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Abstract
Background High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex 
interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape 
of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding 
therapeutic interventions.

Methods and results Using univariate Cox regression analysis, we identified 71 ECM genes associated with 
prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox 
proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an 
excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with 
higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface 
signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and 
angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such 
as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between 
the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore 
and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the 
expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from 
HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in 
guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer 
research.
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Introduction
Ovarian cancer stands as the most aggressive and lethal 
gynecological malignancy and ranks fifth among the lead-
ing causes of cancer-related deaths in developed coun-
tries [1, 2]. According to the most recent global cancer 
data, approximately 314,000 new cases of ovarian cancer 
were reported in 2020, with more than 200,000 deaths 
[1]. In the United States, approximately 20,000 new cases 
and 13,000 deaths are estimated in 2022 [2]. Ovarian can-
cer is classified based on genetic, histological, and tissue 
origin heterogeneity [3]. Remarkably, 70–80% of ovarian 
cancer-related deaths are attributed to high-grade serous 
ovarian carcinoma (HGSOC) [4]. Despite advancements 
in life expectancy for numerous solid tumors over the 
past decade, survival rates for HGSOC patients have 
remained relatively stagnant since the introduction of 
platinum-based therapy over four decades ago. And the 
5-year overall survival rate for ovarian cancer has seen 
marginal improvement since 1980s [5]. This high mor-
tality rate associated with HGSOC is primarily due to 
its frequent diagnosis at advanced stages, accompanied 
by susceptibility to relapse and drug resistance follow-
ing first-line treatment [6]. Therefore, effective stratifi-
cation of disease recurrence risk holds immense clinical 
value, facilitating early intervention and patient monitor-
ing. Achieving this necessitates an in-depth grasp of the 
molecular mechanisms governing HGSOC progression, 
as these mechanisms could influence risk classification 
and novel therapeutic approaches.

Recent decades have unveiled the pivotal role of the 
tumor microenvironment (TME) in governing tumor 
clonal evolution and cancer cell responsiveness to che-
motherapy and immunotherapy [7]. Within this context, 
the extracellular matrix (ECM), a major component of 
the TME, emerges as a pivotal regulator of cellular func-
tion [8]. Growing evidence suggests that extracellular 
signals originating from the TME can surpass cancer 
cell intrinsic signaling and influence tumor growth inde-
pendently of tumor clonal heterogeneity [9, 10]. ECM, 
undergoing modification by cancer cells, stromal ele-
ments, and immune cells, has been shown to enhance 
cancer cell proliferation, survival, and metastasis [11–
14]. The deregulation of ECM components has also been 
connected to HGSOC development and progression 
[15–20]. However, it is currently unknown how the ECM 
environment of HGSOC differs from the normal ovarian 
environment and whether ECM modifications can offer 
diagnostic and therapeutic insights for this poor-prog-
nosis cancer. Furthermore, it’s crucial to recognize that 

matrix components function not as isolated entities but 
as an interconnected network of matrix molecules [21]. 
Recent research has established the prognostic and pre-
dictive value of dysregulated stromal components in early 
non-small cell lung cancer [22, 23]. A thorough explora-
tion of how these matrix networks undergo modification 
in HGSOC tumors and their subsequent impact on can-
cer cell behavior warrants comprehensive exploration.

Immunotherapy utilizing immune checkpoint inhibi-
tors (ICI) has revolutionized the cancer treatment para-
digm by harnessing the immune system’s capabilities. 
However, clinical trials indicate limited efficacy of ICI 
immunotherapy in HGSOC [24]. This could be attrib-
uted to intricate tumor evasion mechanisms inherent 
to HGSOC. Notably, ECM is believed to play a pivotal 
role in immune pathway modulation [25, 26]. An in-
depth analysis of the ECM’s involvement in HGSOC may 
provide novel insights into prognosis and therapeutic 
options.

In this study, we meticulously examined seven cohorts 
to identify 71 ECM genes associated with HGSOC 
prognosis. Based on these findings, we formulated an 
ECMscore signature comprised of 14 genes, demonstrat-
ing its potential as an independent predictor of overall 
survival across four cohorts. Notably, ECMscore emerged 
as a robust prognostic factor across prevalent malignan-
cies, including bladder urothelial carcinoma, colon ade-
nocarcinoma, pancreatic adenocarcinoma, and others. 
Subsequently, individuals with HGSOC were separated 
into two groups based on their ECMscores, and the asso-
ciation between their biological behaviors and gene alter-
ations was further examined. The high ECMscore group 
correlated with stromal and carcinogenic pathways, while 
low ECMscore group displayed enrichment of immune-
related pathways. We further scrutinized the interplay 
between ECMscore and the immunological landscape 
and conducted experiments elucidating the connection 
between ECMscore and cancer-associated fibroblasts 
(CAFs). Additionally, we discovered that ECMscore can 
reflect the immunological landscape of pan-cancer. In 
addition, we discovered that ECMscore can reflect the 
immunological landscape of pan-cancer. Furthermore, 
the impact of ECMscore in immunotherapy and che-
motherapy was examined in an effort to identify a more 
scientific hierarchical management strategy that might 
provide guidance for HGSOC and possibly pan-cancer 
treatment.

Conclusion The comprehensive evaluation of the ECM may help identify immune activation and assist patients in 
HGSOC and even pan-cancer in receiving proper therapy.

Keywords Extracellular matrix, Immunity, Prognosis, Treatment, Ovarian carcinoma
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Materials and methods
Dataset source and preprocessing
The overall design of this study is depicted in Fig. 1.

We gathered data from six distinct transcriptomic 
cohorts of HGSOC patients, encompassing four micro-
array cohorts from the Gene Expression Omnibus (GEO: 
GSE140082, GSE30161, GSE32062, and GSE9891), one 
RNA-sequencing cohort from the International Can-
cer Genome Consortium (ICGC: OV-AU), and another 
RNA-sequencing cohort from The Cancer Genome Atlas 
(TCGA-OV). Corresponding clinical data were also col-
lected, and individuals with missing overall survival (OS) 
values and those with a survival duration of less than one 

month were excluded from the analysis. Detailed base-
line information for all six HGSOC datasets is outlined 
in Supplementary Table  1. To facilitate the comparison 
of ECM gene expression between normal ovarian tissue 
and ovarian cancer patients, we utilized the data from 
GSE18520 and GSE40595 (Supplementary Table 1). Pan-
cancer statistics and related clinical data were extracted 
from the TCGA database. In addition, we retrospectively 
evaluated four distinct transcriptomic cohorts for immu-
notherapy. The IMvigor210 cohort was retrieved from an 
online database (http://researchpub.gene.com/IMvigor-
210CoreBiologies). Furthermore, two separate microar-
ray datasets, GSE100797 and GSE35640, were acquired 

Fig. 1 Flow chart of this study. The study begins with the identification of significantly correlated extracellular matrix (ECM) genes. Consensus cluster-
ing is employed to classify prognostic-related ECM genes into distinct extracellular matrix patterns, followed by an analysis of the association between 
different ECM clusters and patient prognosis. Subsequently, a LASSO algorithm is applied to construct an ECMscore signature. The risk model is compre-
hensively evaluated using clinical characteristics, survival analysis, functional enrichment annotations, genomic features, and the potential for predicting 
immunotherapy and chemotherapy responses. Finally, the prognostic relevance of the model is further validated in pan-cancer analysis and immuno-
therapy assessment

 

http://researchpub.gene.com/IMvigor210CoreBiologies
http://researchpub.gene.com/IMvigor210CoreBiologies


Page 4 of 16Wu et al. Cancer Cell International          (2023) 23:223 

from the GEO database. Nathanson’s cohort’s clinical 
and expression profiling data were obtained from pub-
lished studies [27]. We transformed the RNA-sequencing 
data into more comparable transcripts per kilobase mil-
lion (TPM) values for the RNA-sequencing cohorts. The 
meta-data consolidation was carried out using the “Com-
Bat” algorithm from the “sva” package for the four GEO 
cohorts, ICGC-OV, and TCGA-OV datasets. A complete 
list of human ECM genes was obtained from the web-
site (http://matrisomeproject.mit.edu/) [28, 29], which 
encompassed 274 core matrisome genes and 753 matri-
some-associated genes (Supplementary Table 2).

Genomic alterations analysis
The “TCGAbiolinks” software was utilized to retrieve 
from TCGA somatic mutations and copy number altera-
tions (CNAs) corresponding to HGSOC samples with 
RNA-sequencing data. The “maftools” and “Complex-
Heatmap” packages were used to analyze and visualize 
somatic variations for somatic mutation data. The “GIS-
TIC 2.0” module of the GenePattern website (https://
genepattern.org) was utilized to identify ECM gene 
amplification (GISTIC value ≥ 1) and deletion (GISTIC 
value ≤ -1).

Human tissue specimens
We recruited 30 HGSOC patients who had undergone 
curative resection at Xiangya Hospital, Central South 
University (Supplementary Table  3). The informed con-
sent form was signed by all patients enrolled in the study. 
The Xiangya Hospital Ethics Committee authorized this 
study.

RNA extraction and quantitative real-time polymerase 
chain reaction (qRT-PCR)
Total RNA was extracted using FFPE RNA Extraction 
Kits (AmoyDx, Xiamen, China) following the manu-
facturer’s instructions. RNA purity and quantity were 
assessed using the NanoDrop 1000 Spectrophotometer 
(Thermo Fisher, USA), with OD260/OD280 ratios of 
1.8-2.0 and OD260/230 ratios of 2.0-2.2. Reverse tran-
scription of the first-strand cDNA was performed using 
HiScript II Reverse Transcriptase (Vazyme, Nanjing, 
China) with 1  µg of total RNA. Quantitative real-time 
PCR (qRT-PCR) was conducted on an ABI Prism 700 
thermal cycler (Applied Biosystems, Foster City, CA, 
USA) as described previously [30]. GAPDH was used as 
the normalizer for RNA quantification. Each experiment 
was performed in triplicate. The primer sequences are is 
outlined in Supplementary Table 4.

Consensus clustering
Consensus clustering, an unsupervised class discov-
ery tool, was used to identify ECM clusters using the 

“ConsensusClusterPlus” R package [31]. The k value was 
adjusted to be between 2 and 6, with 1,000 initial resa-
mples conducted for the clustering process. Here, the k 
value represents the number of clusters. The consensus 
matrix (CM) and cumulative distribution function (CDF) 
were utilized to determine the optimal k value or the 
most suitable number of clusters. Based on the expres-
sion levels of prognostic-related ECM genes across differ-
ent cohorts, we subsequently identified two distinct ECM 
clusters.

Generation of the ECMscore
Univariate Cox regression analysis was employed to iden-
tify ECM genes with predictive potential in the six sepa-
rate cohorts and the meta-data. Considering the stringent 
demands of multiple testing correction and the chal-
lenges posed by limited sample sizes in specific cohorts, 
which could potentially overlook latent ECM genes with 
prognostic significance, we implemented a screening 
process to identify genes that satisfied both criteria: hav-
ing a P value < 0.1 and demonstrating consistent hazard 
ratio (HR) direction across over four cohorts (Supple-
mentary Table  5). The Lasso method, a form of shrink-
age estimation, was employed to create a refined model 
by constructing a penalty function that shrinks specific 
coefficients while setting others to zero. Further com-
pression of variables was achieved through Lasso regres-
sion to reduce the number of genes in the risk model. The 
method employed to derive the ECMscore was similar to 
prior studies [32, 33]. The set of 71 ECM genes under-
went Cox proportional hazards regression with tenfold 
cross-validation using the ‘glmnet’ package. After 1000 
iterations, a total of 7 signals were generated. The signal 
with the highest frequency was selected as the optimal 
signal for subsequent investigations. Consequently, we 
employed the 14 ECM-related genes within this model to 
formulate our ECMscore signature.:

 
ECMscore =

∑n

i=1
Coefi*xi

Where n was the number of prognostic genes, xi  was 
the expression value of each prognostic gene, and Coefi 
was the regression coefficient of each prognostic gene in 
the LASSO algorithm. Median risk scores from different 
HGSOC patient cohorts were used to categorize patients 
into low- and high-ECMscore groups. Moreover, the 
prognostic performance of the ECMscore was assessed 
using Kaplan-Meier curves, time-dependent area under 
the receiver operating characteristic curve (AUC), and 
the concordance (c)-index.

http://matrisomeproject.mit.edu/
https://genepattern.org
https://genepattern.org
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Functional and pathway enrichment analyses
The ‘‘clusterProfiler’’ package was used to examine prog-
nostic-related ECM genes in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene Ontol-
ogy (GO) terms [34]. To investigate the malignant signal-
ing pathway activities of HGSOC patients, we applied 
the “PROGENy” package, a method that can deduce 
pathway activity from gene expression by employing 
core pathway-responsive genes [35]. The “clusterProfiler” 
and “GSVA” packages were subsequently used to under-
take a gene set enrichment analysis (GSEA) study and 
single sample GSEA (ssGSEA) analysis with the objec-
tive of discovering underlying biological functions among 
distinct ECMscore groups [36]. The gene sets “h.all.
v7.5.1.symbols”, “c5.go.mf.v7.5.1.symbols”, “c5.go.bp.
v7.5.1.symbols”, and “c2.cp.kegg.v7.5.1.symbols” from the 
MSigDB database were chosen as the reference gene sets.

Evaluation of the immunogenomic landscape
The infiltration levels of 28 immune cells and the activa-
tion of the immune pathway for each HGSOC patient 
were determined using “ssGSEA” and the “GSVA” soft-
ware package [37]. By utilizing the “ESTIMATE” pro-
gram, the immunological score, ESTIMATE score, 
stromal score, and tumor purity were calculated [38, 
39]. CIBERSORT, CIBERSORT-ABS, EPIC, TIMER, 
QUANTISEQ, MCPCOUNTER, and xCELL were used 
to confirm immune cell infiltrations [38, 40–44]. T 
cell–inflamed cytolytic activity (CYT) and gene expres-
sion profile (GEP) were determined using previously 
described methods [45, 46]. Tracking Tumor Immuno-
phenotype (TIP; http://biocc.hrbmu.edu.cn/TIP/index.
jsp) was used to obtain the activity scores of the cancer 
immunity cycle in HGSOC patients [47].

Immunotherapy and chemotherapy response prediction
The tumor immune dysfunction and exclusion (TIDE), 
subclass mapping (SubMap) algorithms, and immu-
nophenoscore (IPS) were used to predict responses of 
HGSOC patients to immune checkpoint blockade (ICB) 
as previously documented [48–51]. To study the sensi-
tivity difference of medications between low- and high-
ECMscore groups, we used the “pRRophetic” software 
to assess the half-maximal inhibitory concentration 
(IC50) of drugs of each HGSOC patient by ridge regres-
sion using the Genomics of Drug Sensitivity in Cancer 
(GDSC; https://www.cancerrxgene.org) database [52]. 
P values < 0.05 were statistically significant, while lower 
IC50 values indicated higher sensitivity. To discover pro-
spective therapeutic agents in distinct groups, a spear-
man’s correlation analysis was conducted between IC50 
values and ECMscore, yielding nine medications with 
|Spearman’s R| ≥ 0.30.

Statistical analysis
The R software (https://www.r-project.org/, version 
4.0.5) was used for statistical analysis and graph visual-
ization. For normally distributed variables, differences 
between two groups were assessed using Student’s t-test, 
while comparisons involving more than two groups 
employed the one-way ANOVA test. In cases of non-
normally distributed variables, comparisons between 
two groups utilized the Wilcoxon rank-sum test, whereas 
comparisons among more than two groups employed 
the Kruskal-Wallis test. Furthermore, categorical vari-
able comparisons between groups were conducted using 
either the chi-square test or Fisher’s exact test, contin-
gent upon sample size and expected cell frequencies. 
Correlation analysis between two continuous variables 
entailed Pearson’s correlation for normally distributed 
data with linear relationships, while Spearman’s corre-
lation was applied for non-normally distributed data or 
data exhibiting monotonic relationships. Kaplan-Meier 
curves and the log-rank test were utilized to compare the 
OS or PFS of various ECMscore groups. Using univariate 
and multivariate Cox regression models, the prognostic 
factors were evaluated. Using the “timeROC” package, 
the time-dependent AUC was determined. A two-sided 
P value < 0.05 was considered statistically significant 
(*P < 0.05 **P < 0.01, ***P < 0.001, ****P < 0.0001).

Results
Identification of Prognostic-Associated ECM genes in 
HGSOC Patients
In order to gain a comprehensive understanding of 
the underlying mechanisms involving ECM genes in 
HGSOC, we assembled a total of 1230 HGSOC patients 
(meta-data) and addressed batch effects using the “Com-
Bat” algorithm (Supplementary Fig.  1A, 1B). For the 
identification of ECM genes linked with prognosis, we 
initiated univariate Cox regression analysis across seven 
cohorts. This analysis revealed a set of 71 ECM genes, 
encompassing 30 core matrisomal genes and 41 matri-
some-related genes, significantly associated with OS in 
HGSOC (Fig. 2A). We compared the mRNA expression 
levels of these prognostic-related genes in normal ovarian 
and HGSOC samples from the GSE18520 and GSE40595 
datasets. Among these genes, 11 showed elevated expres-
sion in HGSOC samples, while 5 exhibited downregu-
lated expression (Supplementary Fig. S1C). We further 
evaluated the methylation level and the copy number 
variation (CNV) modifications of 71 ECM genes in ovar-
ian cancer, discovering potential associations between 
methylation changes, CNV alterations, and abnormal 
ECM gene expression (Supplementary Fig. S1D, S1E). In 
addition, the incidence of somatic mutations in 71 ECM 
genes was studied in HGSOC. The top 20 mutations of 
prognostic-related ECM genes were displayed, with 

http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://biocc.hrbmu.edu.cn/TIP/index.jsp
https://www.cancerrxgene.org
https://www.r-project.org/
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COL5A3 (7%) showing the highest mutation frequency, 
followed by HSPG2 (6%) and LAMB1 (6%) (Supplemen-
tary Fig. S1F). To provide insight into their biological 
roles, GO and KEGG analyses revealed that these prog-
nostic-related ECM genes were enriched for extracellular 
matrix organization, collagen-containing extracellular 
matrix, extracellular matrix structural component, and 
cytokine-cytokine receptor interaction (Supplementary 
Fig. S1G, S1H). The correlation analysis revealed that cer-
tain ECM genes in the TCGA cohort and meta-data were 
substantially interrelated (Supplementary Fig. S2A).

Distinct ECM modification patterns in HGSOC patients
Based on the expression profiles of these 71 prognostic-
related ECM genes, an unsupervised consensus cluster-
ing analysis was conducted to identify the specific ECM 
modification patterns of HGSOC patients, and two dis-
tinct modification patterns were revealed in metadata 
(Fig.  2B and Supplementary Fig. S3A). The principal 
component analysis confirmed that the expression lev-
els of the 71 ECM genes also separate the two groups 
(Fig.  2C). As demonstrated in Fig.  2D, cluster 2 (C2) 
tended to have higher ECM gene expression than cluster 
1 (C1). The Kaplan-Meier survival study indicated that 
HGSOC patients in C2 had worse OS and progression-
free survival (PFS) than in C1, suggesting that this classi-
fier was a prognostic predictor (Fig. 2E F). Using the same 
clustering methodology, patients with HGSOC from 
various cohorts were also classified into two subgroups 

(Supplementary Fig. S3A, S3B). Consistent with previous 
findings, the cluster with increased ECM gene expres-
sion had a much worse prognosis (Supplementary Fig. 
S4A-S4C).

Identification and clinical validation of ECMscore as a 
prognostic biomarker
Considering the significant interrelations among some 
ECM genes and aiming to determine the optimal prog-
nostic biomarker for clinical application, the 71 prog-
nostic-related ECM genes from the TCGA-OV cohort 
underwent Cox proportional hazards regression with 
lasso penalty to reduce the gene count within the risk 
model. After 1000 iterations, seven prognostic signa-
tures were obtained, and a 14-gene signature named 
ECMscore was further screened out based on the high-
est frequency (Fig.  3A and Supplementary Table  6). 
These genes were derived from three core matrisomal 
genes and eleven matrisome-associated genes (Fig.  2A). 
Next, we calculated each patient’s ECMscore as fol-
lows: ECMscore = 0.084 * COL8A2 + 0.05 * CST6–0.09 
* CXCL11–0.111 * CXCL13 + 0.015 * HCFC2 + 0.02 * 
LOXL4–0.008 * LTA + 0.016 * MGP − 0.064 * NYX + 0.003 
* PAPPA + 0.025 * PLXNA1–0.139 * SERPINA10–0.072 
* TGM7 + 0.04 * WNT9A (Fig. 3A). ECMscore was sub-
stantially correlated with survival status, stage, TCGA 
molecular subtypes, and immunological subtypes 
(Fig. 3B). Patients with HGSOC were split into low and 
high ECMscore groups using a median cutoff, and it 

Fig. 2 Identification of two ECM clusters in HGSOC patients. (A) Univariate Cox regression analysis used to identify ECM genes associated with OS 
across various cohorts. (B) Cumulative distribution function of consensus clustering for k = 2 in the meta-data cohort. (C) Principal component analysis 
demonstrating the separation between cluster C1 and cluster C2 based on prognostic-related ECM genes. (D) Heatmap illustrating the expression profiles 
of prognostic-related ECM genes in the meta-data cohort. (E, F) Kaplan-Meier analysis depicting the OS (E) and PFS (F) differences between different ECM 
clusters in the meta-data cohort
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was discovered that the high ECMscore group had sig-
nificantly worse OS and PFS in different cohorts (Fig. 3C, 
Supplementary Fig. S5A and S5B). In five cohorts, uni-
variate and multivariate Cox regression analysis revealed 
that the ECMscore served as an independent predic-
tive predictor for OS (Fig.  3D and E). In the meantime, 
outcomes from the time-dependent AUC analyses indi-
cated that ECMscore could predict HGSOC patient OS 
with compatible accuracy across multiple independent 
cohorts (Fig. 3F). In comparison to other clinical param-
eters (age, grade, and stage), ECMscore demonstrated 
significantly superior accuracy in GES140082, GSE32062, 
ICGC, and TCGA cohorts, while displaying comparable 
accuracy in the remaining two cohorts (Fig. 3G). Beyond 
HGSOC, we extended our exploration of ECMscore’s 
prognostic efficacy for OS and PFS to other malignancies. 
The results highlighted that ECMscore serves as a robust 

prognostic stratification predictor across the most preva-
lent malignancies (Supplementary Fig. S6A, S7A).

Uncovering biological behavior and pathway associations 
of ECMscore groups
To investigate the underlying biological behavior between 
different ECMscore groups, we examined the relation-
ship between ECMscore and the activities of malignant 
signaling pathways. Our analysis unveiled positive cor-
relations between ECMscore and TGF-ß, VEGF, and 
WNT signaling pathways, while revealing a negative 
correlation with the JAK/STAT pathway (Fig.  4A). Sub-
sequently, GSVA enrichment analysis showed that the 
high ECMscore group was characterized by stromal and 
carcinogenic activation pathways, including apical Sur-
face, Notch signaling, apical Junction, Wnt signaling, epi-
thelial-mesenchymal transition (EMT), TGF-ß signaling, 

Fig. 3 Construction of a prognostic signature based on ECM genes. (A) Frequency distribution of prognostic signatures after 1000 iterations (left 
pie chart) and regression coefficients of each gene in the ECMscore signature determined by the LASSO algorithm (right bar chart). (B) Associations 
between ECMscore and clinical features including survival status, age, grade, stage, TCGA molecular subtypes, and immune subtypes. (C) Kaplan-Meier 
analysis illustrating the differences in OS (upper) and PFS (bottom) between low- and high-ECMscore groups in the TCGA-OV cohort. (D) Univariate Cox 
regression analysis of ECMscore across various cohorts, with dashed line representing HR = 1. (E) Multivariate Cox regression analysis showing the effect 
of ECMscore and clinicopathological characteristics on survival in different cohorts. The HR value of ECMscore was adjusted for age, grade, and stage in 
various cohorts, with dashed line indicating HR = 1. (F) Time-dependent area AUC values of ECMscore in different cohorts. (G) C-index comparison of 
ECMscore with clinicopathological characteristics in different cohorts
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and angiogenesis, thereby affirming earlier findings [53]. 
Conversely, the low ECMscore group exhibited enrich-
ment in immune-related pathways such as interferon 
alpha response, interferon-gamma response, and inflam-
matory response (Fig.  4B). Comparable outcomes were 
achieved through GSEA analyses of GO annotation and 
KEGG pathways (Fig. 4C and D, and Supplementary Fig. 
S8A). These findings collectively imply an association 
between the ECMscore and the immune landscape of 
ovarian cancer.

Exploring genomic characteristics of different ECMscore 
groups
Genome aberrations, such as somatic mutations and 
copy number alterations, play a crucial role in the devel-
opment of HGSOC. To investigate ECMscore-related 
pathways in HGSOC, we investigated somatic mutations 
within distinct ECMscore groups. The results indicated 
a weak negative correlation between ECMscore and 
both synonymous and nonsynonymous somatic muta-
tions. However, there were no statistically significant 
differences in somatic mutations between high and low 

ECMscore groups (Fig.  5A). Among the top 20 genes 
with the highest mutation frequencies, only DNAH5 
exhibited differential mutations between the two groups 
(Supplementary Fig. S9A). As shown in Supplementary 
Fig. S9B, genes with different frequencies between the 
low and high ECMscore groups were displayed using 
Fisher’s exact test with a P value threshold of < 0.05. 
Subsequently, we examined CNV between different 
ECMscore groups. Both low- and high-risk groups dis-
played genomic amplifications and deletions (Fig.  5B). 
Nonetheless, only a limited number of chromosomal 
band-level discrepancies were observed when comparing 
the two groups (Supplementary Fig. S9C). Within these 
chromosomal bands, several ECM genes exhibited exten-
sive amplifications in the high ECMscore group or dele-
tions in the low ECMscore group (Fig. 5C).

Unveiling the Nexus of ECMscore and the immune 
landscape
To discover the underlying relationship between the 
ECMscore and the immune landscape of HGSOC 
patients, a correlation analysis was conducted between 

Fig. 4 Underlying biological functions of different ECMscore groups. (A) Heatmaps (left) and box plot (right) illustrating the activity scores of signal-
ing pathways in low- and high-ECMscore groups within the TCGA-OV cohort. (B) Bar graph showing the disparity in enrichment scores based on GSVA 
analysis between low- and high-ECMscore groups. (C, D) GSEA of biological processes from the GO database (C) and KEGG pathway gene sets (D). The 
top 10 positively and negatively associated pathways with ECMscore are presented
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the ECMscore and the immune score, ESTIMATE score, 
stromal score, and tumor purity. The results revealed 
that the ECMscore was negatively correlated with the 
immune score and ESTIMATE score, but positively 
correlated with tumor purity (Fig.  6A). Subsequently, 
the ssGSEA analysis indicated a significantly negative 
connection between ECMscore and immune infiltrate 
density in the TCGA-OV cohort (Fig.  6B). Specifically, 
the group with a high ECMscore had less infiltration 
of CD8 + T cells and M1 macrophages, and more fibro-
blasts, as confirmed by multiple algorithms (Fig. 6C and 
Supplementary Fig. S10A). Furthermore, we examined 
the status of CYT, GEP, and IFN-γ across low and high 
ECMscore groups. As shown in Fig.  6C, they were all 
elevated in the group with a low ECMscore, which was 
associated with a more immunoreactive microenviron-
ment. Likewise, ECMscore was inversely correlated with 
immune modulators, and a low ECMscore was associated 
with an increased concentration of immune modulators 
(Fig.  6D). Moreover, the ECMscore signature displayed 
an adverse association with the cancer immunity cycle, 
which includes the release of cancer cell antigens (step 
1), priming and activation (step 3), trafficking of immune 
cells to tumors (step 4), and killing of cancer cells (step 7) 
(Supplementary Fig. S10B).

To further investigate the association between 
ECMscore and immunological microenvironment, we 
evaluated the correlation between 14 genes and antican-
cer tumor-infiltrating immune cells (CD8 + T cells, NK 
cells, DCs, and macrophages) as well as CAFs. As a result, 
CXCL11, CXCL13, and LTA were significantly positively 
connected with CD8 + T cells, DCs, and macrophages, 

while MGP, COL8A2, and PAPPA were significantly posi-
tively correlated with CAFs (Supplementary Fig. S11A). 
Given the role of CAFs in interacting with cancer cells 
via growth factors, inflammatory ligands, and ECM pro-
teins [7],we investigated the correlation between MGP, 
COL8A2, and PAPPA with CAF markers. The findings 
indicated a negative correlation between these genes and 
the CAF marker across different cohorts (Supplementary 
Fig. S11B). Additionally, we explored the detailed distri-
bution of MGP, COL8A2, and PAPPA in ovarian cancer 
using single-cell RNA transcriptome data (GSE147082) 
from the TISCH database [54]. In comparison to other 
cell types, fibroblasts exhibited higher proportions of 
these genes, especially MGP (Supplementary Fig. S12A-
D). A qRT-PCR experiment confirmed the positive asso-
ciation between MGP, COL8A2, PAPPA and FAP (an 
immunosuppressive macrophage marker) (Supplemen-
tary Fig. S12E).

Pan-cancer exploration of the ECMscore signature
To investigate the pan-cancer TME landscape influenced 
by the ECMscore signature, we analyzed the relationship 
between ECMscore, immune score, and stromal score. 
Remarkably, the ECMscore exhibited consistent negative 
associations with immune score, ESTIMATE score, and 
stromal score, while showcasing a positive correlation 
with tumor purity across multiple cancer types (Fig. 7A). 
Moreover, a closer examination revealed a negative cor-
relation between ECMscore and the expression of criti-
cal immune checkpoints as well as major immune cells 
in most cancers (Fig. 7B). Furthermore, substantial stro-
mal component cells like fibroblasts and endothelial 

Fig. 5 Genomic Features of different ECMscore groups. (A) Distribution and relationship between total mutation counts, synonymous mutation 
counts, non-synonymous mutation counts, and ECMscore, depicted through boxplots and scatterplots. The distributions of these features in low and 
high ECMscore groups are shown. (B) Comparison of CNV through genomic amplifications and deletions between low- and high-ECMscore groups. (C) 
Chromosomal locations of ECM genes exhibiting significant amplifications and deletions in broad regions of copy number alterations
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cells displayed correlations with the ECMscore (Fig. 7B). 
Notably, the ECMscore demonstrated a negative correla-
tion with immune activation and a positive correlation 
with stromal activation and EMT activation (Fig.  7B). 
These collective findings strongly suggest that the 
ECMscore holds the potential to serve as a reflection of 
the immune landscape of pan-cancer.

Impact of ECMscore on immunotherapy and 
chemotherapy strategies
Considering that the group with a low ECMscore had a 
stronger immune response potential and maintained 
enhanced immune checkpoint expression, we investi-
gated whether the ECMscore could predict HGSOC 
patient responses to immune checkpoint inhibitors. 
Using the TIDE method, we discovered that ECMscore 

exhibited a favorable association with TIDE, exclusion 
score, CAFs, and M2 macrophages, although no cor-
relation with dysfunction score was observed in both 
the GSE140082 and TCGA-OV cohorts (Fig.  8A). Our 
investigation extended further to examine whether 
the low ECMscore group could be more responsive to 
immunotherapy. Utilizing the IPS and submap algo-
rithm, consistent results were obtained, reinforcing the 
notion that patients with a low ECMscore might be more 
prone to positive immunotherapy outcomes (Fig.  8B 
C). Expanding our analysis to various immunotherapy 
datasets, including IMvigor (urothelial cancer), Nathan-
son’s cohort (melanoma), GSE100797 (melanoma), and 
GSE35640 (melanoma), we found that individuals with a 
high ECMscore were associated with an immunological 
desert phenotype, poorer prognosis, and weaker immune 

Fig. 6 Immune Landscape of different ECMscore groups. (A) Correlation analysis demonstrating the relationship between ECMscore and immune 
score, stromal score, ESTIMATE score, and tumor purity across six cohorts. (B) Heatmap illustrating normalized scores of immune cell populations in 
low- and high-ECMscore groups. Correlation plots (left) depict the associations between ECMscore and immune cell infiltrates. Yellow indicates positive 
or negative correlations, while grey represents no correlation. (C) Comparison of CD8 + T cells, M1 macrophages, fibroblasts, CYT, GEP, and IFN-γ levels 
between low- and high-ECMscore groups. (D) Bubble chart (upper) and Heatmap (lower) showcasing the correlation between immune modulators and 
ECMscore, along with their distributions in the low- and high-ECMscore groups
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response (Fig. 8D J). Intriguingly, by calculating the half 
maximum inhibitory concentration (IC50) value for vari-
ous drugs using pRRophetic software, we established a 
connection between ECMscore and drug sensitivity in 
HGSOC samples (Fig. 8K L). Nine medications emerged 
from this analysis, with the IC50 of two compounds 
positively correlated with ECMscore, while the IC50 of 
seven other drugs demonstrated a negative correlation. 
Notably, the low ECMscore group appeared to be more 
susceptible to cisplatin, etoposide, and paclitaxel (Sup-
plementary Fig. S13A). Collectively, these results sug-
gested that the ECMscore may be a valuable biomarker 
in guiding HGSOC patients towards optimal treatment 
strategies.

Discussion
It is known that the malignancy of HGSOC is consider-
able, and that the majority of patients with advanced 
HGSOC have a dismal prognosis, with a 5-year sur-
vival rate of approximately 30% [4]. However, not every 
patient experiences a relapse, indicating the heteroge-
neity within this cancer subtype. In 2011, the cancer 
genome atlas (TCGA) evaluated mRNA expression, 

miRNA expression, DNA copy number, and promoter 
methylation in 489 advanced serous cancers, as well as 
DNA sequences encoding gene exons in 316 of these 
tumors. This is a significant step forward in compre-
hending HGSOC [55]. This diversity highlights the need 
for a stratified approach to patient management, mak-
ing the development of effective biomarkers and targeted 
therapies critical. ECMs play a pivotal role in the TME, 
influencing tumor behavior and metastatic potential. 
Understanding the role of ECMs in HGSOC is essen-
tial for the advancement of both biomarker discovery 
and novel therapeutic strategies [17, 56]. To enhance 
prognostic prediction and treatment selection, this 
study proposes a classification strategy centered around 
ECM genes, resulting in the establishment of a 14-gene 
signature (MGP, COL8A2, PAPPA, NYX, PLXNA1, 
CST6, LOXL4, SERPINA10, TGM7, CXCL11, CXCL13, 
HCFC2, LTA, WNT9A) specific to HGSOC. By utilizing 
the ECMscore derived from this signature, patients with 
HGSOC are segregated into two distinct groups. Through 
rigorous Cox regression analyses, both univariate and 
multivariate, the ECMscore emerges as an independent 
prognostic factor. Remarkably, the utility of ECMscore 

Fig. 7 Pan-cancer analyses of ECMscore signature. (A) Correlation analysis demonstrating the relationships between ECMscore and immune score, 
stromal score, ESTIMATE score, and tumor purity in the pan-cancer cohort. Purple indicates negative correlation, while green indicates positive correlation. 
(B) Correlation analysis between ECMscore and immune checkpoints (upper), immune cell populations (middle), and TME signatures (lower)

 



Page 12 of 16Wu et al. Cancer Cell International          (2023) 23:223 

extends beyond HGSOC, proving its value as a prognos-
tic marker across a diverse range of cancers including 
bladder urothelial carcinoma, colon adenocarcinoma, 
and pancreatic adenocarcinoma, among others. This 
underlines its potential as a versatile biomarker across 
various malignancies. Furthermore, the relationship 
between this model and the biological behavior, genetic 
characteristics, and immunological landscape of HGSOC 
was thoroughly studied, and these results were validated 
on a pan-cancer scale. After investigating the involve-
ment of ECMscore in the development of HGSOC, the 
study provides valuable insights into the formulation of 
more targeted therapeutic strategies.

ECM participates in both the modulation and the 
therapy of tumors, and has shown great value in both the 
diagnosis and the prognosis of cancer [57–59]. Among 
the ECM genes that were identified as prognostically sig-
nificant in this study, many were enriched in pathways 
related to ECM organization, structural components, 
collagen-containing ECM, and cytokine-cytokine recep-
tor interactions. For instance, MGP, an ECM protein, 
has been implicated in carcinogenesis and its dysregu-
lated expression observed in multiple tumor types. Tar-
geting MGP has demonstrated potential in reducing the 
growth of colorectal cancer tumors and reversing resis-
tance to certain chemotherapies [13]. Similarly, CXCL11 

Fig. 8 Implications of ECMscore for immunotherapy and chemotherapy. (A) Correlation analysis between ECMscore and TIDE scores in GSE140082 
and TCGA-OV cohorts. (B) Comparison of IPS between low- and high-ECMscore groups stratified by PD-1 and CTLA4 expression. (C) Relationship between 
ECMscore groups and immunotherapy responses using the TIDE algorithm. (D) Kaplan-Meier analysis estimating OS in different ECMscore groups in the 
IMvigor cohort. (E) Distribution of ECMscore in patients with distinct immunotherapy responses (left) and immunophenotypes (right) in the IMvigor 
cohort. (F) Kaplan-Meier analysis estimating OS in different ECMscore groups in Nathanson’s cohort. (G) Distribution of ECMscore in patients with varying 
immunotherapy responses in Nathanson’s cohort. (H) Kaplan-Meier analysis estimating OS in different ECMscore groups in the GSE100797 cohort. (I, J) 
Distribution of ECMscore in patients with diverse immunotherapy responses in the GSE100797(I) and GSE35640 cohort. (K) Correlation analysis between 
ECMscore and IC50 values of candidate drugs in TCGA-OV cohort. (L) Comparison of IC50 values of candidate drugs between low- and high-ECMscore 
groups in TCGA-OV cohort
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has been linked to migration and metastasis promotion 
in hepatocellular carcinoma [60], while also showing 
immune-related and better prognostic implications in 
colon cancer [14]. LOXL4’s deletion has been found to 
enhance tumor growth and metastasis in triple-negative 
breast cancer through ECM-related mechanisms [61]. 
PAPPA, on the other hand, demonstrates dual roles, with 
its inhibition leading to decreased ovarian cancer cell 
growth, invasion, and metastasis, while overexpression 
can increase tumor growth [15, 16]. Studies have also 
indicated that the ECM-receptor interaction pathway 
is filled with potential indicators of HGSOC metastasis 
[62]. Consistent with previous research, we discovered 
that ECMscore was related to malignant signaling path-
way activity. The high ECMscore group showed a posi-
tive correlation with stromal and carcinogenic pathways, 
while the low ECMscore group exhibited enrichment 
in immune-related pathways. Nonetheless, association 
study with genetic characteristics reveals that ECMscore 
has no effect on this variable. Although genetic instabil-
ity is a feature of HGSOC, ECM may impact the cellular 
microenvironment and can directly influence prognosis 
and chemoradiotherapy response [16]. In general, the 
role of ECM in tumors is closely tied to its modulation of 
immune regulation [63].

We further thoroughly investigated the intricate 
relationship between the immunological profile of 
HGSOC patients and the ECMscore. The ssGSEA anal-
ysis unveiled a strong negative correlation between 
ECMscore and immune infiltrate density, revealing that 
patients with high ECMscores had reduced CD8 + T cell 
and M1 macrophage infiltration but elevated fibroblast 
presence. These findings correspond to the conclusion 
that the high ECMscore group exhibited a less immuno-
reactive microenvironment, which was in line with their 
poorer prognosis. CD8 + intraepithelial tumor-infiltrating 
lymphocytes are associated with a favorable prognosis 
in HGSOC, as their presence indicates heightened OS 
and progression-free survival [64, 65]. The diminished 
CD8 + T cell and M1 macrophage infiltration in the high 
ECMscore group may contribute to their worse prog-
nosis. This interaction with the immune microenviron-
ment underscores the significance of the ECMscore in 
predicting the immune response and its clinical impli-
cations. CAFs, which are crucial stromal compartment 
components, interact with cancer cells by secreting cyto-
kines and growth factors as well as ECM proteins. CAFs 
can influence immune cell infiltration, drug delivery, 
and immune evasion, affecting cancer progression and 
therapy response [66–68]. In our study, we discovered 
a highly positive association between MGP, COL8A2, 
PAPPA, and CAFs. It has been demonstrated that MGP, 
COL8A2, and PAPPA are effective immunological check-
points that mediate tumor immunosuppression [26, 

69–72]. Among these, PAPPA was discovered to be a 
highly differentially expressed therapeutic target in Ewing 
sarcoma [26], COL8A2 is a crucial part of the base-
ment membrane of corneal endothelial cells, and it can 
encourage the malignant development of glioblastoma 
cells by triggering EMT [73]. Notably, MGP has shown 
potential as a novel and significant mediator for mes-
enchymal stem cell-mediated immunoregulatory treat-
ment in Crohn’s disease, as indicated by recent research 
[25]. Further validation was provided through qRT-PCR 
tests, confirming that the set of 14 prognostic-associated 
genes, particularly MGP, COL8A2, and PAPPA, are cor-
related with FAP expression - an established marker of 
immunosuppressive macrophages. Moreover, a compre-
hensive pan-cancer analysis lent support to these find-
ings by revealing that the ECMscore potentially reflects 
the immune landscape across various cancer types. The 
implications of these findings emphasize the need for 
expanded investigations into different cancer contexts.

In addition to investigating networks and mecha-
nisms, our study delved into the predictive capacity 
of ECMscore for immunotherapy response in cancer 
patients. The outcomes strongly indicate that individuals 
with a low ECMscore are more likely to exhibit a favor-
able response to immunotherapy. This observation was 
reinforced by the analysis of multiple immunotherapy 
datasets, encompassing urothelial cancer and melanoma. 
Conversely, individuals with a high ECMscore exhibited 
a higher proportion of an immunological desert pheno-
type, associated with a poorer prognosis and diminished 
immune response. Furthermore, we explored the poten-
tial of ECMscore to predict chemotherapeutic sensitivity 
by assessing its correlation with the IC50 values of differ-
ent drugs in HGSOC patients. Encouragingly, our inves-
tigation unveiled that cisplatin, etoposide, and paclitaxel 
demonstrated increased sensitivity in patients with a low 
ECMscore. Additionally, alternative mechanisms need to 
be further studied by doing combination analysis using 
the ECM-related risk signature, aside from those path-
ways elucidated in this study.

Conclusion
In summary, we established a 14-gene risk profile based 
on ECM that may accurately predict the survival out-
comes and response to immunotherapy and chemo-
therapy in patients with HGSOC and pan-cancer based 
on a comprehensive analysis based on large-scale clinical 
samples and transcriptome data. These discoveries have 
not yet been verified in human models of HGSOC. How-
ever, these results hold promise for emerging as a robust 
prognostic instrument with future implications for prog-
nostication and determination of chemotherapeutic effi-
cacy, not only within the context of HGSOC but also in 
the broader realm of pan-cancer research.
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