p and upregulating IGF2BP3 [275]
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expression of its target gene LATS2, which would have 
an effect on the EMT in OSCC cells [269]. LATS1/2 are 
significant regulators of both tumor-suppressor as well 
as oncogenic effectors during cancer spread [270]. Taken 
together, these findings showed that circ-0000140 inhib-
ited OSCC metastasis via targeting the miR-31/LATS2 
axis [269]. In accordance with the findings of Peng et al. 
[269], Guo and colleagues [23] found that OSCC showed 
low levels of circ-0000140 expression, and its overexpres-
sion prevented cell invasion and migration, and reduced 
glycolysis. When circ-0000140 was overexpressed it sup-
pressed OSCC tumor growth in vivo. Moreover, they 
found that circ-0000140 sponged miR-182-5p which tar-
geted CDC73. A miR-182-5p mimic reversed the inhi-
bition of OSCC caused by circ 0000140 overexpression. 
They discovered that circ-0000140 may prevent OSCC 
from spreading by controlling the miR-182-5p/CDC73 
axis [23].

Recently, Hei and colleagues found that the expres-
sion level of circ_0020377 was significantly upregulated 
in OSCC tissue samples and OSCC cell lines. Also, 
they found that miR-194-5p acted as tumor suppressor 
miRNA in OSSC cells by targeting KLF7. Furthermore, 
they observed that upregulated circ_0020377 promoted 
OSCC cancer development and metastasis. Mecha-
nistically, they suggested that circ_0020377 promoted 
invasion and migration of OSCC cells by by sponging 
miR-194-5p and thus upregulating KLF7 [271]. These 
findings suggest that further investigation is required into 
the circRNA-miRNA networks which control signaling 
pathways and related genes that are relevant to the devel-
opment and spread of oral cancer.

Conclusion
Metastatic cancer is still mostly incurable due to the lack 
of effective clinical treatment and our limited under-
standing of how oral cancer metastasizes. Our under-
standing of the roles of certain miRNAs in metastasis has 
advanced a lot in the last ten years. In order to treat oral 
cancer, many of these metastasis-inducing miRNAs could 
be attractive therapeutic targets. It should be emphasized 
that certain lncRNAs or circRNAs have the ability to reg-
ulate the actions of specific miRNAs. Moreover, a single 
miRNA (or a miRNA cluster/family) may play more than 
one role in the invasion-metastasis cascade. For example, 
miR-200 family members inhibit tumor cell EMT, migra-
tion, and infiltration, but they can also aid in metastasis 
by increasing the suitability of the OSCC microenviron-
ment for invasion. Therefore, prior to entering clinical 
trials, the therapeutic potential of miRNA-based thera-
peutics should be rigorously assessed using relevant 
laboratory models and in real life clinical situations. A 
full understanding of the role of miRNA biogenesis and 
their mode of action in metastasis requires further study. 

Crosstalk between miRNAs and lncRNAs/circRNAs has 
recently become a fascinating study area (Table 3). None-
theless, functional investigations have shown that miR-
NAs are an important pathway by which ceRNAs can 
control oncogenes and tumor suppressor genes. There-
fore, future studies must pay greater attention to the cir-
cRNA/lncRNA-miRNA-mRNA networks in oral cancer 
metastasis.
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