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Abstract 

Ovarian cancer (OV) is the most lethal gynecological malignancies worldwide. The coagulation cascade could 
induce tumor cell infiltration and contribute to OV progression. However, coagulation‑related gene (CRG) signature 
for OV prognosis hasn’t been determined yet. In this study, we evaluated the prognostic value of coagulation scores 
through receiver operating characteristics (ROC) analysis and K‑M curves, among OV patients at our institution. Based 
on the transcriptome data of TCGA‑OV cohort, we stratified two coagulation‑related subtypes with distinct differ‑
ences in prognosis and tumor immune microenvironment (p < 0.05). Moreover, from the 6406 differentially‑expressed 
genes (DEGs) between the GTEx (n = 180) and TCGA‑OV cohorts (n = 376), we identified 138 potential CRGs. Through 
LASSO‑Cox algorithm, we finally distinguished a 3‑gene signature (SERPINA10, CD38, and ZBTB16), with promising 
prognostic ability in both TCGA (p < 0.001) and ICGC cohorts (p = 0.040). Stepwise, we constructed a nomogram based 
on the clinical features and coagulation‑related signature for overall survival prediction, with the C‑index of 0.6761, 
which was evaluated by calibration curves. Especially, based on tissue microarrays analysis, Quantitative real‑time 
fluorescence PCR (qRT‑PCR), and Western Blot, we found that aberrant upregulation of CRGs was related to poor 
prognosis in OV at both mRNA and protein level (p < 0.05). Collectively, the coagulation‑related signature was a robust 
prognostic biomarker, which could provide therapeutic benefits for chemotherapy/immunotherapy and assist clinical 
decision in OV patients.
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Introduction
Ovarian cancer (OV) is one of fatal gynecological malig-
nancies worldwide, which threatens women’s safety 
and health [1]. There were 19,710 new cases and 13,270 
deaths related to OV in the United States, which was 
estimated for 2023 [2]. Due to the lack of specific symp-
toms and signs, approximately 70% OV patients were 
diagnosed at advanced stages, which could lead to a poor 
5-year overall survival (OS) rate of 30% [3, 4]. After the 
initial therapy of surgery followed with platinum-based 
chemotherapy, almost 70% OV patients finally suffer 
tumor recurrence [5]. Accordingly, there is a pressing 
urgency to identify appropriate prognostic biomarkers, 
so as to carry out personalized treatment.

Coagulation, one of the hallmarks of tumor, could 
be a consequence of increasing plasma extravasation 
and vascular permeability which leads to extravascu-
lar coagulation，or be activated by disruption of vessels 
which leads to intravascular coagulation [6]. Patients 
with malignant tumors are prone to develop coagula-
tion disorders, including cancer-associated thrombosis 
(CAT) [7]. Accumulating evidence shows that tumor cells 
could release procoagulant factors, such as tissue fac-
tors, which might trigger coagulation cascades [8]. On 
the other hand, tumor coagulum, a cancer-driven net-
work of molecular effectors favoring bleeding or throm-
bosis, could interact with the tumor microenvironment 
(TME) to orchestrate cancer inhibition or progression 
[9]. Accordingly, anticoagulants could be an effective 
adjuvant treatment to the Immune Checkpoint Blockers 
(ICB) therapy to boost antitumor immunity, which have 
been validated in malignant melanomas [10]. As for OV, 
our recent research indicated that OV patients with the 
disorder of coagulation system suffered poor prognosis 
[11], though the role of coagulation in OV was still not 
clearly understood yet.

Therefore, in this study, we used bioinformatics algo-
rithms to assess the relevance of coagulation with TME in 
OV. Based on the TCGA cohort, we identified the coag-
ulation-related molecular subtypes through the unsu-
pervised clustering algorithm, and compared the TME 
and immunotherapy response. We further filtered dif-
ferential CRGs significantly associated with OV patient 
prognosis and constructed a 3-gene prognostic model 
(SERPINA10, CD38, and ZBTB16), which could provide 
a promising candidate tool to predict OV prognosis and 
facilitate clinical management.

Methods
Patient selection and data collection
The overall flowchart of the research was shown in 
Fig.  1. We retrospectively reviewed data from 422 OV 
patients who underwent surgery at Renji Hospital 

Affiliated to Shanghai Jiaotong University School of 
Medicine between June 2008 and January 2018. The cri-
teria for inclusion were: (1) no co-existing or prior can-
cers within 5 years; (2) histologically confirmed OV; (3) 
underwent standard operation aimed to achieve optimal 
tumor debulking followed by platinum-based chemo-
therapy; and (4) with available clinical data. Patients were 
excluded from our study if they: (1) underwent preopera-
tive therapies, such as neoadjuvant treatment (n = 18); (2) 
had concomitant diseases related to abnormal coagula-
tion levels (including venous thromboembolism, dis-
seminated intravascular coagulation etc.) (n = 15); (3) 
took anticoagulant/ procoagulant treatment (n = 11); (4) 
were lost to follow-up (n = 32). Finally, 346 patients were 
involved in our research (Fig. 2A).

Patient demographics, including age, tumor size, his-
tologic grade, and clinical stage were collected from 
medical records at our institution. The blood tests for 
coagulation indexes were conducted 1 day before opera-
tion. The Ethics Committee of the Renji Hospital Affili-
ated to Shanghai Jiaotong University School of Medicine 
approved the research, while all patients could provide 
informed consents for the usage of their information on 
research purpose.

Publicly available datasets and preprocessing
Based on the GeneCards website (https:// www. genec 
ards. org/), we retrieved Coagulation-related genes 
(CRGs, Relevance Score ≥ 3) via searching the term 
“coagulation”. We have downloaded both RNA-sequenc-
ing (RNA-seq) data and corresponding clinical char-
acteristics from the Cancer Genome Atlas website 
(https:// portal. gdc. com; TCGA) as the training cohort, 
and the International Cancer Genome Consortium 
website (https:// dcc. icgc. org; ICGC) as the validation 
cohort. Meanwhile, we downloaded transcriptome data 
of normal tissues from the Genotype-Tissue Expression 
database (https:// gtexp ortal. org; GTEx) as controls. We 
converted the probes into gene symbols through the 
corresponding platform annotation file and normalized 
the raw count data through the limma package (R soft-
ware, version 3.36.2). According to the adjusted P < 0.05 
and cut-off criteria of | Log2 (Fold Change) |> 1, we fil-
teredthe differentially-expressed genes (DEGs) between 
OC tissues and controls. Moreover, we evaluated the 
underlying functions of the potential DEGs through 
Gene Ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis.

https://www.genecards.org/
https://www.genecards.org/
https://portal.gdc.com
https://dcc.icgc.org
https://gtexportal.org
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Identification of coagulation subtypes and somatic 
mutation analysis
Based on the Genecards dataset (https:// www. genec 
ards. org), we defined  373 CRGs with Relevance 
Score ≥ 3. We applied the unsupervised clustering 
Pam method of Euclidean and Ward’s linkage, so as to 
identify coagulation-related. We defined the coagula-
tion subtypes using the “ConsensusClusterPlus” pack-
age in R software and repeated the procedure 100 
times to ensure classification stability. Stepwise, we 
performed the Principal component analysis (PCA) 
to visualize distribution difference of the coagulation-
related subtypes. We also evaluated the relationships 
between the coagulation subtypes and clinical fea-
tures such as age, clinical stage, pathological grade, 
and histologic type, which were visualized the asso-
ciation by the Sankey diagram, using the “ggalluvial” 
package in R software. We applied the Kaplan–Meier 
survival curves analysis to compare prognosis of dif-
ferent clusters in the TCGA-OV dataset.  The data of 
somatic mutations were downloaded from Genomic 

Data Commons and visualized using the “maftools” 
package in R software. The Oncoplot showed the 
somatic landscape of OV cohort, stratified by coagula-
tion subtype.

Analysis of immune landscape and drug sensitivity
In order to provide a brief view of the immune microen-
vironment, we verified the abundance proportion of 22 
typical tumor-infiltrating immune cells through the CIB-
ERSORT algorithm (https:// ciber sortx. stanf ord. edu/) [12]. 
To predict patient response towards immunotherapy, we 
analyzed the relationship between the coagulation-related 
signature and immune checkpoint genes expression, 
including CTLA4, CD274, LAG3, HAVCR2, PDCD1LG2, 
PDCD1, SIGLEC15, and TIGIT, through the Pearson’s 
test. According to the TIDE datasets (http:// tide. dfci. harva 
rd. edu), we evaluated the Potential immune checkpoint 
blockade (ICB) response of OV patients.

Additionally, in order to evaluate patient response towards 
chemotherapy, we downloaded the drug response data and 

Fig. 1 The overall flowchart of the research. DEGs, differentially‑expressed genes; PPI, protein–protein interaction

https://www.genecards.org
https://www.genecards.org
https://cibersortx.stanford.edu/
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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genomic markers of drug sensitivity from the Genomics of 
Drug Sensitivity in Cancer datasets (https:// www. cance rrxge 
ne. org, GDSC), one of the largest public pharmacogenomics 
database worldwide. Next, we conducted the prediction for 
half-maximal inhibitory concentration values (IC50) through 
the Ridge Regression, which was performed via the "pRRo-
phetic" package of R software.

Construction and validation of coagulation‑related 
signature
We filtered the differentially-expressed genes (DEGs) 
between OV tissues and controls, with | Log2 (Fold 
Change) |> 1 and the adjusted P < 0.05. Then, we identi-
fied differentially expressed coagulation-related genes 
(DE-CRGs) through Venn diagram. To evaluate progno-
sis value of the identified DE-CRGs, the Kaplan–Meier 
(K–M) curves were applied. Stepwise, in order to filter 
prognostic CRGs for signature construction, we per-
formed the Least Absolute Shrinkage and Selection 

Operator (LASSO)—COX Regression algorithm with 
tenfold cross-validation, using the "glmnet" package of 
R software. Through the "timeROC" package of R soft-
ware, we also conducted the ROC analysis for 1-year, 
3-year, and 5-year survival rate of patients. Furthermore, 
in order to select independent risk factors of OV prog-
nosis, we performed both uni-variate and multi-variate 
Cox Regression analyses. Based on the selected variables, 
we then constructed a nomogram for 1-year, 3-year, 
and 5-year prognosis through the “rms” package of R 
software.

Immunohistochemistry evaluation
For the immunohistochemistry (IHC) analysis, tissue 
samples were de-waxed, hydration, and wash. After 
microwave antigen retrieval procedure, the sections 
were then treated with 3%  H2O2 for blockage of endog-
enous peroxidase activity. The sections were micro-
waved for antigen retrieval, and then treated with 3% 

Fig. 2 Clinical significance of coagulation indexes in ovarian cancer (OV) prognosis. A The flowchart of OV patient enrollment. B The Receiver 
operating characteristic (ROC) curves of coagulation variables including thrombin time (TT), prothrombin time (PT), activated partial 
thromboplastin time (APTT), fibrinogen, international normalized ratio (INR), and the combination of fibrinogen and international normalized 
ratio (F‑INR) for predictive recurrence‑free survival (RFS, left) and overall survival (OS, right) among OV patients. C The relationship between F‑INR 
and the International Federation of Gynecology and Obstetrics stage (FIGO stage, left, up), pathological grade (right, up), histological type (left, 
bottom), and tumor size (right, bottom). D The univariate (up) and multivariate (bottom) Cox Hazards Regression analysis for OS in OV patients. E. 
The Kaplan–Meier survival curves classified by the F‑INR for RFS (left) and OS (right) among all OV patients. HR, hazard ratio; 95% CI 95% confidence 
interval

https://www.cancerrxgene.org
https://www.cancerrxgene.org
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H2O2 for endogenous peroxidase blockage. Stepwise, 
the slides were sequentially incubated overnight with 
Anti- ZBTB16 antibody (ABclonal, A5863, 1:50) and 
horseradish peroxidase (HRP)—conjugated second-
ary antibody (Abclonal, AS014). Then, we visualized 
and counter-stained the signals by diaminobenzidine 
and hematoxylin. Without information about patients, 
2 experienced pathologists scored the signal intensity 
and percent of IHC slides independently. The stain-
ing intensity was graded on a four-tier scale, from 0 to 
3 (0 = absent, 1 = weak, 2 = moderate, and 3 = strong). 
The histochemistry score (H-score) was determined 
semi-quantitatively based on the staining intensity 
and proportion of labeled cells: H-Score = 1* percent 
of weak intensity cells + 2* percent of moderate inten-
sity cells + 3* percent of strong intensity cells. Higher 
H-score was defined as higher protein expression (max-
imum score, 300) [13].

RT‑PCR analysis
Following the manufacturer’s instructions, the total 
RNA from tissues was extracted through Trizol Reagent 
(Merk, T9424) and then reverse transcribed into cDNA 
though the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Fisher Scientific, K1622). Stepwise, we con-
ducted the polymerase chain reaction (PCR) analysis via 
the SYBR Green Master Mix (Thermo Fisher Scientific, 
A25742). All the reactions were repeated for at least 3 
times. We designed the primer sequences as follows: 
GAPDH, Forward: 5′-GGC AAA TTC CAT GGC ACC G 
-3′ and Reverse: 5′- TCG CCC CAC TTG ATT TTG GA 
-3′; ZBTB16, Forward: 5′-GAG ATC CTC TTC CAC CGC 
AAT -3′ and Reverse: 5′-CCG CAT ACA GCA GGT CAT 
C -3′; CD38, Forward: 5′-AGA CTG CCA AAG TGT ATG 
GGA -3′ and Reverse: 5′ -GCA AGG TAC GGT CTG AGT 
TCC; SERPINA10, Forward: 5′-TCT TTA AGG GAC TCA 
GAG AGACC -3′ and Reverse: 5′-TGT GAG GCA TTG 
CGA AAA TTCA. GAPDH was set as an internal con-
trol. The comparative expression level was evaluated by 
2-ΔΔCt method.

Western blot analysis
Total protein of tissues was extracted through the ice-
cold radioimmunoprecipitation lysis buffer (RIPA, 
Thermo Fisher Scientific, 89,900), which contained the 
protease inhibitor cocktail (Merk, P8340). Subsequently, 
the extracted proteins were quantified through the BCA 
Assay Kit (Beyotime, P0010) and boiled for degeneration. 
Then, we separated the proteins in SDS-PAGE (Yeasen, 
20315ES05) and transferred them into the PVDF mem-
brane (Merk, 3,010,040,001). After being blocked into 
5% Bovine serum albumin (BSA, Yeasen, 36104ES25), 
the PVDF membrane was then incubated with primary 

antibodies: Anti-beta-actin (Proteintech, 20,536, 1:1000), 
Anti- ZBTB16 antibody (ABclonal, A5863, 1:1000), Anti-
SERPINA10 antibody (ABclonal, A7106, 1:1000), and 
Anti-CD38 antibody (ABclonal, A1680, 1:1000). Step-
wise, the membranes were incubated in secondary anti-
bodies: Goat Anti-Mouse IgG (Proteintech, SA00001-1, 
1:1000) and Goat Anti-Rabbit IgG (ABclonal, AS014, 
1:1000), followed by enhanced chemiluminescence to 
display bands.

Statistical analysis
We evaluated differences of continuous and categorical 
variables through T-test and Chi-square test, respec-
tively. We determined prognostic factors using both 
univariate and multivariate analyses through the Cox’s 
Hazards Regression classifier. Stepwise, survival curves 
were graphed by Kaplan–Meier methods and compared 
via the Log-rank test. The ROC curve was applied and 
the area under the curve (AUC) were evaluated among 
coagulation indexes. All bioinformatic statistical analy-
ses were conducted by the R software (version 4.0.3). 
The P < 0.05 was defined as statistically significant for all 
applied tests.

Results
Clinical significance of coagulation indexes in ovarian 
cancer prognosis
According to the inclusion and exclusion criteria, a 
total of 346 OV patients were finally involved in the 
study (Fig.  2A). The clinicopathological features of OV 
patients were listed in Table  1. The median and mean 
follow-up time for patients was 50  months (range, 
28–73  months) and 54.58 ± 33.17  months. According 
to the ROC curves of coagulation variables, compared 
to activated partial thromboplastin time (APTT), pro-
thrombin time (PT), and thrombin time (TT), fibrino-
gen and International normalized ratio (INR) had 
superior predictive value, with the area under curve 
(AUC) of 0.658 (95% CI 0.598–0.718) and 0.643 (95% CI 
0.585–0.670) for RFS; 0.640 (95% CI 0.582–0.698) and 
0.684 (95% CI 0.626–0.742) for OS ( Fig. 2B). Based on 
the Youden index, the cut-off values were set at 3.95 g/L 
for fibrinogen and 0.84 for INR.

Patients were then classified into three F-INR score 
groups referring to the cut-off values as following: F-INR 
score = 2 (fibrinogen ≥ 3.95  g/L and INR < 0.84), F-INR 
score = 1 (fibrinogen >  = 3.95  g/L or INR < 0.84), and 
F-INR score = 0 (fibrinogen < 3.95 g/L and INR >  = 0.84). 
The AUC value for the F-INR scoring was 0.712 (95% CI 
0.658– 0.767) and 0.692 (95% CI 0.636–0.749) for RFS 
and OS, respectively. The correlation between F-INR 
and other clinicopathological features was presented in 
Table 1. We found that patients with higher F-INR score 
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had more advanced FIGO stage (p = 0.00035, Fig.  2C). 
Then, through univariate and multivariate analyses, we 
determined that besides tumor side and FIGO stage, 
F-INR (HR 3.89; 95% CI 2.33–6.49; p = 0.000) was also an 
independent prognostic factor for OV patients ( Fig. 2D). 
The K–M curves (Fig. 2E) indicated that F-INR score was 
significantly associated with both RFS (p < 0.0001) and 
OS (p < 0.0001).

Identification of coagulation‑related subtypes and somatic 
alteration landscape
The transcriptome data and corresponding clinical features of 
376 patients were obtained from the TCGA-OV cohort. Based 
on the unsupervised clustering method, we determined two 
different regulation patterns, including the coagulation-related 
cluster 1 (n = 141) and cluster 2 (n = 235) (Fig.  3A). Through 
the Principal Component Analysis (PCA), patients could be 
divided into two remarkably different subtypes (Fig. 3B). Then, 

we conducted K-M survival analysis of the TCGA-OV cohort, 
which suggested the survival advantage of cluster 1 over cluster 
2 (p-value = 0.0171) (Fig.  3C). The relationship between vari-
ous clinical features and coagulation subtypes was displayed in 
Fig. 3D. To evaluate the genomic features of coagulation-related 
subtypes in OV, we visualized the Somatic cell copy number 
alternation (SCNA) and mutation frequency of the TCGA-OV 
patients. The CRGs with the highest mutation frequency are 
APOB (21.1%), LRP1 (16.5%), and RYR1 (16.5%) (Fig. 3E).

The immune landscape and drug sensitivity 
of the coagulation subtypes
In order to evaluated the relationship between tumor 
immune microenvironment and the coagulation sub-
types, we analyzed the landscape of immune infiltration 
of 22 typical immune cells among OV patients, based 
on the CIBERSORT algorithm (Fig.  4A). As shown in 
Fig.  4B, we found that 6 out of the 22 immune cells 

Table 1 Clinicopathological features of 346 ovarian cancer (OV) patients

APTT Activated partial thromboplastin time, PT Prothrombin time, TT thrombin time, INR International normalized ratio, F-INR The combination of fibrinogen and INR

Features Without recurrence (n = 120) With recurrence (n = 226) p‑value

Age (years) 56.18 ± 9.52 59.19 ± 11.13 0.060

Tumor size (cm) 7.75 ± 4.51 7.65 ± 4.89 0.559

Tumor side, n (%) 0.000

 Unilateral 87 (72.5%) 99 (44.0%) −

 Bilateral 33 (27.5%) 127 (56.0%) −

Pathological grade, n (%) 0.886

 G1–2 23 (19.2%) 42 (18.6%) −

 G3 97 (80.8%) 184 (81.4%) −

Clinical stage, n (%) 0.000

 I–II 75 (62.5%) 55 (24.3%) −

 III–IV 45 (37.5%) 171 (75.7%) −

Histological type, n (%) 0.003

 Serous 73 (60.8%) 177 (78.3%) −

 Mucinous 4 (3.3%) 8 (3.5%) −

 Endometrioid 18 (15.0%) 14 (6.2%) −

 Others 25 (20.8%) 27 (11.9%) −

Ascites, n (%) 0.000

  < 500 ml 98 (81.7%) 121 (53.5%) −

  > 500 ml 22 (18.3%) 105 (46.5%) −

 CA‑125 (U/mL) 552.17 ± 844.30 1403.96 ± 1784.31 0.000

 Fibrinogen (g/L) 3.45 ± 1.43 4.49 ± 2.35 0.002

 APTT (s) 27.51 ± 6.43 26.93 ± 7.34 0.148

 PT (s) 13.23 ± 10.35 12.23 ± 4.37 0.029

 TT (s) 16.40 ± 2.01 15.37 ± 2.79 0.005

 INR 1.01 ± 0.13 0.89 ± 0.20 0.000

F‑INR, n (%) 0.000

 F‑INR = 0 92 (76.7%) 85 (37.6%) −

 F‑INR = 1 28 (23.3%) 108 (47.8%) −

 F‑INR = 2 0 (0.00%) 33 (14.6%) −
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proportions, including CD4 + memory T cells, CD8 + T 
cells, gamma delta T cells, activated NK cells, resting 
mask cells, and neutrophils were significantly up-regu-
lated in cluster 1, while naïve B cells and active mask cells 
were down-regulated in cluster 1.

Subsequently, we examined the correlations between 
coagulation subtypes sensitivity to immunotherapy and 
chemotherapy. The results implied that, among main 
immune checkpoint molecules, only CD274, HAVCR2, 
PDCD1LG2, and SIGLEC15 were significantly higher 
in cluster 2, compared with cluster 1 (Fig.  4C, p < 0.05), 
which indicated that cluster 2 patients could be more 
likely to benefit from immunotherapies based on these 
typical immune checkpoints. Through the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm, 
we found that cluster 2 patients had significantly higher 
TIDE score, which suggested poorer efficacy towards 
Immune checkpoint blocking (ICB) therapy and shorter 
survival after ICB therapy (Fig. 4D, P = 0.04).

Based on the Genomics of Drug Sensitivity in Cancer 
(GDSC) database, we also assessed chemotherapy sensi-
tivity between two coagulation subtypes. In Fig.  4E, we 
estimated the half-maximal inhibitory concentration 

(IC50) of 8 common chemotherapy agents. The results 
implied that the estimated IC50 levels of Paclitaxel, Vin-
blastine, Docetaxel, Gemcitabine, Sorafenib, and Veli-
parib in cluster 1 were significantly higher, indicating 
that cluster 2 patients were more sensitive to these drugs. 
However, the IC50 levels of Cisplatin was lower in cluster 
1.

Identification of key coagulation‑related genes in ovarian 
cancer
The transcriptome data from 376 patients and 180 con-
trols was obtained from the TCGA and GTEx database, 
respectively. We identified 6406 differentially-expressed 
genes (DEGs), among which 2333 DEGs were up-reg-
ulated and 4073 DEGs were down-regulated in OV, 
compared with normal tissues (Fig. 5A and Fig. 5B). For 
further analyses, 373 CRGs were downloaded from the 
Genecards website (https:// www. genec ards. org), among 
which 138 CRGs were differentially expressed between 
OV tissues and normal controls in the Venn plot (Fig. 5C). 
Then, we processed pathways enrichment analysis of the 
138 differentially expressed coagulation-related genes 

Fig. 3 Identification of coagulation‑related subtypes and somatic alteration landscape. A The heatmap of consensus matrices for TCGA‑OV 
patients. To ensure clustering stability, 1000 iterations of unsupervised consensus clustering method was applied. B The Principal Component 
Analysis (PCA) analysis of coagulation subtypes in the TCGA‑OV cohort. C The Sankey diagram for the coagulation‑related subtypes and clinical 
features, including age, grade, FIGO stage, and survival status. D The Kaplan–Meier (K–M) survival curves for TCGA‑OV patients, which were stratified 
by the coagulation‑related subtypes. E The landscape of genomic aberrations of the genes in the two coagulation‑related cluster of TCGA‑OV 
patients. The frequency of alterations in top 20 genes were listed

https://www.genecards.org
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(DE-CRGs) through the Metascape website (https:// 
metas cape. org) [14] (Fig. 5D). The GO and KEGG path-
ways were mainly enriched in complement and coagula-
tion cascades, inflammatory response, immune effector 
process, etc. In Fig. 5E, we also processed the identified 
DE-CRGs through the Search Tool for the Retrieval of 
Interacting Genes (STRING, https:// string- db. org) [15], 
in order to graph a protein–protein interaction (PPI) 
network.

Establishment and evaluation of a prognostic signature 
based on CRGs
In order to identify the prognostic signature, we con-
ducted the LASSO-Cox algorithm, a common method to 
enhance forecast accuracy of model. From the above 138 
DE-CRGs, seven prognostic genes (SERPINA10, CD38, 
ZBTB16, ALG9, ANO6, CFI, and RUNX1) were filtered 
through the LASSO algorithm (Fig. 6A). The overview of 
the seven potential DE-CRGs with prognosis value was 
listed in Table  2 [16–23]. The expressions of the seven 
potential prognostic CRGs in OV and normal tissues 
were presented in Fig. 6B.

Among the 7 potential DE-CRGs, RUNX1 is best 
known for its profound and multifaceted roles in hemat-
opoiesis at various lineage decision points [24]. At the 
same time, RUNX1 could contribute to the maintenance 
of adult stem cells in multiple epithelia, and function as 
a tumor suppressor in mammary epithelial cells [25, 26]. 
Due to its involvement in multiple cellular compart-
ments, we deepened our analysis of RUNX1 expression 
and found that RUNX1 was indeed highly over-expressed 
in OV tissues (Fig.  7A and B), consistent with previ-
ous reports [27, 28]. Furthermore, OV patients with 
high RUNX1 expression have worse survival (Fig.  7C). 
RUNX1 over-represented tumors have significantly up-
regulated memory B cells and CD4 + memory T cells, 
while low-RUNX1 tumors have up-regulated plasma B 
cells (Fig. 7D). Lastly, the pseudo time trajectory analysis 
of cells in OV tissues with RUNX1 expression revealed 
that RUNX1 is over-expressed in myeloid cells and 
malignant OV cells, providing further support for a posi-
tive correlation between high RUNX1 expression and OV 
malignancy (Fig. 7E–G). As RUNX1 has two promoters: 
P1 (most active in hematopoietic lineages) and P2 (active 
in epithelial cells) [29, 30], we examined the expression of 

Fig. 4 The immune landscape and drug sensitivity of the coagulation subtypes. A The stacked histogram showing the composition of the 22 
typical immune cells infiltrating in ovarian cancer tissues, based on the CIBERSORT algorithm. B The violin diagram graphed the difference of 22 
immune cells infiltration related to the coagulation subtypes. C The distribution of immune checkpoints expression between two coagulation 
subtypes. D Immune checkpoint blocking (ICB) therapy prediction for OV patients, through the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm. E The estimated half‑maximal inhibitory concentration (IC50) values of 8 common chemotherapy agents among two coagulation 
subtypes, based on the Genomics of Drug Sensitivity in Cancer (GDSC) database

https://metascape.org
https://metascape.org
https://string-db.org
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various RUNX1 isoforms in OV (Additional file 1: Figure 
S1A). The results revealed that the ENST00000344691.8 
isoform, one of the P2 transcripts, had the highest 
expression in OV tissues, suggesting a significant contri-
bution from epithelial cells (Additional file 1: Figure S1B). 
Nevertheless, there was no difference between the overall 
expression of P1 and P2 transcripts, reflecting the mul-
tiple cellular sources of RUNX1 transcripts within OV 
tumors (Additional file 1: Figure S1C).

Then, we used both univariate and multivariate 
Cox Regression algorithm to distinguish prognos-
tic genes, namely SERPINA10, CD38, and ZBTB16 
(Fig. 6C). Ultimately, the prognostic signature was estab-
lished as following: Riskscore = −3.458*SERPINA10–
0.269*CD38 + 0.159*ZBTB16. The K-M survival curves 
indicated that OV patients with up-regulated SER-
PINA10 and CD38 had better OS, while those with up-
regulated ZBTB16 suffered worse OS (Fig. 6D). We also 
graphed the distribution of each patient, according to dif-
ferent clinical variables and the risk groups classified by 
the coagulation signature (Fig. 6E).

Based on the above formula, we calculated the riskscore 
of every patient in both training set (TCGA-OV, n = 376) 

and validation set (ICGC-OV, n = 111). Then, we strati-
fied them into two groups according to the median cut-
off value (Fig. 8A and B), top). In high-risk and low-risk 
groups, we also evaluated the distribution of survival 
status of all patients and expression profiles of the three 
prognostic genes (Fig.  8A and B), middle and bottom). 
Most of death cases were distributed among the high-
risk group, while SERPINA10 and CD38 were highly 
expressed in the low-risk group. The K-M survival curves 
illustrated that high-risk patients suffered worse OS than 
low-risk patients in training set (p < 0.001, Fig.  8C) and 
validation set (p = 0.040, Fig.  8D). Additionally, refer to 
the time-dependent ROC analysis, the coagulation-asso-
ciated signature had promising AUC values for 1-year, 
3-year, and 5-year OS prediction in both training and 
validation sets (Fig.  8E and 8F). These findings dem-
onstrated the reliable prognostic ability of the defined 
signature.

Construction and validation of the coagulation‑associated 
nomogram
As the CRGs were significantly correlated with poor sur-
vival in OV, we performed both univariate (Fig. 9A) and 

Fig. 5 Identification of key coagulation‑related genes (CRGs) in ovarian cancer (OV). A The heatmap diagram for differential gene expression 
between OV and normal tissues. B The volcano diagram showing the differentially‑expressed genes (DEGs) between OV and normal tissues. C The 
Venn plot displaying the overlap of differentially expressed coagulation‑related genes (DE‑CRGs). D Overview of the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis for the top 20 primary biological action clusters of the 138 DE‑CRGs E 
The protein–protein interaction (PPI) network of all the 138 DE‑CRGs
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multivariate (Fig.  9B) Cox Regression analyses to deter-
mine all the independent prognostic factors for OV. The 
results confirmed that riskscore (p = 0.000), FIGO stage 
(p = 0.048) and age (p = 0.003) were prognostic factors for 
OS. Based on the filtered factor, we constructed a quan-
titative nomogram for OS prediction, with the C-index 
of 0.6761(95% CI 0.6331–0.7191) (Fig.  9C). Calibration 
plots indicated ideal consistency between predicted and 
observed 1-year, 3-year, and 5-year survival (Fig.  9D). 
Furthermore, through K-M curve analysis and time-
dependent ROC analysis, we validated the optimum 
performance of the nomogram in both TCGA cohort 
(Fig. 9E) and ICGC cohort (Fig. 9F).

Pan‑cancer analysis of the coagulation‑associated 
signature
In order to determine application of the coagulation-
associated signature in cancers, we performed pan-can-
cer analysis on 34 tumors in the TCGA cohorts. Firstly, 
we compared the riskscore level of tumor tissues and 
normal controls, among which almost all cancers had 
different riskscore level, except for uterine corpus endo-
metrial carcinoma (UCEC), stomach adenocarcinoma 
(STAD), rectum adenocarcinoma (READ), and pheo-
chromocytoma and paraganglioma (PCPG), while adren-
ocortical carcinoma (ACC) ranked the highest riskscore 
(Fig.  10A). Furthermore, we explored the relationship 
between immune cell infiltration and the coagulation-
associated signature in pan-cancer (Fig. 10B). The results 

Fig. 6 Establishment and evaluation of a prognostic signature based on coagulation‑related genes (CRGs). A The λ selection diagram for tenfold 
cross‑validation of LASSO regression model (left). The LASSO coefficient profiles of 7 filtered CRGs in tenfold cross‑validation (right). B The expression 
distribution of the seven potential prognostic CRGs in ovarian cancer (OV) and normal tissues. C The forest plot of univariate (up) and multivariate 
Cox Regression algorithm (bottom) to distinguish prognostic CRGs. D The K–M survival curves of three prognostic CRGs, namely SERPINA10, CD38, 
and ZBTB16. E The Sankey diagram for the coagulation‑related signature and clinical features, including age, grade, FIGO stage
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suggested that CD8 + T cells and Macrophage M1 cells 
were positively related to the signature in pan-cancer, 
while Macrophage M0 cells were inversely related. The 
prognostic value of the coagulation-associated signa-
ture was also evaluated in pan-cancer cohorts through 
the Cox Regression algorithm (Fig. 10C). Through K–M 
curve analysis, we validated the optimum performance of 
the signature (p < 0.05) in glioma (GBMLGG), pancreatic 
adenocarcinoma (PAAD), ovarian serous cystadenocar-
cinoma (OV), skin cutaneous melanoma (SKCM), and 
SKCM-M cohorts (Fig. 10D).

Aberrant upregulation of ZBTB16 in OV was related 
with metastasis and poor prognosis
We involved 36 OV individuals in our institution, which 
were followed up for the media time of 37.88 (31.48–
42.72) months. The clinical characteristics of involved 
OV patients were showed in Additional file 3: Table S3. 
We measured the RNA expression of SERPINA10, CD38, 
and ZBTB16 in the OV tissues through qRT-PCR analy-
sis, which revealed that lower SERPINA10 and CD38 
expressions were found in patients suffered poor prog-
nosis, while higher ZBTB16 expression was found among 
them (p < 0.05, Additional file 2: Figure S2A–C). We also 
conducted the Western Blotting, which further proved 
that protein expression of ZBTB16 significantly increased 
in metastatic lesions, while protein expression of SER-
PINA10 and CD38 expression decreased in metastatic 
samples (Additional file  2: Figure S2D). Stepwise, we 

conducted both univariate (Additional file 2: Figure S2E) 
and multivariate Cox regression analyses (Additional 
file  2: Figure S2F) for prognostic clinical features. The 
results indicated that SERPINA10, CD38, and ZBTB16 
(p = 0.046, 0.040, and 0.008, respectively) were prognostic 
factors, in addition to the FIGO stage (p-value = 0.008). 
In Additional file  2: Figure S2G-I, we concluded that 
patients with higher ZBTB16 expression suffered worse 
OS, while those with higher SERPINA10 and CD38 
expression had better prognosis (p < 0.05), through the 
K–M survival curves. The findings were consisted with 
the results of bioinformatics analysis.

The IHC analysis of tissue microarrays demonstrated 
that ZBTB16 expression staining was mainly located at 
cytosol of tumor cells (Fig.  11A). Moreover, metastatic 
lesions had significantly higher ZBTB16 expression 
(IRS score = 9.73 ± 2.22), compared with primary OV 
lesions (IRS score = 8.54 ± 2.52) and normal ovary tis-
sues (IRS score = 6.11 ± 3.72) (Fig.  11B). The IHC stain-
ing images of primary and metastatic tumor lesions from 
5 representative OV patients were shown in Fig.  11C. 
Through IHC staining analysis of the tissue microarrays 
based on 125 OC cases, we found that ZBTB16 expres-
sion was increased among patients who suffered recur-
rence or death, compared with survivors (Fig.  11D). 
The association between ZBTB16 expression and clin-
icopathological characteristics of all OV patients was 
listed in Table 3, only with significant differences among 

Table 2 Overview of the seven potential differentially expressed coagulation‑related genes (DE‑CRGs) with prognosis value of ovarian 
cancer (OV) [16–23]

Gene Gene name Function in OV Refs.

SERPINA10 Serpin Family A Member 10 SERPINA10, a member of the serpin superfamily of proteinase inhibitors related 
to extracellular matrix (ECM), could be a biomarker for predicting drug sensitiv‑
ity and survival in platinum‑based chemotherapy of OV, though the underlying 
mechanism is still unknown

[16]

CD38 CD38 Molecule CD38 could predict favorable prognosis in OV, by enhancing immune infiltration 
and anti‑tumor immunity in tumor microenvironment

[17]

ZBTB16 Zinc Finger And BTB Domain Containing 16 Unknow in OV. ZBTB16 could bind to specific DNA sequences with the C‑ter‑
minal zinc fingers, so as to suppress transcription via recruiting co‑repressors 
with the amino terminal POZ domain. ZBTB16 affects diverse signaling pathways 
including cell cycle, differentiation, and programmed cell death pathways in solid 
tumors

[18, 19]

ALG9 ALG9 Alpha‑1,3‑Glucosyltransferase Unknow in OV. In acute myeloid leukemia, the mannosyl‑transferase ALG9 regulates 
the proliferation and drug resistance in tumor cells, which could be reversed 
by the sponge effect of MEG3/miR‑155

[20]

ANO6 Anoctamin 6 Unknow in OV. In glioma, ANO6 could promote tumor cell proliferation and inva‑
sion, by regulating the ERK signaling pathway

[21]

CFI Complement Factor I Unknow in OV. Complement factor I, as one of the key negative regulators 
of the complement system, could upregulate the expression of matrix metallopro‑
teinase‑2/‑13 and promote tumor invasion in cutaneous squamous carcinoma cells

[22]

RUNX1 RUNX Family Transcription Factor 1 RUNX1, as a subunit of core‑binding factors in hematopoiesis and leukemia, could 
regulate cisplatin‑induced apoptosis in OV

[23]
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various ZBTB16 expression groups refer to the FIGO 
stage (p-value = 0.014).

The median OS and PFS for involved OV patients 
were 34 (range 14–52) months and 59 (range 25–89) 
months, respectively. The K–M survival analysis 

revealed that ZBTB16 expression was significantly 
related to OS (p < 0.001, Fig. 11E) among OC patients. 
Then, we performed both univariate and multivari-
ate analyses to determine independent prognostic 
factors (Table  4). The results indicated that FIGO 

Fig. 7 RUNX1 play a prominent role in OV prognosis and immune landscape. A The Radar chart represented the RUNX1 gene expression 
in pan‑cancer. B The expression distribution of RUNX1 in TCGA‑OV samples and GTEx normal controls were graphed. The result proved that RUNX1 
was highly expressed OV tissues. C The Kaplan–Meier (K–M) survival curves of RUNX1 in the TCGA‑OV cohort, which indicated that OV patients 
with higher RUNX1 suffered poor survival. D The Violin diagrams showed the expression of the 22 immune cells infiltration through the CIBERSORT 
analysis, which indicated that memory B cells and CD4 + memory T cells were significantly upregulated in patients with high RUNX1 expression, 
while plasma B cells were upregulated in low‑RUNX1 patients. E The UMAP diagram showed high‑quality cells from a 10 × Genomics dataset [45]. 
Ten typical cell types were defined by specific markers. F The pseudo time trajectory analysis of 10 cell types from OV tissues. G The pseudo time 
trajectory analysis of cells in OV tissues with RUNX1 expression
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Fig. 8 Survival evaluation of the signature based on coagulation‑related genes (CRGs) in ovarian cancer (OV). The distribution of riskscore, 
survival status, and survival time for each patient in both A training set (TCGA‑OV, n = 376) and B validation set (ICGC‑OV, n = 111). The histogram 
represented patients stratified into two groups according to the median cut‑off value (top). The scatter plot graphed riskscores corresponding 
to survival time and status (middle). The heatmap showed gene expression of the three CRGs (bottom). The Kaplan–Meier survival curves for overall 
survival (OS) in high‑risk and low‑risk groups of the C training set and D validation set. The time‑dependent Receiver Operating Characteristic (ROC) 
analysis for 1‑year, 3‑year, and 5‑year OS prediction in E training set and F validation set
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stage (HR 2.624; 95% CI 1.050–6.557; p = 0.039) and 
ZBTB16 expression (HR 5.012; 95% CI 2.513–9.994; 
p = 0.001) were significantly associated with OV prog-
nosis. Collectively, ZBTB16, one of the key CRGs, was 
significantly associated with OC metastasis and poor 
prognosis.

Discussion
OV is the most lethal gynecological cancers, with 
increasing incidence and poor prognosis worldwide [1]. 
Recently, emerging studies has reported the interactions 
between coagulation and malignant tumor progression 
in OV [31]. The production and activation of procoagu-
lant factors, including tissue factor (TF), microparticles 
(MPs), proangiogenic factors, and cytokines, could pro-
mote tumorigenesis and cancer development, which 
could finally result in a chronic hypercoagulable state 
and affect immune microenvironment [32]. So far, the 

Fig. 9 Construction and validation of the coagulation‑associated nomogram for ovarian cancer (OV). The forest plot for (A) univariate 
and (B) multivariate Cox Regression analysis of OV survival, containing the coagulation‑associated signature and clinical features. C The 
quantitative nomogram for 1‑year, 3‑year, and 5‑year overall survival (OS) prediction in the TCGA cohort. D The calibration plots for consistency 
between predicted and observed 1‑year, 3‑year, and 5‑year survival. The Kaplan–Meier (K–M) survival curves (left) and time‑dependent ROC curves 
(right) for the E TCGA cohort and F ICGC cohort, which were stratified by the nomogram score
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mechanism of the relationship between coagulation path-
way and cancer prognosis or immune microenvironment 
has remained largely unknown [33]. Hence, we aimed 
to clarify the role of coagulation pathway in prognosis, 
immune microenvironment, and therapeutic response in 
OV.

In our previous research, we estimated the associa-
tion between coagulation and OV, by demonstrating the 
coagulation indexes as prognostic factors for OV patients 
[11]. Stepwise, in this study, we further evaluated the 
prognostic value of more coagulation variables, including 
APTT, PT, TT, fibrinogen, and INR. For the first time, we 
defined the F-INR score, based on two filtered prognostic 

coagulation indexes, namely fibrinogen and INR. Previ-
ous studies indicated that fibrinogen, the coagulation 
factor I transformed from fibrin by activated thrombin, 
could lead to clot formation in the coagulation pathway 
[34]. Meanwhile, the INR system, which was applied to 
standardize PT, could evaluate the “extrinsic coagulation 
pathway” in patients [35]. Accordingly, both indexes were 
deemed as reliable indicators for in vivo coagulation sta-
tus, while hypercoagulation could lead to poor progno-
sis [7]. However, there is still an ongoing blank over the 
underlying mechanisms of relationship between coagu-
lation factors and OV prognosis, thus further in-depth 
insights are needed.

Fig. 10 Pan‑cancer analysis of the coagulation‑associated signature. A The violin plots presented the riskscore level of tumor tissues 
and normal controls in 34 tumors. B The relationship between riskscore and immune cell infiltration level in pan‑cancer, which 
was analyzed through the CIBERSORT algorithm. C The forest plot of the Cox Regression algorithm to distinguish the prognostic value 
of the coagulation‑associated signature in pan‑cancer. D The Kaplan–Meier (K–M) survival curves for glioma (GBMLGG), pancreatic adenocarcinoma 
(PAAD), ovarian serous cystadenocarcinoma (OV), skin cutaneous melanoma (SKCM), and SKCM‑M in the TCGA cohorts, which were stratified 
by the coagulation‑associated signature
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Moreover, in this research, we divided OV patients 
into two remarkably different subtypes based on CRGs 
expression. The K-M survival analysis showed the survival 
advantage of cluster 1 over cluster 2 (p-value = 0.0171). 
Clinical characteristics analysis suggested that there 
were more advanced OV cases in cluster 2, which might 
explain the poor prognosis in this cluster. Consider-
ing the potential relationship between coagulation and 
immune activation, we investigated the landscape of 
immune infiltration between two coagulation-related 
clusters. In our study, CD4 + memory T cells, CD8 + T 
cells, gamma delta T cells, activated NK cells, resting 
mask cells, and neutrophils were significantly infiltrated 

in cluster 1 more than cluster 2, while naïve B cells and 
active mask cells infiltrated in cluster 2. The relationship 
between tumor cells and immune microenvironment is 
extremely complex, while different immune cells have 
different roles. Fridlender and colleagues reported that 
neutrophils are a vital part of the TME, which could be 
polarized into the anti-tumor (N1) or pro-tumor (N2) 
phenotypes [36]. Our previous study also demonstrated 
that increased neutrophil was a poor prognostic bio-
marker for OV patients [37]. A recent study claimed that 
CD8 + T cells were cytotoxic cells that could induce anti-
tumor response through producing interferon-γ (IFN-γ) 
[38], which is consistent with our findings. Accordingly, 

Fig. 11 ZBTB16 expression is up‑regulated in OV and related to poor prognosis. A The representative immunohistochemistry (IHC) staining 
images of ZBTB16 expression of various specimens (including primary OV lesions, metastatic lesions, and normal controls) were listed. 
Original magnification × 200. B Compared with primary OC lesions and normal controls, metastatic lesions had higher ZBTB16 expression, 
measured through IRS score. C The IHC staining images of primary and metastatic tumor lesions from 5 representative OV patients. Original 
magnification × 200. D ZBTB16 expression was increased in patients who suffered recurrence or death, measured through IHC staining analysis 
of the tissue microarrays. E The Kaplan–Meier survival curves for the overall survival (OS, bottom) of 125 OV patients were shown, which reveal 
that the upregulation of ZBTB16 correlates with poor survival
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compared with cluster 2, cluster 1 was significantly asso-
ciated with immune-activation, which might lead to a 
better prognosis.

Nowadays, immunotherapy, including immune check-
point blockade, cancer vaccines, and adoptive cell 
therapy has attracted great interest with improved under-
standing of the molecular basis of immune regulation 
of cancer cells [39]. For instance, our research team has 
developed the “mini DCs”, a nano-vaccine inherited the 
ability of T cells’ stimulation and antigen presentation 
from DCs, which could exhibit superior prophylactic and 
therapeutic efficacy against cancer in the mouse model of 
OV [40]. However, partly due to the immune suppressive 
networks within the OV tumor microenvironment, only 
a few OV patients could benefit from immunotherapy 
[41]. Therefore, a major direction is to investigate effec-
tive biomarkers that could predict responsiveness to 
various immunotherapies, in order to allow precise treat-
ment selection. In our study, we found that the CRGs 
was correlated with immune checkpoint molecules and 
tumor immune landscape, which indirectly indicated that 
coagulation might play a vital role in forecasting immu-
notherapy response. Especially, the CRGs was found to 
be an effective predictor for immunotherapies based 
on immune checkpoints including CD274, HAVCR2, 

PDCD1LG2, and SIGLEC15, though the underlying 
mechanisms still need further elucidation.

After screening based on the LASSO-COX algorithms, 
we identified 3 key CRGs (SERPINA10, CD38, and 
ZBTB16). SERPINA10, also known as Protein Z-depend-
ent proteinase inhibitor (ZPI), could inhibit activated fac-
tor X (FXa) in the coagulation process associated with 
protein Z (PZ), calcium ions, and cephalin [42]. Guo and 
colleagues reported that SERPINA10 was a biomarker for 
predicting platinum sensitivity and survival benefits for 
OV, though the underlying mechanism is still unknown 
[16]. CD38, a multifunctional transmembrane glyco-
protein with ADP-ribosyl cyclase activity, is known to 
be expressed on platelets [43]. CD38 plays an essential 
role in thrombin-induced procoagulant activity of plate-
lets and hemostasis through catalyzing the formation of 
intracellular Ca(2 +) messengers [44]. Consist with our 
findings, Zhu and colleagues concluded that CD38 could 
predict favorable prognosis in OV, by enhancing immune 
infiltration and anti-tumor immunity in tumor microen-
vironment [17]. Among 3 selected CRGs, ZBTB16 was 
the only key genes that was upregulated in OV patients 
with poor prognosis. Recent studies have demonstrated 
ZBTB16 could bind to specific DNA sequences with 
the C-terminal zinc fingers, which could suppress tran-
scription through recruiting co-repressors with amino 

Table 3 The correlation between ZBTB16 expression and clinicopathological characteristics of 125 OV patients

FIGO stage Federation of International of Gynecologists and Obstetricians stage

Characteristic No. of patients ZBTB16 expression p‑value

Low (IRS score < 8) High (IRS score ≥ 8)

Age (n,%) 0.590

 < 55 years 56 (44.8%) 33 (26.4%) 23 (18.4%) −

 ≥ 55 years 69 (55.2%) 37 (29.6%) 32 (25.6%) −

FIGO stage (n,%) 0.014

 I–II 45 (36.0%) 32 (25.6%) 13 (10.4%) −

 III–IV 80 (64.0%) 38 (30.4%) 42 (33.6%) −

Pathology stage (n,%) 0.587

 I–II 54 (43.2%) 32 (25.6%) 22 (17.6%) −

 III 71 (56.8%) 38 (30.4%) 33 (26.4%) −

Histology type (n,%) 0.068

 Serous 78 (62.4%) 47 (37.6%) 31 (24.8%) −

 Mucous 11 (8.8%) 8 (6.4%) 3 (2.4%) −

 Endometrioid 14 (11.2%) 8 (6.4%) 6 (4.8%) −

 Other types 22 (17.6%) 7 (5.6%) 15 (12.0%) −

Tumor diameter (n,%) 0.473

  < 10 cm 62 (49.6%) 37 (29.6%) 25 (20.0%) −

  ≥ 10 cm 63(50.4%) 33 (26.4%) 30 (24.0%) −

Serum CA125 (n,%) 0.221

  < 35 U/ml 20 (16.0%) 14 (11.2%) 6 (4.8%) −

  ≥ 35 U/ml 105 (84.0%) 56 (44.8%) 49 (39.2%) −



Page 18 of 20Yang et al. Cancer Cell International          (2023) 23:232 

terminal POZ domain [18]. Moreover, Brunner and col-
leagues reported that ZBTB16 could affect diverse sign-
aling pathways including cell cycle, differentiation, and 
programmed cell death pathways in solid tumors, though 
still unknown in OV [19]. In our study, we reported that 
the aberrant upregulation of ZBTB16 in OV was related 
with metastasis and poor prognosis through bioinfor-
mation analysis at the very first time. We also validated 
the findings at mRNA and protein level, through tissue 
microarrays analysis, Western Blot, and qRT-PCR.

However, there were also some limitations in our study. 
Firstly, the number of cases in the TCGA-OV cohort is 
still limited. Hence more large-scale datasets are needed 
to verify the findings. Moreover, although the interaction 
between immune microenvironment and coagulation 
pathways were found in the OV patients, the underly-
ing biological mechanisms were still unclear. So, further 
functional and mechanistic experiments are needed to 
verify the roles of the coagulation pathways in OV.

Conclusion
Nonetheless, our study demonstrated that coagulation 
was associated with immune infiltration and prognosis in 
OV. We constructed a novel coagulation-related 3-gene 
signature, including SERPINA10, CD38, and ZBTB16, 
which could provide a robust prognostic tool and facili-
tate clinical guidance for OV patients. Based on the 
coagulation-related signature and clinical features, we 
developed a nomogram model for predicting the survival 
of OV patients within 1–5 years. To validate our findings, 
we also demonstrated that the aberrant upregulation of 
CRGs in OV tissues was related with metastasis and poor 
prognosis. In sum, our systematic study of CRGs revealed 
the vital role of coagulation in OV, providing a new per-
spective for individual treatment.
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org/ 10. 1186/ s12935‑ 023‑ 03040‑3.

Additional file 1: Figure S1. The overview of RUNX1 isoforms in ovarian 
cancer (OV). A The structure of different RUNX1 isoforms. B The expression 
of various RUNX1 isoforms in OV, among which the ENST00000344691.8 

Table 4 Univariate and multivariate analysis of OV prognostic factors

FIGO stage Federation of International of Gynecologists and Obstetricians stage

Characteristic Univariate analysis Multivariate analysis

HR (95% CI) P‑value HR (95% CI) P‑value

Age

  < 55 years Reference − Reference −

  ≥ 55 years 1.052(0.595–1.862) 0.861 1.014(0.556–1.842) 0.97

FIGO stage

 I–II Reference − Reference −

 III–IV 4.238(1.897–9.471) 0.001 2.624(1.050–6.557) 0.039

Pathology grade

 I–II Reference − Reference −

 III 0.727(0.413–1.282) 0.271 0.673(0.348–1.302) 0.239

Histology type 0.850 0.934

 Serous Reference − Reference −

 Mucous 0.591(0.181–1.932) 0.384 1.498(0.311–7.220) 0.614

 Endometrioid 0.875(0.341–2.245) 0.781 1.305(0.475–3.585) 0.606

 Other types 0.977(0.450–2.122) 0.953 1.021(0.409–2.546) 0.965

Tumor diameter

  < 10 cm Reference − Reference −

  ≥ 10 cm 1.253(0.710–2.211) 0.437 1.364(0.749–2.482) 0.310

Serum CA125

  < 35 U/ml Reference − Reference −

  ≥ 35 U/ml 2.680(0.960–7.486) 0.061 2.093(0.511–8.572) 0.305

ZBTB16 expression

 Low (IRS score < 8) Reference − Reference −

 High (IRS score ≥ 8) 5.815(3.009–11.236) 0.001 5.012(2.513–9.994) 0.001

https://doi.org/10.1186/s12935-023-03040-3
https://doi.org/10.1186/s12935-023-03040-3
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isoform had the highest expression. C The expression levels of P1 and P2 
RUNX1 transcripts in OV.

Additional file 2: Figure S2. The coagulation‑related genes could predict 
prognosis for ovarian cancer (OV) patients. The gene expression of (A) 
CD38, (B) SERPINA10, and (C) ZBTB16 in OV tissues, which was evaluated 
through the qRT‑PCR analysis. (D) The Western blotting analysis showed 
the protein expression of CD38, SERPINA10, and ZBTB16 in primary and 
metastatic lesions from representative OV patients. The (E) univariate and 
(F) multivariate Cox regression analysis for OV patient survival, based on 
clinical features and three coagulation‑related genes. The Kaplan–Meier 
(K–M) curves for OV patients, which were stratified by the expression of 
(G) CD38, (H) SERPINA10, and (I) ZBTB16.

Additional file 3: Table S3. The baseline characteristics of ovarian cancer 
(OV) patients.
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