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Abstract 

Background  Immunoblockade therapy based on the PD-1 checkpoint has greatly improved the survival rate 
of patients with skin cutaneous melanoma (SKCM). However, existing anti-PD-1 therapeutic efficacy prediction mark-
ers often exhibit a poor situation of poor reliability in identifying potential beneficiary patients in clinical applications, 
and an ideal biomarker for precision medicine is urgently needed.

Methods  10 multicenter cohorts including 4 SKCM cohorts and 6 immunotherapy cohorts were selected. Through 
the analysis of WGCNA, survival analysis, consensus clustering, we screened 36 prognostic genes. Then, ten 
machine learning algorithms were used to construct a machine learning-derived immune signature (MLDIS). Finally, 
the independent data sets (GSE22153, GSE54467, GSE59455, and in-house cohort) were used as the verification set, 
and the ROC index standard was used to evaluate the model.

Results  Based on computing framework, we found that patients with high MLDIS had poor overall survival 
and has good prediction performance in all cohorts and in-house cohort. It is worth noting that MLDIS performs 
better in each data set than almost all models which from 51 prognostic signatures for SKCM. Meanwhile, high MLDIS 
have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level 
of infiltration of immune cells in the tumor microenvironment. Additionally, patients suffering from SKCM with high 
MLDIS were more sensitive to immunotherapy.

Conclusions  Our study identified that MLDIS could provide new insights into the prognosis of SKCM and predict 
the immunotherapy response in patients with SKCM.
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Introduction
Skin cutaneous melanoma (SKCM) is a highly hetero-
geneous and highly aggressive malignant tumor, which 
progresses quickly and has a high fatality rate, which seri-
ously endangers human health. The morbidity of SKCM 
have increased in the past decades [1, 2]. Fortunately, 
with the advancement of science and technology, many 
studies have found that PD-1 (programmed cell death 
protein 1) immune checkpoint blockade therapy can sig-
nificantly improve clinical efficacy and patient survival 
through high-level anti-SKCM response induction [3, 
4]. However, studies have also found that only a minor-
ity of patients in immunotherapy tend to have a good 
clinical response to PD-1 blockade therapy, with most 
patients not achieving significant therapeutic effects and 
a small proportion even experiencing severe unexplained 
immune side effects. Moreover, the high cost of immune 
checkpoint inhibitors undoubtedly further increases the 
financial burden on patients [5, 6]. Therefore, the means 
and modalities used to improve the effectiveness of 
clinical use of anti-PD-1 drugs in the course of immune 
blockade therapy have become a major clinical issue to 
avoid ineffective treatment, improve patient survival and 
reduce the medical burden on patients.

Biomarkers provide an effective means for disease 
staging, new drug evaluation, and efficacy assessment. 
Molecular biomarkers such as TMB (tumor mutation 
burden), CTLA-4 (cytotoxic T lymphocyte-associated 
antigen-4), PD-1/PDL1 (Programmed cell death 1 ligand 
1) have been gradually incorporated into clinical guide-
lines. However, these markers have some limitations. A 
large number of patients with positive PD-L1 protein 
expression (at least 40–50%) did not respond positively 
and objectively to PD-1 blockade therapy. In contrast, 
patients with negative PD-L1 protein expression (~ 15%) 
responded well [7]. Moreover, even though high TMB 
characteristics were associated with overall survival, they 
were likely not associated with an objective response to 
PD-1 blockade therapy [8]. Despite the progress in the 
study of PD-L1 protein expression and TMB as predictive 
markers of anti-PD-1 therapy, however, these two mark-
ers still have great deviation, even contradictory results, 
in predicting the degree of benefit of PD-1 blockade and 
the appropriateness of treatment [9, 10]. Inappropri-
ate molecular biomarkers will delay the optimal time of 
treatment and lead to heavy social and economic burden. 
To solve this problem, many multi-gene signatures based 
on specific pathways have been developed (m6a, miRNA, 
lncRNA) [11–13]. Although it was validated using a pub-
lic database, the inadequacy of modeling methods, and 
the lack of rigorous validation limit their wide application 
in clinical practice.

The development of new markers with better predictive 
performance or the establishment of a comprehensive 
rubric consisting of multiple predictive markers are effec-
tive strategies to overcome these problems. However, 
many related studies tend to focus only on the expres-
sion level of single or multiple genes, while neglecting 
the functional relevance of gene co-expression or gene 
co-expression processes and the deeper important char-
acteristic information presented by these functional 
gene networks [14, 15]. Therefore, we attempted to apply 
10 machine learning algorithms to construct a machine 
learning-derived immune signature (MLDIS) in 712 
SKCM patients. We further validated the clinical appli-
cability value of our signature as well as its robust per-
formance for predicting prognosis by comparing it with 
51 published signatures, traditional clinical traits, and 
molecular features. The established MLDIS can stratify 
patients with SKCM and predict the outcome of immu-
notherapy. In summary, our study offers an important 
reference for achieving early diagnosis, prognostic evalu-
ation, stratified management, individualized treatment, 
and improving the clinical outcomes of patients with 
SKCM.

Methods
Data acquisition
The mRNA expression data of SKCM was further 
retrieved by searching the GEO database with the follow-
ing keywords: “skin cutaneous melanoma”, “SKCM”, and 
“melanoma”. To ensure the quality of the collected data, 
the data set must contain the patient’s prognostic infor-
mation and have a valid sample size of not less than 50 
patients. After initial screening, 3 gene expression omni-
bus profiles with prognostic information (GSE22153 
[16], GSE54467 [17], and GSE59455 [18]) were selected 
and downloaded. 57 samples in GSE22153, 79 samples in 
GSE54467, and 141 samples in GSE59455. Subsequently, 
the gene expression data obtained by screening were 
cleaned, and the data of multiple probes corresponding 
to the same gene were averaged and combined. We also 
adopted TCGA public database (N = 457). For immu-
notherapy cohorts, we enrolled 6 cohorts treated with 
immunotherapy: IMvigor cohort [19], GSE35640 [20], 
GSE91061 [21], GSE78220 [22], Van Allen [23], and 
Nathanson [24].

Data preprocessing
The Ensemble ID was converted into gene symbol. Next, 
A FPKM gene expression matrix was acquired from 
TCGA and converted into TPM format [25]. The merged 
expression matrix was then eliminated from batch effects 
and normalized using the R package “sva” [26].
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Immune cell infiltration analysis
SsGSEA method was used to evaluate the content of 28 
immune cells in each tumor tissue sample [27]. To avoid 
computational errors caused by a single algorithm and 
different sets of marker genes for tumor microenviron-
ment (TME), we downloaded immune infiltrate data 
evaluated using the 7 algorithms. Also, we used the ESTI-
MATE algorithm to calculate the immune score and stro-
mal score.

Weighted gene co‑expression network analysis (WGCNA)
This process uses “WGCNA” packets to identify char-
acteristic genes associated with immune cells. First, 
a standardized TCGA-SKCM gene expression profil-
ing was prepared, and then the genes were sequenced 
according to the median absolute deviation (MAD) to 
obtain a list of top 5000 genes. Then, the 5000 genes were 
constructed by gene co-expression network to obtain 
gene pairs. Then, the Pearson correlation coefficients 
between each pair of genes were calculated and the adja-
cency matrix was generated. Then, the adjacent matrix 
is transformed into topological overlap measure (Tom) 
by tomlikeity function. The average linkage hierarchical 
clustering based on Tom dissimilarity is used to clus-
ter genes with similar expression patterns into the same 
module. The characteristic gene is the main component 
of each gene module, and it is also the most representa-
tive expression mode of the module. Then, we calculated 
the gene significance (GS) and the gene module signifi-
cance (MS), and extracted the module genes significantly 
related to the immune cell phenotype for further analysis 
[28].

Functional analysis
To understand the potential functions of module genes, 
we used the “cluterprofile” R package to perform func-
tional analyses of KEGG and GO. Adjusted P val-
ues < 0.05 for the GO pathway and KEGG pathway were 
considered statistically significant [29].

Identify hub genes
To explore differences in expression levels of module 
genes between normal and tumor patients, this study 
used “limma” packages to perform mRNAs differen-
tial expression analysis based on datasets TCGA-SKCM 
and GTEx [30]. Among them, RNAs with adjusted 
P-value < 0.05 and |log2FC|≥ 1 was considered statisti-
cally significant differentially expressed module genes. 
Next, to further verify the expression level of module 
genes and prognostic value. We used "survival" pack-
age to perform univariate Cox analysis and multivariate 
Cox analysis on the module genes. Among them, RNAs 

with P-value < 0.05 were considered statistically signifi-
cant hub genes. To explore the predictive power of hub 
genes for prognosis, the area under curve (AUC) of each 
hub genes was calculated based on the expression data 
of each hub gene using the independent data set TCGA-
SKCM using the “pROC” package [31].

Molecular subtyping of hub genes in a meta‑cohort
The meta-cohort samples were classified into different 
molecular subtypes by consensus clustering based on 
endoplasmic reticulum stress genes through “Consensus 
cluster plus” package, use the cumulative distribution 
function cumulative distribution function to help select 
multiple clusters and achieve cluster stability [32].

Machine learning‑derived immune signature (MLDIS)
The overall workflow of our study is presented in Fig. 1. 
To construct a MLDIS model for SKCM, firstly, we iden-
tified different expression genes and prognosis genes 
between 2 subtypes. Then, a prediction model was fitted 
using 101 algorithm combinations. The initial signature 
discovery was performed in TCGA-SKCM. All the pairs 
of are formed and the one with the best C-index value is 
identified as the optimized parameters. Finally, the inde-
pendent data set (GSE22153, GSE54467, and GSE59455) 
is used as the verification set, and the ROC index stand-
ard is used to evaluate the model.

Patients
The human SKCM tissues were from the Seventh Affili-
ated Hospital of Sun Yat-sen University collected from 
May 2021 to July 2022. This study was approved by the 
Ethics Review Board of the Seventh Affiliated Hospital of 
Sun Yat-sen University. All experiments complied with 
the relevant regulations, and all patients provided writ-
ten informed consent. All patients were aged 18  years 
or older, and received available standard systemic thera-
pies. The clinicopathological data of those patients was in 
Additional file 1: Table S1.

qRT‑PCR
Total RNA from tissues was isolated using TRIzol (Invit-
rogen, Canada) reagent, the specific operation is carried 
out with reference to the instructions for the operation 
of the kit. RNA (1  μg) was converted into cDNA using 
the RevertAid First Strand cDNA Synthesis Kit (Takara, 
China). qRT-PCR was performed using SYBR Green 
Mixture (Takara, China) in the ABI Step One-Plus Sys-
tem (ABI7500, USA). Target gene expression was nor-
malized against GAPDH. Th primer sequences was in 
Additional file 2: Table S2.
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Immunohistochemistry (IHC) staining
Tumor tissue was paraffin-embedded and cut into 
4-µm cross-sections. After dewaxing, antigen repair 
and blocking, sections were incubated with anti-CD8 
(1:200, CST, Shenzhen), anti-PD-1 (1:200, CST, Shen-
zhen), and PD-L1 (1:200, CST, Shenzhen) for 2  h at 
37  °C. The tissue was then incubated with biotin-
labeled goat anti-rabbit secondary antibody for 20 min, 
followed by incubation with HRP-labeled streptavidin 
for 10 min at 37 °C. After washing with PBS, the nuclei 
were stained using hematoxylin solution. We have 
added it. Thank you.

Statistical analysis
This study is based on R (4.2.2) software for statistical 
analysis. Wilcoxon test was used for comparison of two 
groups, and Kruskal–Wallis’s test was used for compar-
ison of multiple groups. In univariate and multivariate 
Cox regression analysis of genes, HR (hazard ratio) > 1 
represents a risk factor for prognosis and HR < 1 rep-
resents a protective factor for prognosis. Correlations 
between variables were explored using Spearman or 
Pearson coefficients. We performed Kaplan–meier sur-
vival analysis using the R package “Survival”. The sig-
nificance level was set at P < 0.05, and all statistical tests 
were two-sided.

Results
Screening of key immune cell‑related gene modules 
in TCGA‑SKCM
To identify key modules of genes associated with 
immune cells, we calculated 28 immune cells infil-
tration assessed by ssGSEA, and then the construc-
tion results of WGCNA were obtained. Figure  2A is 
the result of screening for the soft threshold param-
eter β, in which the soft threshold parameter β = 12 
(scale-free R2 = 0.90) was used to ensure that the con-
structed gene network was scale-free network. The 
average linkage hierarchy clustering identified 10 gene 
modules (Additional file  5: Fig. S1A and B). The most 
relevant to immune cells was the light-yellow gene 
module (Cor = 0.78, P < 0.001), which contained 132 
key genes (Fig. 2B, Additional file 3: Table S3). GO and 
KEGG functional enrichment analysis was performed 
on the 132 key module genes mentioned above, the 
results showed that the functions of these genes were 
mainly related to immune regulation (such as acti-
vation of immune response, regulation of immune 
effector process and B cell receptor signaling path-
way), hematopoiesis, and signal transduction (Fig.  2C 
and D). Activating immune cells by blocking immune 
checkpoints and enhancing the anti-tumor response 
of the immune system are key factors in the therapeu-
tic efficacy of anti-PD-1 immunotherapy, these results 

Fig. 1  Flow chart of the study
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suggest that the genes involved in the regulation of 
immune function may be related to the efficacy of 
immunotherapy.

Identify hub genes in TCGA‑SKCM
Next, in order to identify module genes that are impor-
tant biological regulators of genes associated with 
immune cells, we compared the expression of 132 mod-
ule genes in TCGA-SKCM tissues and GTEx normal tis-
sues. The results showed that 45 genes were significantly 
different (Additional file 6: Fig. S2). Next, univariate Cox 
analysis and multivariate Cox analysis of these genes, 
and identified 10 genes as possible prognostic markers 
for SKCM (Fig. 3A and B). Moreover, low expression of 
10 genes correlated with worse outcome in SKCM. To 

explore the prognostic ability of the 10 genes screened 
above, we performed ROC (receiver operating character-
istic curve) analysis. The results showed that these genes 
did not predict prognosis (AUC < 0.5). It suggests that 
they may not be potential prognostic predictors (Fig. 3C–
V). Therefore, there is an urgent need to develop a more 
effective model to predict the prognostic of SKCM.

Development consensus clusters based on 10 hub genes 
in a meta‑cohort
First, we merge TCGA-SKCM, GSE22153, GSE54467, 
and GSE59455 into a meta-cohort. Then, all tumor sam-
ples were divided into k (k = 2 to 9) different subtypes. 
The results of cluster analysis showed that k = 2 was the 
best cluster (Fig.  4A). Kaplan–Meier analysis showed 

Fig. 2  Screening of key immune cell-related gene modules in TCGA-SKCM. A Analysis of network topology for different soft-threshold power. The 
top panel shows the impact of soft-threshold power on the scale-free topology fit index; the bottom panel displays the impact of soft-threshold 
power on the mean connectivity. B Correlation analysis between module eigengenes and immune cells. C GO enrichment analysis on the module 
genes. (D) KEGG enrichment analysis on the module genes
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that cluster.A had better survival outcomes than cluster.B 
(Fig.  4B). Next, the immune cell infiltration, stromal 
score, immune score and ESTIMATE score were lower 
in cluster.A group, but the tumor purity was higher in 
cluster.A group (Fig. 4C and D). To explore the potential 
biological change between distinct cluster, we explored 
its expression level and prognostic value in cluster.A 
group and cluster.B group. The results showed that the 
expression of 57 genes were up-regulated in cluster.B 
group compared to cluster.A group (Additional file  4: 

Table S4). In addition, survival analysis showed that 36/57 
genes, except SUMO1, were significantly associated with 
poor outcome (Fig. 4E). Next, MLDIS was developed by 
integrating these 36 genes into our integration program.

Integrated development of a MLDIS
In the TCGA-SKCM training cohort, we integrated 101 
machine learning combinations were used to select the 
optimal algorithm to construct a MLDIS. According to 
the average C-index, the combination of CoxBoost + RSF 

Fig. 3  Identify hub genes in TCGA-SKCM. A Univariate Cox analysis and B multivariate Cox analysis identified 10 prognostic RNAs in the TCGA-SKCM 
cohort (n = 457). Kaplan–Meier curves of OS for the RASGRP2 (C), TXK (E), COL4A4 (G), ACHE (I), RBP5 (K), ANKRD29 (M), GHRL (O), CARNS1 (Q), 
ARMH1 (S), TNFRSF25 (U) in the TCGA-SKCM cohort (n = 457). Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years for the RASGRP2 
(D), TXK (F), COL4A4 (H), ACHE (J), RBP5 (L), ANKRD29 (N), GHRL (P), CARNS1 (R), ARMH1 (T), TNFRSF25 (V) in the TCGA-SKCM cohort (n = 457). Data 
are presented as hazard ratio (HR) ± 95% confidence interval [CI]
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was selected as the final model (C-index = 0.712, Fig. 5A). 
To explore the relationship between MLDIS and overall 
survival (OS), we divided melanoma patients into low-
MLDIS and high- MLDIS groups and compared the dif-
ferences in OS between groups. Kaplan–Meier analysis 
showed that low-MLDIS group had better survival out-
comes than high-MLDIS group in meta-cohort (Fig. 5B), 
GSE54467 (Fig.  5D), GSE59455 (Fig.  5F), GSE22153 
(Fig.  5H), and TCGA-SKCM (Fig.  5J). In addition, the 
predicting OS at 1, 3, and 5  years for meta-cohort was 
0.835, 0.812, 0.845 (Fig.  5C), for GSE54467 was 0.772, 

0.685, 0.738 (Fig.  5E), for GSE59455 was 0.831, 0.838, 
0.834 (Fig.  5G), for GSE22153 was 0.805, 0.604, 0.674 
(Fig.  5I), and for TCGA-SKCM was 0.835, 0.818, 0.883 
(Fig. 5K). In particular, the MLDIS showed better prog-
nostic accuracy (Fig.  6A–D). These results show that 
MLDIS has good prediction performance.

Comparison between the MLDIS and other models 
in previously 51 published signatures
Genome resequencing is being used to process and detect 
genetic variants for screening, non-invasive prenatal 

Fig. 4  Development consensus clusters based on 10 hub genes in a meta-cohort. A The consensus score matrix of all samples when k = 2. A higher 
consensus score between two samples indicates they are more likely to be grouped into the same cluster in different iterations. B Kaplan–Meier 
curve showed a significant difference between the 2 clusters. C The distribution of immune score inferred by ESTIMATE algorithm between 2 
clusters in the meta-cohort. D The distribution of 28 immune cell subsets infiltration between 2 clusters. E Univariate Cox analysis identified 37 
prognostic RNAs in the meta-cohort (n = 712). The asterisks represented the statistical p-value (*P < 0.05; **P < 0.01; ***P < 0.001)

Fig. 5  A MLDIS was developed and validated via the machine learning-based integrative procedure. A A total of 101 kinds of prediction models 
via LOOCV framework and further calculated the C-index of each model across all validation datasets. Kaplan–Meier curves of OS according 
to the MLDIS in meta-cohort (log-rank test: P < 0.001) (B), GSE54467 (log-rank test: P = 0.013) (D), GSE59455 (log-rank test: P = 0.003) (F), GSE22153 
(log-rank test: P = 0.012) (H), and TCGA-SKCM (log-rank test: P < 0.001) (J). Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years 
in meta-cohort (C), GSE54467 (E), GSE59455 (G), GSE22153 (I), and TCGA-SKCM (K)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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diagnosis, and cancer diagnosis. Whole exome sequenc-
ing is also being used to diagnose patients affected by 
Mendelian genetic disorders. Gene sequencing tech-
nology is expected to become an essential “molecular 
pathology microscope” for future clinical diagnosis. Indi-
vidualized whole genome sequencing or targeted region 
sequencing for disease prevention, diagnosis and treat-
ment is no longer unattainable. Meanwhile, WGCNA, 
cell type recognition, machine learning algorithms were 
also developed, it can handle big data such as genomics, 
transcriptomics, epigenetics, and has already produced a 
lot of scientific results. Therefore, we summarized 3 years 
of published prognostic signatures of SKCM to compare 
the accuracy of MLDIS with these prognostic signatures. 
We found 51 prognostic signatures for SKCM, and we 
compared the predictive accuracy of MLDIS with these 
markers. It is worth noting that MLDIS performs better 
in each data set than almost all models (Fig. 6E–H).

Immune landscape of MLDIS
To explore the effect of MLDIS on levels of immune 
cell infiltration in the SKCM microenvironment, 28 

immune cells were evaluated using the ssGSEA method, 
and then the levels of immune cells in the high-MLDIS 
and low-MLDIS groups were compared. The results 
showed that the infiltration level of immune cells in the 
high-MLDIS group was significantly higher than that in 
the low-MLDIS group (Fig.  7A). Meanwhile, the stro-
mal score, immune score, and ESTIMATE score were 
lower in low-MLDIS, but the tumor purity was higher 
in high-MLDIS group. The infiltrating immune cells 
in the TME are the key to the anti-tumor effect of the 
immune system. High levels of infiltration of CD8 + T 
cells, neutrophil and dendritic cell predict better out-
comes and longer survival in immunotherapy patients. 
Therefore, the correlation between MLDIS and immune 
cell infiltration was analyzed by using 7 independent 
algorithms. The results showed that MLDIS was posi-
tively correlated with the infiltration levels (Fig.  7B). 
Thus, it can be speculated that MLDIS may have a 
positive prognostic impact on patients treated with 
anti-PD-1 immunotherapy by driving changes in the 
level of infiltration of immune cells in the TME. Next, 
to explore the effect of MLDIS on levels of immune 

Fig. 6  Evaluation of the MLDIS model. The performance of MLDIS was compared with other clinical and molecular variables in predicting prognosis 
in GSE22153 (A), GSE54467 (B), TCGA-SKCM (C), and GSE59455 (D). C-index analysis MLDIS and 51 published signatures in GSE22153 (E), GSE54467 
(F), TCGA-SKCM (G), and GSE59455 (H)
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checkpoint, and then the levels of immune checkpoint 
in the high-MLDIS and low-MLDIS groups were com-
pared. The results showed that the expression level of 
immune checkpoint in the high-MLDIS group was 
significantly higher than that in the low-MLDIS group 
(Fig. 7C).

Immunotherapy response of MLDIS
In order to promote the clinical availability of MLDIS, 
this study investigated the relationship between MLDIS 
and several immunotherapeutic predictors. Notably, the 
MSI, TMB, CYT, GEP, immunophenoScore, and IFN-γ 
levels were all significantly higher in the high MLDIS 

Fig. 7  Immune landscape of MLDIS. A Heatmap displaying the correlation between the MLDIS and immune infiltrating cells. B Correlations 
between MLDIS and the infiltration levels of five tumor-associated immune cells (CD8 + T cells, NK cells, macrophages, Th1 cells, and dendritic 
cells). C Heatmap displaying the correlation between the MLDIS and immune modulator molecules. D Box plot displaying the CYT levels 
between high and low MLDIS groups. E Box plot displaying the GEP levels between high and low MLDIS groups. F Box plot displaying the IFN-γ 
levels between high and low MLDIS groups. G Box plot displaying MSI levels between high and low MLDIS groups. H Box plot displaying the TMB 
levels between high and low MLDIS groups. I Box plot displaying the IPS levels between high and low MLDIS groups. The asterisks represented 
the statistical p-value (*P < 0.05; **P < 0.01; ***P < 0.001)
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group (Fig.  7D–I). We further evaluated the potential 
effect of MLDIS in immunotherapies. The results demon-
strated that higher MLDIS subgroup had longer survival 
time (Fig. 8A, P = 0.004), and SD/PD group had a lower 
MLDIS than CR/PR group in IMvigor cohort (Fig.  8B 
and C, P< 0.001). Next, to further validate the robust-
ness of MLDIS in immunotherapy in melanoma, MLDIS 
model was constructed in 5 melanoma cohort. The OS 
time curve showed that higher MLDIS subgroup had 
longer survival time in Van Allen (Fig.  8D, P =  0.011), 
Nathanson (Fig. 8H, P =  0.045), and GSE78220 (Fig. 8J, 

P = 0.029). Moreover, the MLDIS was markedly lower in 
no-response group than that in response group in Van 
Allen (Fig. 8E, P  = 0.035), GSE35640 (Fig. 8F, P  = 0.004), 
GSE91061 (Fig.  8G, P  = 0.024), Nathanson (Fig.  8I, 
P  = 0.008), GSE78220 (Fig.  8K, P  = 0.038). According to 
these results, the high MLDIS group benefits more from 
immunotherapy than the low MLDIS group.

Validation MLDIS in‑house cohort
To further verify the performance of our MLDIS model 
in a clinically translatable tool, we next evaluated the 

Fig. 8  Predictive value of the MLDIS in immunotherapy response. A Kaplan–Meier survival curve of OS between patients with a high MLDIS 
and a low MLDIS in the IMvigor dataset. B Box plot displaying the MLDIS in patients with different immunotherapy responses in the IMvigor dataset. 
C Differences in MLDIS among distinct anti-PD-1 clinical response groups. D Kaplan–Meier survival curve of OS between patients with a high 
MLDIS and a low MLDIS in the Van Allen dataset. E Box plot displaying the MLDIS in patients with different immunotherapy responses in the Van 
Allen dataset. F Box plot displaying the MLDIS in patients with different immunotherapy responses in the GSE35640 dataset. G Box plot displaying 
the MLDIS in patients with different immunotherapy responses in the GSE91061 dataset. H Kaplan–Meier survival curve of OS between patients 
with a high MLDIS and a low MLDIS in the Nathanson dataset. I Box plot displaying the MLDIS in patients with different immunotherapy responses 
in the Nathanson dataset. J Kaplan–Meier survival curve of OS between patients with a high MLDIS and a low MLDIS in the GSE78220 dataset. (K) 
Box plot displaying the MLDIS in patients with different immunotherapy responses in the GSE78220 dataset
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expression of these RNAs in a clinical cohort of 30 
SKCM patients by conducting qRT-PCR assays. Con-
sistently, the OS time in low-MLDIS group was sig-
nificantly longer than that in high-MLDIS group, 
and the predicting OS at 1, 3, and 5  years was 0.768, 
0.781, 0.627 (Fig.  9A and B). Meanwhile, the MLDIS 
showed better predictive efficacy in prognosis (Fig. 9C 
and D). Subsequently, we inspected the correlation 
between the MLDIS and CD8, PD-1, and PD-L1 in the 

in-house dataset. The results demonstrated that MLDIS 
was positive correlation with CD8, PD-1, and PD-L1 
(Fig. 9E). Moreover, CD8, PD-1, and PD-L1 were highly 
expressed in the high-MLDIS group (Fig.  9F and G). 
Since genes with strong associations may have similar 
regulatory or biological functions, we hypothesized 
that this MLDIS is closely related to the efficacy evalu-
ation of anti-PD-1 immunotherapy, it is a potential pre-
dictor of the efficacy of anti-PD-1 therapy.

Fig. 9  Validation in a clinical in-house cohort. A Kaplan–Meier survival curve of OS between patients with a high MLDIS and a low MLDIS 
in the in-house dataset. B Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in the in-house dataset. C The performance of MLDIS 
was compared with other clinical and molecular variables in predicting prognosis in the in-house dataset. D Univariate Cox analysis of OS 
in the in-house dataset (n = 30). E Scatter plot displaying the correlation between the MLDIS and CD8, PD-1, and PD-L1 in the in-house dataset. F 
Box plot displaying the IHC score levels of CD8, PD-1, and PD-L1 based on IHC staining between two MLDIS groups in the MLDIS in-house dataset. 
G Representative IHC staining images of CD8, PD-1, and PD-L1 in two MLDIS groups in the in-house dataset
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Discussion
PD-1 immune checkpoint blockade therapy can induce 
high levels of anti-melanoma response, greatly improv-
ing the survival of patients with cancer. However, there 
are still many patients who cannot benefit from it. PD-L1 
expression and TMB level are two predictive markers 
in anti-PD-1 therapy, which are widely used in clini-
cal tumor immuno-blocking therapy [33, 34]. However, 
clinical studies and application practice show that these 
two markers are still controversial in predicting the effi-
cacy of anti-PD-1 therapy. Many patients cannot get the 
best effect of PD-1 immuno-blocking therapy according 
to their diagnostic prediction, and even some patients 
have the opposite response to the therapy. PD-L1 pro-
tein expression is not aligned with clinical detection plat-
forms and methodological criteria for TMB levels, which 
contributes to the inaccuracy of immune blockade ther-
apy predictions based on these two markers [35]. Second, 
individual treatment-predictive markers often fail to cap-
ture the immune status of a patient’s tumor microenvi-
ronment comprehensively and accurately. PD-L1 protein 
expression levels may represent only part of the T cell-
related biology. Similarly, TMB only partially represents 
the ability of neoantigen-reactive T cells to recognize 
tumor cells. The inherent limitations of a single bio-
marker make the detection of PD-L1 protein expression 
with TMB levels insufficient to reveal the complexity of 
tumor-host immune cell interactions in the TME. It also 
fails to adequately characterize the patient’s anti-tumor 
immune status, ultimately leading to bias in the assess-
ment of patient benefit from anti-PD-1 therapy [36]. 
Thus, to find new markers with better predictive perfor-
mance and integrate with markers to establish a compre-
hensive index that can effectively evaluate the anti-tumor 
immune status of patients.

An innovative computational framework was used in 
this study in order to identify a robust and stable MLDIS. 
Firstly, we identified the key immune cell-related gene 
modules in TCGA-SKCM by using WGCNA, and then 
after screening and identification, and eventually found 
10 hub genes. Secondly, based on 10 hub genes, we iden-
tified 2 SKCM subtypes, which have different pheno-
types, an immune-desert with higher immune infiltration 
but poor prognosis, and an immune-excluded subtype 
with lower immune infiltration but better prognosis. 
Then, we screen out genes that differed between the 2 
SKCM subtypes and had a poor prognosis. Finally, based 
on the above genes, we build MLDIS by 10 machine 
learning algorithms.

New computational biology strategies and methods 
have been used in several studies to comprehensively 
assess the characteristics of the tumor immune microen-
vironment, gene function network and clinical phenotype 

was deeply explored, and a good screening effect of 
tumor diagnostic and therapeutic predictive markers 
was obtained. WGCNA-based marker screening tools 
can effectively identify gene sets with similar expres-
sion patterns, highly functionally related genes, and the 
relationship between gene sets and disease phenotypes. 
Moreover, WGCNA has a high level and effectiveness in 
exploring the genetic signature of tumor immune micro-
environment that cannot be achieved by other screening 
tools, due to the effective mapping of the regulatory net-
work of gene sets and the completion of the identification 
process of key regulatory genes. In this study, we realized 
a screen for TME markers in SKCM patients and finally 
identified 132 genes associated with B cells naive. The 
results of GO and KEGG suggest that these genes play 
important roles in B cell activation, B cell receptor sign-
aling pathway, and B cell proliferation. This fully dem-
onstrates and validates the reliability and validity of our 
transcriptome-based computational biology combined 
with WGCNA to form a robust, rigorous screening pro-
cess approach.

Although WGCNA provided a robust strategy for 
marker screening in the initial process, and as a result, 
10 potential efficacy prognostic markers were obtained, 
we should be conscious of the fact that the clinical effi-
cacy of anti-PD-1 immunotherapy is influenced by mul-
tiple factors, and not reliance on a single predictive. The 
results of MLDIS-immune cell infiltration-based analy-
sis provide evidence to support the prognostic predic-
tive value of MLDIS at the level of the tumor immune 
microenvironment. This study also found a significant 
correlation between MLDIS and immune scores, sug-
gesting that immune function exerts a significant influ-
ence on the risk of melanoma death. M1 macrophages 
in melanoma are associated with improved prognosis 
of melanoma [37], and NK cells induce M1 polarization 
and inhibit tumor growth [38]. Similarly, the present 
study observed higher immune scores and higher abun-
dance of M1 macrophages, CD4 + T cells, CD8 + T cells 
and NK cells in the high-MLDIS group, further suggest-
ing the influence of these tumor-infiltrating immune 
cells on melanoma development. High levels of infiltra-
tion of CD8 + T cells, CD4 + T cells, neutrophils, B cells, 
M1-polarized macrophages and dendritic cells determine 
the pre-existing anti-tumor immune activity of patients 
and are associated with better prognosis and longer 
survival in patients receiving immunotherapy [39–41]. 
MLDIS correlated significantly with the efficacy of anti-
PD-1 therapy, and their high expression levels predicted 
good prognostic benefit. In addition, MLDIS positively 
correlates with PD-L1 expression levels, and they may 
positively influence anti-PD-1 immunotherapy by regu-
lating the infiltration status of immune cells in the tumor 
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microenvironment through similar regulatory or func-
tional biological effects [42].

With the massive generation of sequencing data such 
as human genome resequencing and sequence align-
ment, it is necessary to take full advantage to develop and 
study important genetic loci in tumorigenesis and devel-
opment. This bioinformatics-based approach to analyze 
tumorigenesis has the advantage of being more efficient, 
flexible, and targeted than traditional biological research 
methods. As sequencing technology continues to evolve, 
we believe our model has great potential for clinical prac-
tice. Although an efficacy assessment model for MLDIS 
markers was constructed, there are still problems and 
limitations associated with it. First, although this study 
used computational biology to validate the potential 
efficacy predictive markers of MLDIS from multiple 
perspectives, further biological validation, especially 
in large-scale clinical trials, is lacking, which is impor-
tant for the final validation of biomarker reliability. Sec-
ondly, the limited number of training samples currently 
used for deep learning in this study may result in less-
than-optimal performance of the resulting evaluation 
model in predicting the efficacy of anti-PD-1 therapy in 
other patient cohorts. Therefore, in the future, collecting 
more SKCM-related datasets and continuously optimiz-
ing the prediction models are the directions for further 
research towards personalized immunotherapy and clini-
cal applications.

Conclusion
In conclusion, we conducted a MLDIS model by using 
10 machine learning algorithms (101 combinations). In 
addition to the expression of immune checkpoint genes, 
immune cell infiltrations in high and low MLDIS groups 
were also explored. Meanwhile, the MLDIS model can 
facilitate the prediction and the selection of SKCM indi-
vidual and personalized immunotherapeutic.
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