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of tumor-infiltrating immune cell-related
signature for improving prognosis

and immunotherapy responses in patients
with skin cutaneous melanoma
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Abstract

Background Immunoblockade therapy based on the PD-1 checkpoint has greatly improved the survival rate

of patients with skin cutaneous melanoma (SKCM). However, existing anti-PD-1 therapeutic efficacy prediction mark-
ers often exhibit a poor situation of poor reliability in identifying potential beneficiary patients in clinical applications,
and an ideal biomarker for precision medicine is urgently needed.

Methods 10 multicenter cohorts including 4 SKCM cohorts and 6 immunotherapy cohorts were selected. Through
the analysis of WGCNA, survival analysis, consensus clustering, we screened 36 prognostic genes. Then, ten
machine learning algorithms were used to construct a machine learning-derived immune signature (MLDIS). Finally,
the independent data sets (GSE22153, GSE54467, GSE59455, and in-house cohort) were used as the verification set,
and the ROC index standard was used to evaluate the model.

Results Based on computing framework, we found that patients with high MLDIS had poor overall survival

and has good prediction performance in all cohorts and in-house cohort. It is worth noting that MLDIS performs
better in each data set than almost all models which from 51 prognostic signatures for SKCM. Meanwhile, high MLDIS
have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level
of infiltration of immune cells in the tumor microenvironment. Additionally, patients suffering from SKCM with high
MLDIS were more sensitive to immunotherapy.

Conclusions Our study identified that MLDIS could provide new insights into the prognosis of SKCM and predict
the immunotherapy response in patients with SKCM.
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Introduction

Skin cutaneous melanoma (SKCM) is a highly hetero-
geneous and highly aggressive malignant tumor, which
progresses quickly and has a high fatality rate, which seri-
ously endangers human health. The morbidity of SKCM
have increased in the past decades [1, 2]. Fortunately,
with the advancement of science and technology, many
studies have found that PD-1 (programmed cell death
protein 1) immune checkpoint blockade therapy can sig-
nificantly improve clinical efficacy and patient survival
through high-level anti-SKCM response induction [3,
4]. However, studies have also found that only a minor-
ity of patients in immunotherapy tend to have a good
clinical response to PD-1 blockade therapy, with most
patients not achieving significant therapeutic effects and
a small proportion even experiencing severe unexplained
immune side effects. Moreover, the high cost of immune
checkpoint inhibitors undoubtedly further increases the
financial burden on patients [5, 6]. Therefore, the means
and modalities used to improve the effectiveness of
clinical use of anti-PD-1 drugs in the course of immune
blockade therapy have become a major clinical issue to
avoid ineffective treatment, improve patient survival and
reduce the medical burden on patients.

Biomarkers provide an effective means for disease
staging, new drug evaluation, and efficacy assessment.
Molecular biomarkers such as TMB (tumor mutation
burden), CTLA-4 (cytotoxic T lymphocyte-associated
antigen-4), PD-1/PDL1 (Programmed cell death 1 ligand
1) have been gradually incorporated into clinical guide-
lines. However, these markers have some limitations. A
large number of patients with positive PD-L1 protein
expression (at least 40-50%) did not respond positively
and objectively to PD-1 blockade therapy. In contrast,
patients with negative PD-L1 protein expression (~15%)
responded well [7]. Moreover, even though high TMB
characteristics were associated with overall survival, they
were likely not associated with an objective response to
PD-1 blockade therapy [8]. Despite the progress in the
study of PD-L1 protein expression and TMB as predictive
markers of anti-PD-1 therapy, however, these two mark-
ers still have great deviation, even contradictory results,
in predicting the degree of benefit of PD-1 blockade and
the appropriateness of treatment [9, 10]. Inappropri-
ate molecular biomarkers will delay the optimal time of
treatment and lead to heavy social and economic burden.
To solve this problem, many multi-gene signatures based
on specific pathways have been developed (m6a, miRNA,
IncRNA) [11-13]. Although it was validated using a pub-
lic database, the inadequacy of modeling methods, and
the lack of rigorous validation limit their wide application
in clinical practice.
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The development of new markers with better predictive
performance or the establishment of a comprehensive
rubric consisting of multiple predictive markers are effec-
tive strategies to overcome these problems. However,
many related studies tend to focus only on the expres-
sion level of single or multiple genes, while neglecting
the functional relevance of gene co-expression or gene
co-expression processes and the deeper important char-
acteristic information presented by these functional
gene networks [14, 15]. Therefore, we attempted to apply
10 machine learning algorithms to construct a machine
learning-derived immune signature (MLDIS) in 712
SKCM patients. We further validated the clinical appli-
cability value of our signature as well as its robust per-
formance for predicting prognosis by comparing it with
51 published signatures, traditional clinical traits, and
molecular features. The established MLDIS can stratify
patients with SKCM and predict the outcome of immu-
notherapy. In summary, our study offers an important
reference for achieving early diagnosis, prognostic evalu-
ation, stratified management, individualized treatment,
and improving the clinical outcomes of patients with
SKCM.

Methods

Data acquisition

The mRNA expression data of SKCM was further
retrieved by searching the GEO database with the follow-
ing keywords: “skin cutaneous melanoma’, “SKCM’, and
“melanoma”. To ensure the quality of the collected data,
the data set must contain the patient’s prognostic infor-
mation and have a valid sample size of not less than 50
patients. After initial screening, 3 gene expression omni-
bus profiles with prognostic information (GSE22153
[16], GSE54467 [17], and GSE59455 [18]) were selected
and downloaded. 57 samples in GSE22153, 79 samples in
GSE54467, and 141 samples in GSE59455. Subsequently,
the gene expression data obtained by screening were
cleaned, and the data of multiple probes corresponding
to the same gene were averaged and combined. We also
adopted TCGA public database (N=457). For immu-
notherapy cohorts, we enrolled 6 cohorts treated with
immunotherapy: IMvigor cohort [19], GSE35640 [20],
GSE91061 [21], GSE78220 [22], Van Allen [23], and
Nathanson [24].

Data preprocessing

The Ensemble ID was converted into gene symbol. Next,
A FPKM gene expression matrix was acquired from
TCGA and converted into TPM format [25]. The merged
expression matrix was then eliminated from batch effects
and normalized using the R package “sva” [26].
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Immune cell infiltration analysis

SsGSEA method was used to evaluate the content of 28
immune cells in each tumor tissue sample [27]. To avoid
computational errors caused by a single algorithm and
different sets of marker genes for tumor microenviron-
ment (TME), we downloaded immune infiltrate data
evaluated using the 7 algorithms. Also, we used the ESTI-
MATE algorithm to calculate the immune score and stro-
mal score.

Weighted gene co-expression network analysis (WGCNA)
This process uses “WGCNA” packets to identify char-
acteristic genes associated with immune cells. First,
a standardized TCGA-SKCM gene expression profil-
ing was prepared, and then the genes were sequenced
according to the median absolute deviation (MAD) to
obtain a list of top 5000 genes. Then, the 5000 genes were
constructed by gene co-expression network to obtain
gene pairs. Then, the Pearson correlation coefficients
between each pair of genes were calculated and the adja-
cency matrix was generated. Then, the adjacent matrix
is transformed into topological overlap measure (Tom)
by tomlikeity function. The average linkage hierarchical
clustering based on Tom dissimilarity is used to clus-
ter genes with similar expression patterns into the same
module. The characteristic gene is the main component
of each gene module, and it is also the most representa-
tive expression mode of the module. Then, we calculated
the gene significance (GS) and the gene module signifi-
cance (MS), and extracted the module genes significantly
related to the immune cell phenotype for further analysis
[28].

Functional analysis

To understand the potential functions of module genes,
we used the “cluterprofile” R package to perform func-
tional analyses of KEGG and GO. Adjusted P val-
ues<0.05 for the GO pathway and KEGG pathway were
considered statistically significant [29].

Identify hub genes

To explore differences in expression levels of module
genes between normal and tumor patients, this study
used “limma” packages to perform mRNAs differen-
tial expression analysis based on datasets TCGA-SKCM
and GTEx [30]. Among them, RNAs with adjusted
P-value<0.05 and |log,FC|>1 was considered statisti-
cally significant differentially expressed module genes.
Next, to further verify the expression level of module
genes and prognostic value. We used "survival" pack-
age to perform univariate Cox analysis and multivariate
Cox analysis on the module genes. Among them, RNAs
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with P-value<0.05 were considered statistically signifi-
cant hub genes. To explore the predictive power of hub
genes for prognosis, the area under curve (AUC) of each
hub genes was calculated based on the expression data
of each hub gene using the independent data set TCGA-
SKCM using the “pROC” package [31].

Molecular subtyping of hub genes in a meta-cohort

The meta-cohort samples were classified into different
molecular subtypes by consensus clustering based on
endoplasmic reticulum stress genes through “Consensus
cluster plus” package, use the cumulative distribution
function cumulative distribution function to help select
multiple clusters and achieve cluster stability [32].

Machine learning-derived immune signature (MLDIS)

The overall workflow of our study is presented in Fig. 1.
To construct a MLDIS model for SKCM, firstly, we iden-
tified different expression genes and prognosis genes
between 2 subtypes. Then, a prediction model was fitted
using 101 algorithm combinations. The initial signature
discovery was performed in TCGA-SKCM. All the pairs
of are formed and the one with the best C-index value is
identified as the optimized parameters. Finally, the inde-
pendent data set (GSE22153, GSE54467, and GSE59455)
is used as the verification set, and the ROC index stand-
ard is used to evaluate the model.

Patients

The human SKCM tissues were from the Seventh Affili-
ated Hospital of Sun Yat-sen University collected from
May 2021 to July 2022. This study was approved by the
Ethics Review Board of the Seventh Affiliated Hospital of
Sun Yat-sen University. All experiments complied with
the relevant regulations, and all patients provided writ-
ten informed consent. All patients were aged 18 years
or older, and received available standard systemic thera-
pies. The clinicopathological data of those patients was in
Additional file 1: Table S1.

gRT-PCR
Total RNA from tissues was isolated using TRIzol (Invit-
rogen, Canada) reagent, the specific operation is carried
out with reference to the instructions for the operation
of the kit. RNA (1 pg) was converted into cDNA using
the RevertAid First Strand cDNA Synthesis Kit (Takara,
China). qRT-PCR was performed using SYBR Green
Mixture (Takara, China) in the ABI Step One-Plus Sys-
tem (ABI7500, USA). Target gene expression was nor-
malized against GAPDH. Th primer sequences was in
Additional file 2: Table S2.
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Fig. 1 Flow chart of the study

Immunohistochemistry (IHC) staining

Tumor tissue was paraffin-embedded and cut into
4-um cross-sections. After dewaxing, antigen repair
and blocking, sections were incubated with anti-CD8
(1:200, CST, Shenzhen), anti-PD-1 (1:200, CST, Shen-
zhen), and PD-L1 (1:200, CST, Shenzhen) for 2 h at
37 °C. The tissue was then incubated with biotin-
labeled goat anti-rabbit secondary antibody for 20 min,
followed by incubation with HRP-labeled streptavidin
for 10 min at 37 °C. After washing with PBS, the nuclei
were stained using hematoxylin solution. We have
added it. Thank you.

Statistical analysis

This study is based on R (4.2.2) software for statistical
analysis. Wilcoxon test was used for comparison of two
groups, and Kruskal-Wallis’s test was used for compar-
ison of multiple groups. In univariate and multivariate
Cox regression analysis of genes, HR (hazard ratio) > 1
represents a risk factor for prognosis and HR<1 rep-
resents a protective factor for prognosis. Correlations
between variables were explored using Spearman or
Pearson coefficients. We performed Kaplan—meier sur-
vival analysis using the R package “Survival” The sig-
nificance level was set at P <0.05, and all statistical tests
were two-sided.

Results

Screening of key immune cell-related gene modules

in TCGA-SKCM

To identify key modules of genes associated with
immune cells, we calculated 28 immune cells infil-
tration assessed by ssGSEA, and then the construc-
tion results of WGCNA were obtained. Figure 2A is
the result of screening for the soft threshold param-
eter B, in which the soft threshold parameter p=12
(scale-free R>=0.90) was used to ensure that the con-
structed gene network was scale-free network. The
average linkage hierarchy clustering identified 10 gene
modules (Additional file 5: Fig. S1A and B). The most
relevant to immune cells was the light-yellow gene
module (Cor=0.78, P<0.001), which contained 132
key genes (Fig. 2B, Additional file 3: Table S3). GO and
KEGG functional enrichment analysis was performed
on the 132 key module genes mentioned above, the
results showed that the functions of these genes were
mainly related to immune regulation (such as acti-
vation of immune response, regulation of immune
effector process and B cell receptor signaling path-
way), hematopoiesis, and signal transduction (Fig. 2C
and D). Activating immune cells by blocking immune
checkpoints and enhancing the anti-tumor response
of the immune system are key factors in the therapeu-
tic efficacy of anti-PD-1 immunotherapy, these results
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suggest that the genes involved in the regulation of
immune function may be related to the efficacy of
immunotherapy.

Identify hub genes in TCGA-SKCM

Next, in order to identify module genes that are impor-
tant biological regulators of genes associated with
immune cells, we compared the expression of 132 mod-
ule genes in TCGA-SKCM tissues and GTEx normal tis-
sues. The results showed that 45 genes were significantly
different (Additional file 6: Fig. S2). Next, univariate Cox
analysis and multivariate Cox analysis of these genes,
and identified 10 genes as possible prognostic markers
for SKCM (Fig. 3A and B). Moreover, low expression of
10 genes correlated with worse outcome in SKCM. To

explore the prognostic ability of the 10 genes screened
above, we performed ROC (receiver operating character-
istic curve) analysis. The results showed that these genes
did not predict prognosis (AUC<0.5). It suggests that
they may not be potential prognostic predictors (Fig. 3C—
V). Therefore, there is an urgent need to develop a more
effective model to predict the prognostic of SKCM.

Development consensus clusters based on 10 hub genes

in a meta-cohort

First, we merge TCGA-SKCM, GSE22153, GSE54467,
and GSE59455 into a meta-cohort. Then, all tumor sam-
ples were divided into k (k=2 to 9) different subtypes.
The results of cluster analysis showed that k=2 was the
best cluster (Fig. 4A). Kaplan—-Meier analysis showed
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Fig. 3 Identify hub genes in TCGA-SKCM. A Univariate Cox analysis and B multivariate Cox analysis identified 10 prognostic RNAs in the TCGA-SKCM
cohort (n=457). Kaplan—Meier curves of OS for the RASGRP2 (C), TXK (E), COL4A4 (G), ACHE (1), RBP5 (K), ANKRD29 (M), GHRL (0), CARNST (Q),
ARMHT (S), TNFRSF25 (U) in the TCGA-SKCM cohort (n=457). Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years for the RASGRP2
(D), TXK (F), COL4A4 (H), ACHE (J), RBP5 (L), ANKRD29 (N), GHRL (P), CARNST1 (R), ARMH1 (T), TNFRSF25 (V) in the TCGA-SKCM cohort (n=457). Data

are presented as hazard ratio (HR) £ 95% confidence interval [Cl]

that cluster.A had better survival outcomes than cluster.B
(Fig. 4B). Next, the immune cell infiltration, stromal
score, immune score and ESTIMATE score were lower
in cluster.A group, but the tumor purity was higher in
cluster.A group (Fig. 4C and D). To explore the potential
biological change between distinct cluster, we explored
its expression level and prognostic value in cluster.A
group and cluster.B group. The results showed that the
expression of 57 genes were up-regulated in cluster.B
group compared to cluster.A group (Additional file 4:

Table S4). In addition, survival analysis showed that 36/57
genes, except SUMOI, were significantly associated with
poor outcome (Fig. 4E). Next, MLDIS was developed by
integrating these 36 genes into our integration program.

Integrated development of a MLDIS
In the TCGA-SKCM training cohort, we integrated 101
machine learning combinations were used to select the
optimal algorithm to construct a MLDIS. According to
the average C-index, the combination of CoxBoost+RSF
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Fig. 4 Development consensus clusters based on 10 hub genes in a meta-cohort. A The consensus score matrix of all samples when k=2. A higher
consensus score between two samples indicates they are more likely to be grouped into the same cluster in different iterations. B Kaplan-Meier
curve showed a significant difference between the 2 clusters. C The distribution of immune score inferred by ESTIMATE algorithm between 2
clusters in the meta-cohort. D The distribution of 28 immune cell subsets infiltration between 2 clusters. E Univariate Cox analysis identified 37
prognostic RNAs in the meta-cohort (n=712). The asterisks represented the statistical p-value (*P <0.05; **P <0.01; ***P <0.001)

was selected as the final model (C-index=0.712, Fig. 5A).
To explore the relationship between MLDIS and overall
survival (OS), we divided melanoma patients into low-
MLDIS and high- MLDIS groups and compared the dif-
ferences in OS between groups. Kaplan—Meier analysis
showed that low-MLDIS group had better survival out-
comes than high-MLDIS group in meta-cohort (Fig. 5B),
GSE54467 (Fig. 5D), GSE59455 (Fig. 5F), GSE22153
(Fig. 5H), and TCGA-SKCM (Fig. 5]). In addition, the
predicting OS at 1, 3, and 5 years for meta-cohort was
0.835, 0.812, 0.845 (Fig. 5C), for GSE54467 was 0.772,

(See figure on next page.)

0.685, 0.738 (Fig. 5E), for GSE59455 was 0.831, 0.838,
0.834 (Fig. 5G), for GSE22153 was 0.805, 0.604, 0.674
(Fig. 5I), and for TCGA-SKCM was 0.835, 0.818, 0.883
(Fig. 5K). In particular, the MLDIS showed better prog-
nostic accuracy (Fig. 6A-D). These results show that
MLDIS has good prediction performance.

Comparison between the MLDIS and other models

in previously 51 published signatures

Genome resequencing is being used to process and detect
genetic variants for screening, non-invasive prenatal

Fig. 5 A MLDIS was developed and validated via the machine learning-based integrative procedure. A A total of 101 kinds of prediction models
via LOOCV framework and further calculated the C-index of each model across all validation datasets. Kaplan—Meier curves of OS according

to the MLDIS in meta-cohort (log-rank test: P <0.001) (B), GSE54467 (log-rank test: P=0.013) (D), GSE59455 (log-rank test: P=0.003) (F), GSE22153
(log-rank test: P=0.012) (H), and TCGA-SKCM (log-rank test: P <0.001) (J). Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years

in meta-cohort (C), GSE54467 (E), GSE59455 (G), GSE22153 (1), and TCGA-SKCM (K)
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Fig. 6 Evaluation of the MLDIS model. The performance of MLDIS was compared with other clinical and molecular variables in predicting prognosis

in GSE22153 (A), GSE54467 (B), TCGA-SKCM (C), and GSE59455 (D). C-index analysis MLDIS and 51 published signatures in GSE22153 (

(F), TCGA-SKCM (G), and GSE59455 (H)

diagnosis, and cancer diagnosis. Whole exome sequenc-
ing is also being used to diagnose patients affected by
Mendelian genetic disorders. Gene sequencing tech-
nology is expected to become an essential “molecular
pathology microscope” for future clinical diagnosis. Indi-
vidualized whole genome sequencing or targeted region
sequencing for disease prevention, diagnosis and treat-
ment is no longer unattainable. Meanwhile, WGCNA,
cell type recognition, machine learning algorithms were
also developed, it can handle big data such as genomics,
transcriptomics, epigenetics, and has already produced a
lot of scientific results. Therefore, we summarized 3 years
of published prognostic signatures of SKCM to compare
the accuracy of MLDIS with these prognostic signatures.
We found 51 prognostic signatures for SKCM, and we
compared the predictive accuracy of MLDIS with these
markers. It is worth noting that MLDIS performs better
in each data set than almost all models (Fig. 6E—H).

Immune landscape of MLDIS
To explore the effect of MLDIS on levels of immune
cell infiltration in the SKCM microenvironment, 28

m

), GSE54467

immune cells were evaluated using the ssGSEA method,
and then the levels of immune cells in the high-MLDIS
and low-MLDIS groups were compared. The results
showed that the infiltration level of immune cells in the
high-MLDIS group was significantly higher than that in
the low-MLDIS group (Fig. 7A). Meanwhile, the stro-
mal score, immune score, and ESTIMATE score were
lower in low-MLDIS, but the tumor purity was higher
in high-MLDIS group. The infiltrating immune cells
in the TME are the key to the anti-tumor effect of the
immune system. High levels of infiltration of CD8+T
cells, neutrophil and dendritic cell predict better out-
comes and longer survival in immunotherapy patients.
Therefore, the correlation between MLDIS and immune
cell infiltration was analyzed by using 7 independent
algorithms. The results showed that MLDIS was posi-
tively correlated with the infiltration levels (Fig. 7B).
Thus, it can be speculated that MLDIS may have a
positive prognostic impact on patients treated with
anti-PD-1 immunotherapy by driving changes in the
level of infiltration of immune cells in the TME. Next,
to explore the effect of MLDIS on levels of immune
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checkpoint, and then the levels of immune checkpoint
in the high-MLDIS and low-MLDIS groups were com-
pared. The results showed that the expression level of
immune checkpoint in the high-MLDIS group was
significantly higher than that in the low-MLDIS group

(Fig. 7C).

Immunotherapy response of MLDIS
In order to promote the clinical availability of MLDIS,
this study investigated the relationship between MLDIS
and several immunotherapeutic predictors. Notably, the
MSI, TMB, CYT, GEP, immunophenoScore, and IFN-y

levels were all significantly higher in the high MLDIS



Leng et al. Cancer Cell International (2023) 23:214

group (Fig. 7D-I). We further evaluated the potential
effect of MLDIS in immunotherapies. The results demon-
strated that higher MLDIS subgroup had longer survival
time (Fig. 8A, P = 0.004), and SD/PD group had a lower
MLDIS than CR/PR group in IMvigor cohort (Fig. 8B
and C, P<0.001). Next, to further validate the robust-
ness of MLDIS in immunotherapy in melanoma, MLDIS
model was constructed in 5 melanoma cohort. The OS
time curve showed that higher MLDIS subgroup had
longer survival time in Van Allen (Fig. 8D, P = 0.011),
Nathanson (Fig. 8H, P = 0.045), and GSE78220 (Fig. 8],

IMvigor cohort
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P=0.029). Moreover, the MLDIS was markedly lower in
no-response group than that in response group in Van
Allen (Fig. 8E, P =0.035), GSE35640 (Fig. 8F, P =0.004),
GSE91061 (Fig. 8G, P =0.024), Nathanson (Fig. 8I,
P =0.008), GSE78220 (Fig. 8K, P =0.038). According to
these results, the high MLDIS group benefits more from
immunotherapy than the low MLDIS group.

Validation MLDIS in-house cohort
To further verify the performance of our MLDIS model
in a clinically translatable tool, we next evaluated the
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Fig. 8 Predictive value of the MLDIS in immunotherapy response. A Kaplan-Meier survival curve of OS between patients with a high MLDIS

and a low MLDIS in the IMvigor dataset. B Box plot displaying the MLDIS in patients with different immunotherapy responses in the IMvigor dataset.
C Differences in MLDIS among distinct anti-PD-1 clinical response groups. D Kaplan—-Meier survival curve of OS between patients with a high

MLDIS and a low MLDIS in the Van Allen dataset. E Box plot displaying the MLDIS in patients with different immunotherapy responses in the Van
Allen dataset. F Box plot displaying the MLDIS in patients with different immunotherapy responses in the GSE35640 dataset. G Box plot displaying
the MLDIS in patients with different immunotherapy responses in the GSE91061 dataset. H Kaplan—-Meier survival curve of OS between patients
with a high MLDIS and a low MLDIS in the Nathanson dataset. | Box plot displaying the MLDIS in patients with different immunotherapy responses
in the Nathanson dataset. J Kaplan-Meier survival curve of OS between patients with a high MLDIS and a low MLDIS in the GSE78220 dataset. (K)
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expression of these RNAs in a clinical cohort of 30
SKCM patients by conducting qRT-PCR assays. Con-
sistently, the OS time in low-MLDIS group was sig-
nificantly longer than that in high-MLDIS group,
and the predicting OS at 1, 3, and 5 years was 0.768,
0.781, 0.627 (Fig. 9A and B). Meanwhile, the MLDIS
showed better predictive efficacy in prognosis (Fig. 9C
and D). Subsequently, we inspected the correlation
between the MLDIS and CDS8, PD-1, and PD-L1 in the
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in-house dataset. The results demonstrated that MLDIS
was positive correlation with CD8, PD-1, and PD-L1
(Fig. 9E). Moreover, CD8, PD-1, and PD-L1 were highly
expressed in the high-MLDIS group (Fig. 9F and G).
Since genes with strong associations may have similar
regulatory or biological functions, we hypothesized
that this MLDIS is closely related to the efficacy evalu-
ation of anti-PD-1 immunotherapy, it is a potential pre-
dictor of the efficacy of anti-PD-1 therapy.
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Fig. 9 Validation in a clinical in-house cohort. A Kaplan—Meier survival curve of OS between patients with a high MLDIS and a low MLDIS

in the in-house dataset. B Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in the in-house dataset. C The performance of MLDIS
was compared with other clinical and molecular variables in predicting prognosis in the in-house dataset. D Univariate Cox analysis of OS

in the in-house dataset (n=30). E Scatter plot displaying the correlation between the MLDIS and CD8, PD-1, and PD-L1 in the in-house dataset. F
Box plot displaying the IHC score levels of CD8, PD-1, and PD-L1 based on IHC staining between two MLDIS groups in the MLDIS in-house dataset.
G Representative IHC staining images of CD8, PD-1, and PD-L1 in two MLDIS groups in the in-house dataset
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Discussion

PD-1 immune checkpoint blockade therapy can induce
high levels of anti-melanoma response, greatly improv-
ing the survival of patients with cancer. However, there
are still many patients who cannot benefit from it. PD-L1
expression and TMB level are two predictive markers
in anti-PD-1 therapy, which are widely used in clini-
cal tumor immuno-blocking therapy [33, 34]. However,
clinical studies and application practice show that these
two markers are still controversial in predicting the effi-
cacy of anti-PD-1 therapy. Many patients cannot get the
best effect of PD-1 immuno-blocking therapy according
to their diagnostic prediction, and even some patients
have the opposite response to the therapy. PD-L1 pro-
tein expression is not aligned with clinical detection plat-
forms and methodological criteria for TMB levels, which
contributes to the inaccuracy of immune blockade ther-
apy predictions based on these two markers [35]. Second,
individual treatment-predictive markers often fail to cap-
ture the immune status of a patient’s tumor microenvi-
ronment comprehensively and accurately. PD-L1 protein
expression levels may represent only part of the T cell-
related biology. Similarly, TMB only partially represents
the ability of neoantigen-reactive T cells to recognize
tumor cells. The inherent limitations of a single bio-
marker make the detection of PD-L1 protein expression
with TMB levels insufficient to reveal the complexity of
tumor-host immune cell interactions in the TME. It also
fails to adequately characterize the patient’s anti-tumor
immune status, ultimately leading to bias in the assess-
ment of patient benefit from anti-PD-1 therapy [36].
Thus, to find new markers with better predictive perfor-
mance and integrate with markers to establish a compre-
hensive index that can effectively evaluate the anti-tumor
immune status of patients.

An innovative computational framework was used in
this study in order to identify a robust and stable MLDIS.
Firstly, we identified the key immune cell-related gene
modules in TCGA-SKCM by using WGCNA, and then
after screening and identification, and eventually found
10 hub genes. Secondly, based on 10 hub genes, we iden-
tified 2 SKCM subtypes, which have different pheno-
types, an immune-desert with higher immune infiltration
but poor prognosis, and an immune-excluded subtype
with lower immune infiltration but better prognosis.
Then, we screen out genes that differed between the 2
SKCM subtypes and had a poor prognosis. Finally, based
on the above genes, we build MLDIS by 10 machine
learning algorithms.

New computational biology strategies and methods
have been used in several studies to comprehensively
assess the characteristics of the tumor immune microen-
vironment, gene function network and clinical phenotype
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was deeply explored, and a good screening effect of
tumor diagnostic and therapeutic predictive markers
was obtained. WGCNA-based marker screening tools
can effectively identify gene sets with similar expres-
sion patterns, highly functionally related genes, and the
relationship between gene sets and disease phenotypes.
Moreover, WGCNA has a high level and effectiveness in
exploring the genetic signature of tumor immune micro-
environment that cannot be achieved by other screening
tools, due to the effective mapping of the regulatory net-
work of gene sets and the completion of the identification
process of key regulatory genes. In this study, we realized
a screen for TME markers in SKCM patients and finally
identified 132 genes associated with B cells naive. The
results of GO and KEGG suggest that these genes play
important roles in B cell activation, B cell receptor sign-
aling pathway, and B cell proliferation. This fully dem-
onstrates and validates the reliability and validity of our
transcriptome-based computational biology combined
with WGCNA to form a robust, rigorous screening pro-
cess approach.

Although WGCNA provided a robust strategy for
marker screening in the initial process, and as a result,
10 potential efficacy prognostic markers were obtained,
we should be conscious of the fact that the clinical effi-
cacy of anti-PD-1 immunotherapy is influenced by mul-
tiple factors, and not reliance on a single predictive. The
results of MLDIS-immune cell infiltration-based analy-
sis provide evidence to support the prognostic predic-
tive value of MLDIS at the level of the tumor immune
microenvironment. This study also found a significant
correlation between MLDIS and immune scores, sug-
gesting that immune function exerts a significant influ-
ence on the risk of melanoma death. M1 macrophages
in melanoma are associated with improved prognosis
of melanoma [37], and NK cells induce M1 polarization
and inhibit tumor growth [38]. Similarly, the present
study observed higher immune scores and higher abun-
dance of M1 macrophages, CD4+T cells, CD8+T cells
and NK cells in the high-MLDIS group, further suggest-
ing the influence of these tumor-infiltrating immune
cells on melanoma development. High levels of infiltra-
tion of CD8+T cells, CD4+T cells, neutrophils, B cells,
M1-polarized macrophages and dendritic cells determine
the pre-existing anti-tumor immune activity of patients
and are associated with better prognosis and longer
survival in patients receiving immunotherapy [39-41].
MLDIS correlated significantly with the efficacy of anti-
PD-1 therapy, and their high expression levels predicted
good prognostic benefit. In addition, MLDIS positively
correlates with PD-L1 expression levels, and they may
positively influence anti-PD-1 immunotherapy by regu-
lating the infiltration status of immune cells in the tumor
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microenvironment through similar regulatory or func-
tional biological effects [42].

With the massive generation of sequencing data such
as human genome resequencing and sequence align-
ment, it is necessary to take full advantage to develop and
study important genetic loci in tumorigenesis and devel-
opment. This bioinformatics-based approach to analyze
tumorigenesis has the advantage of being more efficient,
flexible, and targeted than traditional biological research
methods. As sequencing technology continues to evolve,
we believe our model has great potential for clinical prac-
tice. Although an efficacy assessment model for MLDIS
markers was constructed, there are still problems and
limitations associated with it. First, although this study
used computational biology to validate the potential
efficacy predictive markers of MLDIS from multiple
perspectives, further biological validation, especially
in large-scale clinical trials, is lacking, which is impor-
tant for the final validation of biomarker reliability. Sec-
ondly, the limited number of training samples currently
used for deep learning in this study may result in less-
than-optimal performance of the resulting evaluation
model in predicting the efficacy of anti-PD-1 therapy in
other patient cohorts. Therefore, in the future, collecting
more SKCM-related datasets and continuously optimiz-
ing the prediction models are the directions for further
research towards personalized immunotherapy and clini-
cal applications.

Conclusion

In conclusion, we conducted a MLDIS model by using
10 machine learning algorithms (101 combinations). In
addition to the expression of immune checkpoint genes,
immune cell infiltrations in high and low MLDIS groups
were also explored. Meanwhile, the MLDIS model can
facilitate the prediction and the selection of SKCM indi-
vidual and personalized immunotherapeutic.
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