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Abstract 

Background Disulfidptosis is independent of apoptosis, ferroptosis, and cuproptosis and is associated with can-
cer progression, treatment response, and prognosis. However, the predictive potential of disulfidptosis-associated 
lncRNAs in colon adenocarcinoma (COAD) and their features in the tumor immune microenvironment (TIME) require 
further elucidation.

Methods RNA transcriptome, clinical information, and mutation data of COAD samples were obtained 
from the TCGA database. The risk model was first constructed by co-expression analysis of disulfidptosis genes 
and lncRNAs, and prognostic lncRNAs were screened using Cox regression, followed by least absolute shrinkage 
and selection operator analysis. Enrichment analyses were performed to explore the underlying biological functions 
and signaling of model-associated differentially expressed genes (MADEGs). Moreover, TIME of MADEGs was ana-
lyzed to assess the immunotherapy. Finally, the expression levels of the lncRNAs were verified by taking specimens 
of patients with COAD from the Affiliated Hospital of Qingdao University.

Results We constructed a prognosis-related risk model based on four disulfidptosis-associated lncRNAs (ZEB1-AS1, 
SNHG16, SATB2-AS1, and ALMS1-IT1). By analyzing the survival of patients in the whole, training, and test groups, we 
found that patients with COAD in the low-risk group had better overall survival than those in the high-risk group. 
Validation of the model via Cox analysis and clinical indicators demonstrated that the model had a decent potential 
for predicting the prognosis of patients with COAD. Enrichment analyses revealed that the MADEGs were related 
to disulfidptosis-associated biological functions and cancer pathways. Furthermore, patients with COAD in the high-
risk group had more positive responses to immune checkpoint inhibitors (ICIs) than those in the low-risk group, 
as confirmed by TIME analysis. ZEB1-AS1, SNHG16, and ALMS1-IT1 were expressed at higher levels in tumor samples 
than those in the corresponding paracancerous samples (p < 0.05), whereas SATB2-AS1 was upregulated in the para-
cancerous samples (p < 0.05).
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Conclusions This signature may guide prognosis, molecular mechanisms, and treatment strategies, including ICIs 
and chemotherapy, in patients with COAD.

Keywords Colon adenocarcinoma, Disulfidptosis, lncRNA, Prognostic, Tumor microenvironment

Introduction
Colon adenocarcinoma (COAD) has the third high-
est incidence rate worldwide, which is second only to 
lung cancer in terms of cancer mortality [1]. Although 
the mortality rate of patients with COAD has decreased 
with improvements in treatment technology in recent 
years, COAD remains a serious threat to human health 
worldwide owing to its metastasis, drug resistance, and 
tumor recurrence features [2–4]. Despite the similarities 
between COAD and other tumors, the underlying patho-
genesis and molecular mechanisms are not sufficiently 
understood. Therefore, an in-depth exploration of the 
mechanisms of COAD occurrence and development is 
urgently required to improve the efficacy of COAD and 
develop individualized protocols regarding prognos-
tic assessment and treatment options for patients with 
COAD.

Disulfidptosis, which is independent of the currently 
existing programmed cell death process, is a rapid mode 
of cell death caused by disulfide stress resulting from 
excessive intracellular cystine accumulation [5], during 
which cell death typically occurs under glucose starvation 
conditions [5]. It has been revealed that in glucose-defi-
cient SLC7A11-high cancer cells, a large accumulation 
of disulfide molecules leads to abnormal disulfide bond-
ing between actin cytoskeletal proteins, disrupting their 
organization and eventually leading to actin network 
collapse and cell death [5]. Many cancer treatments kill 
cancer cells through apoptosis [6–8]. However, several 
cancer cells have developed mechanisms to evade apop-
tosis, leading to treatment resistance and disease recur-
rence [9]. These findings suggest that targeting disulfides 
warrants further investigation as a potential cancer treat-
ment option.

LncRNAs are a category of non-coding RNAs that are 
over 200 nucleotides in length. Their molecular func-
tions include, but are not limited to, the regulation of 
various biological processes, such as transcriptional sta-
bility, translation, and cell signaling [10–13]. LncRNAs 
can be transcribed but not translated into proteins, per-
form their various biological functions only at the RNA 
level, and are closely related to various human diseases. 
Numerous lncRNAs have been reported to be aber-
rantly expressed in COAD and function as oncogenes 
by affecting the biological functions of COAD cells, such 
as proliferation, metastasis, and epithelial–mesenchy-
mal transition, through various mechanisms [14–16]. 

Additionally, lncRNAs have been associated with tumor 
immunotherapy and drug resistance [17–19].

The effects of disulfidptosis-associated lncRNAs on 
COAD prognosis, tumor immune microenvironment 
(TIME), and chemotherapeutic agents remain unclear. 
Therefore, our study sought to explore the contribution 
of disulfidptosis-associated lncRNAs in COAD based on 
bioinformatics analysis and to develop a model to assess 
patients’ prognosis, TIME, and sensitivity to immuniza-
tion therapy and chemotherapeutic drugs.

Methods
Data collection and collation
The RNA transcriptome, clinicopathological, and gene 
mutation annotation information of the COAD samples 
were retrieved and downloaded from the TCGA data-
base (https:// gdc. cancer. gov/). Ten known disulfidptosis-
related genes were validated by Liu et al. [5].

LncRNA screening and establishment of the model
A total of 381 patients were first discretionarily divided 
into training and test sets using the caret package in R. 
Next, a Spearman correlation analysis was performed 
using the ggplot2, ggalluvial, and dplyr R packages 
(p < 0.001, |correlation coefficient ≥ 0.4|) to screen for 
disulfidptosis-associated lncRNAs and visualize these 
in a Sankey diagram. Univariate Cox (UniCox) regres-
sion analysis in the training group was used to screen 
for disulfidptosis-associated lncRNAs related to over-
all survival (OS), the results of which were displayed 
using a forest plot. The lncRNAs obtained from the 
above steps were further analyzed using a least abso-
lute shrinkage and selection operator (LASSO) analy-
sis to verify the optimal OS-associated lncRNAs and 
create a prognostic signature. The LASSO logistic 
regression model was constructed using the glmnet 
package in R. The model was calculated as follows: 
risk score =

∑
i = LnCoef (i) × EXP(i) . Patients 

were divided into low- and high-risk groups based on the 
median risk score.

Validation of the model
Kaplan–Meier, receiver operating characteristic (ROC), 
and consistency index (C-index) curves; forest plots for 
univariate analysis; and a nomogram were produced 
based on survival, caret, pheatmap, timeROC, sur-
vminer, regplot, pec, and dplyr R packages to validate the 

https://gdc.cancer.gov/
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credibility of the model for predicting clinically relevant 
indicators in the whole group patients with COAD. Clas-
sification of the expression patterns of disulfidptosis-
associated lncRNAs in COAD samples was performed 
using principal component analysis (PCA), and the 
spatial dispersion of samples from the two risk groups 
was visualized using the limma and scatteredplot3 R 
packages.

Function and pathway analyses
The differentially expressed genes (DEGs) of patients 
in the two risk sets were obtained using the R package 
limma, and gene ontology (GO) functional enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses of these DEGs were per-
formed using the clusterProfiler, org.HS.eg.db, and 
enrichplot packages. The DOSE package in R was used 
to perform gene set enrichment analysis (GSEA) to dis-
tinguish between the functions and pathways of the two 
risk sets, cutoff values were taken as the absolute value of 
logFC > 1, FDR < 0.25, and p-value < 0.05.

Analysis of the immune landscapes in the two risk sets
The tumor microenvironment was analyzed using the 
estimate package in R, according to the ESTIMATE 
algorithm [20] and the variances between the two risk 
sets were analyzed via the reshape2 and ggpubr R pack-
ages (estimate score = stromal score + immune score). To 
determine the immunological profiles of the 381 samples, 
expression information was imported into CIBERSORT 
using the limma, e1071, parallel, and preprocessCore 
packages in R to assess the percentage of immunocyte 
infiltration. To explore the composition of immunocytes 
in the different risk groups, the allocation of immuno-
cytes in the different risk groups was compared using 
the Wilcoxon test via the limma, reshape2, and ggpubr 
R packages. In addition, single-sample GSEA (ssGSEA) 
was performed using the GSVA, GSEABase, ggpubr, 
and reshape2 R packages to analyze the differences in 
immune-related functions between the two risk sets.

Mutations of DEGs and analysis of tumor mutation burden 
(TMB) and immune checkpoints
Perl was used to extract and process somatic muta-
tion files. The Maftools package in R was used to draw 
a waterfall plot of the DEG mutations in patients with 
COAD from the two different risk sets. Differences in 
TMB and survival between the two risk sets were ana-
lyzed using R. In addition, the expression levels of three 
immune checkpoints (PD1, PD-L1, and CTLA4) were 
compared between the two risk sets.

Chemotherapy agent prediction
The half-maximal drug inhibitory concentration (IC50) 
values of the chemotherapeutic agents were assessed 
using the limma, oncoPredict, and parallel R packages.

Experimental validation of the lncRNAs in the model
Tumors and paired paracancerous tissue samples were 
collected from 15 patients who underwent colon can-
cer resection at the Affiliated Hospital of Qingdao Uni-
versity. All patients were pathologically confirmed 
to have COAD and did not receive any preoperative 
tumor-related treatments. All samples for this study 
were obtained with informed consent from each patient, 
authorized by the ethics committee of the hospital, and 
conducted in accordance with the Declaration of Hel-
sinki. Quantitative real-time PCR (qRT-PCR) was used to 
evaluate lncRNA expression.

Total RNA was extracted from the collected tissue sam-
ples using RNA-easy Isolation Reagent (Vazyme, China) 
according to the manufacturer’s protocol and then 
reverse transcribed into complementary DNA (cDNA) 
using HiScript III RT SuperMix for qPCR + gDNA wipe 
(Vazyme, China). A mixture of  ddH2O, primers, cDNA, 
and ChamQ Universal SYBR qPCR MasterMix (Vazyme, 
China) was prepared according to the manual, and qRT-
PCR was performed using a PCR reaction detection 
system with the following procedures and parameters: 
pre-denaturation (95  °C for 120  s), denaturation (95  °C 
for 20 s), annealing (60 °C for 20 s), and extension (72 °C 
for 30 s). A total of 40 cycles were performed. The data 
were normalized using a control group of β-actin. The 
primer sequences are shown in Table 1.

Statistical analysis
The two groups of continuous variables were compared 
using t-tests. The chi-square test was performed for the 
classified variables. Cox regression analysis was used for 

Table1 lncRNA PCR primer

Name Primer sequence

ZEB1-AS1 F: CGA ATC CCT TCC TCC TCT CC

R: TCG TCT TAG CCC TTT CCG TT

SNHG16 F: AGC AGA ATG CCA TGG TTT CC

R: GGT CAA TTT AGG GCA CGG TCT 

ALMS1-IT1 F: GCA GTG GTT CTT GAC GGG TA

R: CAG TCC AGC CTG GGC AAT AA

SATB2-AS1 F: CGA ATC CCT TCC TCC TCT CC

R: TCG TCT TAG CCC TTT CCG TT

β-actin F: CCT CTC CCA AGT CCA CAC AG

R: GGG CAC GAA GGC TCA TCA TT
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the univariate and multivariate survival analyses. The log-
rank test was used to analyze the OS data. All data were 
analyzed using R 4.2.2 or GraphPad Prism 7.

Results
Disulfidptosis‑associated lncRNAs in patients with COAD 
and establishment of the risk model
The patients were randomly divided into training and 
test groups (Table  2). Following the Spearman correla-
tion analysis of the co-expression of disulfidptosis genes 
with lncRNAs, 270 lncRNAs were identified (Fig.  1A). 
In addition, as shown in Fig.  1B, 12 prognostic lncR-
NAs were identified using UniCox analysis in the train-
ing group. As shown in Additional file 1: Fig. S1A, B, the 
four lncRNAs used to construct the model were identi-
fied using LASSO logistic regression analysis with the 
following equation (Coef retains three decimal places): 
risk score = (1.139) × Exp ZEB1-AS1 + (− 0.544) × Exp 
SNHG16 + (− 0.234) × Exp SATB2-AS1 + (0.478) × Exp ALMS1-IT1. 
In addition, we generated the heat maps of these four hub 
lncRNAs and disulfidptosis-associated genes (Fig. 1C).

Model evaluation and validation
Patients were divided into low- and high-risk groups 
based on their median risk scores. Figure  2A–C show 
the median risk scores, which were used to divide the 
patients in their respective groups into two risk groups: 
panels a, b, and, c represent the whole, training, and 
test groups, respectively. Figure 2D–F show the expres-
sion results of the four lncRNAs between the samples 
from the two different risk groups: d, e, and f repre-
sent the whole group, training set, and test set, respec-
tively. Figure 2G–I show the patient survival status data 
between the two risk groups in the whole, training, and 
test groups, respectively. The survival results of the 
patients in the whole, training, and test sets showed 
that the model had a significant survival differentiation 
function, with patients in the high-risk group showing 
significantly poor OS (Fig. 2J–L). In addition, as shown 
in Fig. 2M–O, samples from the low-risk group tended 
to have higher favorable progression-free survival (PFS) 
than those from the high-risk group.

Univariate regression analysis suggested that age, 
stage, and signature were independent prognostic indi-
cators in patients with COAD (Fig.  3A). As shown in 
Fig.  3B, the area under curves (AUCs) of the 1-, 3-, 
and 5-year survival rates were 0.679, 0.703, and 0.744, 
respectively, indicating that the risk model had good 
predictive performance. In addition, as depicted in 
Fig.  3C, the model had an AUC of 0.703, which was 
superior to the clinicopathological indicators of age and 
sex in predicting the prognosis of patients with COAD. 
The concordance index in the model also outperformed 
the clinical indicators of age and sex (Fig. 3D).

As shown in Fig. 3E, a nomogram that included clin-
icopathological variables and signatures was devel-
oped to further identify the prognosis of patients with 
COAD. The results of the nomogram satisfactorily pre-
dicted the 1-, 3-, and 5-year prognostic probabilities 
of patients with COAD. The calibration curves shown 
in Fig.  3F indicate favorable concordance between the 
effective OS rates and the estimated 1-, 3-, and 5-year 
survival rates. Furthermore, according to the OS results 
of the model for patients with different clinical stages, 
the model was applicable to both early- and intermedi-
ate-to-late-stage COAD (Fig. 3G, H).

Figure 4A–D show the results of sample division into 
two risk sets based on all genes, disulfidptosis-associ-
ated genes, disulfidptosis-associated lncRNAs, and the 
model, respectively. The results indicated that our con-
structed model displayed optimal discriminatory ability 
and was able to clearly distinguish between patients in 
the two risk sets.

Table 2 Clinicopathology characteristics of patients with COAD

Covariates Whole 
group

Test group Train 
group

p value

Age  ≤ 65 158 
(41.47%)

80 (42.11%) 78 (40.84%) 0.883

 > 65 223 
(58.53%)

110 
(57.89%)

113 
(59.16%)

Gender Female 180 
(47.24%)

83 (43.68%) 97 (50.79%) 0.1986

Male 201 
(52.76%)

107 
(56.32%)

94 (49.21%)

Stage I 65 (17.06%) 31 (16.32%) 34 (17.8%) 0.373

II 149 
(39.11%)

71 (37.37%) 78 (40.84%)

III 102 
(26.77%)

51 (26.84%) 51 (26.7%)

IV 54 (14.17%) 33 (17.37%) 21 (10.99%)

Unknow 11 (2.89%) 4 (2.11%) 7 (3.66%)

T T1 10 (2.62%) 5 (2.63%) 5 (2.62%) 0.752

T2 67 (17.59%) 31 (16.32%) 36 (18.85%)

T3 260 
(68.24%)

129 
(67.89%)

131 
(68.59%)

T4 44 (11.55%) 25 (13.16%) 19 (9.95%)

M M0 282 
(74.02%)

139 
(73.16%)

143 
(74.87%)

0.1489

M1 54 (14.17%) 33 (17.37%) 21 (10.99%)

Unknow 45 (11.81%) 18 (9.47%) 27 (14.14%)

N N0 228 
(59.84%)

111 
(58.42%)

117 
(61.26%)

0.7004

N1 87 (22.83%) 43 (22.63%) 44 (23.04%)

N2 66 (17.32%) 36 (18.95%) 30 (15.71%)
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Enrichment analysis of DEGs
The results of the GO functional enrichment analy-
sis showed that disulfidptosis-associated DEGs were 
enriched in glycosaminoglycan binding, sulfur compound 
binding, external side of plasma membrane, collagen-
containing extracellular matrix, and extracellular matrix 
structural constituents, suggesting that DEGs signifi-
cantly contributed to disulfidptosis and cell structure dis-
ruption under conditions of glucose starvation (Fig. 5A, 
B). As shown in Fig. 5C, the results of the pathway analy-
sis revealed that DEGs were mostly concentrated in the 
Wnt signaling pathway, which is an important mecha-
nism for cancer function. In addition, enrichment of 
DEGs in several immune-related and amino acid metab-
olism-related pathways was identified.

The functional results of the GSEA are shown in Fig. 5D 
and E. In the low-risk set, the DEGs were mainly related 

to mitochondrial gene expression, mitochondrial respira-
tory chain assembly, and organellar ribosomes. In con-
trast, in the high-risk set, these were mainly enriched in 
the external encapsulating structure, extracellular matrix 
structural constituents, and structural constituents of 
chromatin. In the low-risk group, DEGs were abundant 
in the tricarboxylic acid cycle, whereas in the high-risk 
group, DEGs were associated with oxidative phosphoryl-
ation and were enriched in cell adhesion molecules and 
extracellular matrix receptor interactions (Fig. 5F, G).

Immunocyte infiltration and somatic cell mutations
As shown in Fig.  6A, in the TIME analysis, the sam-
ples in the high-risk group tended to show higher stro-
mal, immune, and ESTIMATE scores than those in the 
low-risk group, suggesting that stromal cells and immu-
nocytes were more infiltrated and that tumor growth, 

Fig. 1 Identification of a disulfidptosis-associated lncRNA prognostic signature. A Sankey diagram of lncRNAs associated with disulfidptosis genes. 
B Forest plot of disulfidptosis-associated prognostic lncRNAs. C Correlation heat map between the lncRNAs involved in the model construction 
and disulfidptosis genes (*p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 2 Validation of the prognostic function of the model. A The entire cohort of patients with COAD in the TCGA was divided 
into low- and high-risk sets based on the patients’ median risk scores. B The training group cohort of patients with COAD in the TCGA 
was classified into low- and high-risk sets based on the patients’ median risk scores. C The test group cohort of patients with COAD in the TCGA 
was grouped into low- and high-risk sets based on the patients’ median risk scores. D–F Heat maps of the expression results of the four lncRNAs 
between the samples from the two different risk groups in the whole, training, and test groups, respectively. G–I Life and death rate distributions 
of patients with COAD between the two risk groups in the whole, training, and test groups, respectively. J–L Overall survival curves corresponding 
to patients in the whole, training, and test groups, respectively. M–O Progression-free survival curves corresponding to patients in the whole, 
training, and test groups, respectively
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invasion, and metastasis were more likely to occur in 
high-risk patients. The consequences of the immunocyte 
composition percentages in the two different risk sets are 
displayed in Fig.  6B, which shows that the fractions of 
naïve B cells and resting NK cells were higher in the high-
risk group, whereas the proportions of plasma cells and 
neutrophils were higher in the low-risk group.

Figure  6C shows the correlation between the model, 
immunocytes, and their functions. The ssGSEA results 
revealed that the numbers of B cells, macrophages, neu-
trophils, CD8 + T cells, tumor-infiltrating lymphocytes 
(TIL), T follicular helper (Tfh) cells, and NK cells were 
significantly higher in the high-risk group than those in 
the low-risk group. Moreover, in terms of immune func-
tion, there was a significant correlation between antigen-
presenting cell (APC) co-inhibition, T cell co-inhibition, 
cytolytic activity, checkpoints, APC co-stimulation, type 
I IFN responses, and type II IFN responses, which were 
significantly enriched in the high-risk group. These out-
comes imply that immune functions were more active 
in the high-risk patient group than those in the low-risk 
patients group.

The distributions of the somatic mutations in patients 
with COAD in the two risk sets are shown in Fig.  6D, 
E. The frequency of mutations was higher in patients 
with COAD in the high-risk group than that in patients 
with COAD in the low-risk group. In addition, the TMB 
results observed in the high-risk group were greater than 
those observed in the low-risk group (Fig. 6F), and three 
immune checkpoints were also expressed at higher lev-
els in the high-risk group (Fig.  6G–I) than those in the 
low-risk group, suggesting that the samples in the high-
risk group were responsive to immune checkpoint inhibi-
tors (ICIs). Furthermore, patients with lower TMBs 
frequently had better survival rates (Fig.  7A), whereas 
those with higher TMBs and those in the high-risk group 
had the worst prognoses (Fig. 7B).

Treatment effectiveness prediction
When comparing the drug sensitivity data from clinical 
trials and common clinical applications, considerable dif-
ferences in the IC50 values of multiple chemotherapeu-
tic agents between the two risk groups were observed 
(Fig. 7C–E show the first-line clinical use data for patients 

with COAD, and the remaining drug results are shown in 
Additional file 1: Fig. S2–4).

Expression of the lncRNAs in the model
Figure 7F–I show the results of four lncRNAs identified 
in cancerous and non-cancerous tissues from patients 
with COAD in the TCGA database; the expression levels 
of ZEB1-AS1, SNHG16, and ALMS1-IT1 were higher in 
tumor samples than those in normal samples (p < 0.05), 
whereas the reverse was observed for SATB2-AS1. Fig-
ure  7J–M show the results of the expression validation 
of four lncRNAs in a cohort of 15 patients (normal tis-
sues:15, paracancerous tissues: 15) with COAD at our 
hospital, which showed that ZEB1-AS1, SNHG16, and 
ALMS1-IT1 were expressed at higher levels in tumor 
samples than those in the corresponding paracancerous 
samples (p < 0.05), whereas SATB2-AS1 was upregulated 
in the paracancerous samples (p < 0.05).

Discussion
As one of the most frequent neoplasms, the incidence of 
COAD gradually increases with changes in diet and life-
style habits [21, 22]. Despite significant progress in the 
understanding of the biological mechanisms underlying 
COAD, and although the 5-year survival rate of patients 
with COAD has improved significantly, the prognosis of 
advanced COAD remains extremely poor [23, 24]. There-
fore, improving COAD screening and early diagnosis 
methods, improving treatment modalities, and reducing 
recurrence and metastasis in patients will require further 
continuous analysis and exploration of the mechanisms 
underlying the development of COAD.

A recent study identified a new type of cell death 
independent of cuproptosis and ferroptosis denoted as 
“disulfidptosis,” which is a rapid mode of cell death caused 
by disulfide stress induced by excessive intracellular cys-
tine accumulation [5]. In glucose-deficient SLC7A11-
high cancer cells, massive accumulation of disulfide 
molecules leads to abnormal disulfide bonding between 
actin cytoskeletal proteins, disrupting their organization 
and ultimately leading to actin network collapse and cell 
death [5]. Nine other disulfidptosis-related genes have 
been identified through sequencing: GYS1, NDUFS1, 
OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, 
and SLC3A2 [5]. Therefore, disulfidptosis is a potential 

Fig. 3 Comparison of models and other clinical indicators. A Forest plot for the univariate Cox regression analysis. B ROC curves of the model 
for the 1-, 3- and 5-year survival rates. C ROC curves of the model and other clinicopathological indicators. D C-index curves of the model and other 
clinicopathological variables. E Nomogram that combines the model and clinicopathological factors for the prediction of the 1-, 3-, and 5-year 
overall survival rates of patients with COAD. F Calibration curve to assess the concordance between the predicted OS rates and the actual OS rates. 
G, H Survival curves of patients with COAD in the early and advanced stages

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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target for cancer therapy. Recently, studies have been 
conducted to predict the survival of patients with can-
cer by generating lncRNA prediction signatures associ-
ated with cuproptosis and ferroptosis [25–28]. However, 
disulfidptosis-related lncRNAs have not yet been iden-
tified as prognostic markers. This is the first study to 
develop a prognostic risk model based on four disulfidp-
tosis-related lncRNAs to systematically study the tumor 
and immune microenvironment to indicate immuno-
therapy and chemotherapy, as well as to guide patient 
prognosis.

In the current study, using information from the 
TCGA database, co-expressed lncRNAs were first iden-
tified based on 10 disulfidptosis genes. Then, prognosis-
related lncRNAs were acquired via UniCox analysis, and 

more accurate prognostic lncRNAs were obtained with a 
LASSO regression for model construction. The reliability 
of the model was confirmed by validating the risk sets of 
the two clinicopathological indicators. It was found that 
samples with lower risk sets had better OS and PFS. The 
enrichment analysis of DEGs associated with disulfidpto-
sis revealed associations with aspects of sulfur compound 
binding and disruption of cell structure, immune-related 
and amino acid metabolism-related pathways, and Wnt 
signaling. In their study, Liu et  al. showed that adding 
more cystine to a glucose-free medium caused NADPH 
overconsumption and induced actin cytoskeleton protein 
disulfide bond cross-linking and cytoskeleton contraction 
in SLC7A11 low-expressing cells, ultimately inducing 
disulfidptosis [5], which is consistent with our findings.

Fig. 4 PCA. A PCA of all genes. B PCA of disulfidptosis-associated genes. C disulfidptosis-associated lncRNAs. D PCA of the model
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The TIME is composed of tumor and stromal cells 
and the extracellular matrix, and it is thought to be a 
significant factor in tumor cell invasion, migration, 
adhesion, colonization, and neovascularization [29]. 
Various innate immunocytes (macrophages, dendritic 
cells, NK cells, and others) and adaptive immunocytes 
(T cells, B cells, and others) are present in the TIME 
and influence tumor development [30]. In this study, it 
was found that patients in the high-risk group had more 
stromal cells and immunocytes and worse tumor pro-
gression than those in the low-risk group. It has been 

demonstrated that tumor-infiltrating macrophages pro-
duce several mediators in the TIME to facilitate tumor 
proliferation, metastasis, and invasion, leading to poor 
prognosis [31]. In addition, one study reported that 
increased infiltration of macrophages, neutrophils, and 
Tfh cells in adenomatous colon polyps was correlated 
with the degree of malignancy, which provides guidance 
for colon cancer treatment [32]. Moreover, Ahmadza-
deh et  al. showed that the tumor microenvironment, 
including CD8 + cells and TIL, increases the growth of 
melanoma. Consistently, our study demonstrated that 

Fig. 5 Enrichment analysis. A, B GO functional enrichment analysis. C KEGG pathway enrichment analysis. D, E GSEA functional enrichment 
analysis. F, G GSEA pathway enrichment analysis
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Fig. 6 Analysis of patients’ tumor microenvironments and mutations. A Violin plot comparing the stromal, immune, and ESTIMATE scores 
between the high- and low-risk sets separately (ESTIMATE scores = stromal scores + immune scores). B Different immunocyte infiltration 
percentages. C ssGSEA scores for 16 immunocytes and 13 immune functions. D, E Waterfall plot of somatic mutations in the low- and high-risk 
groups. F Comparison of the TMB differences between the two risk groups. G–I Relative expression of PD1, PD-L1, and CTLA4 in the two risk groups 
(*p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 7 Validation of the model. A Survival analysis of two groups with high and low TMBs. B Survival analysis of two risk groups and two TMB 
groups. C–E Sensitivity comparisons of commonly used front-line chemotherapeutic agents between two groups. F–I Relative expression levels 
of ZEB1-AS1, SNHG16, SATB2-AS1, and ALMS1-IT1 in cancer and paracancerous samples from patients with COAD in the TCGA, respectively. Relative 
expression levels of ZEB1-AS1, SNHG16, SATB2-AS1, and ALMS1-IT1 in cancer and paracancerous samples from patients with COAD in the TCGA, 
respectively. J–M Relative expression levels of ZEB1-AS1, SNHG16, SATB2-AS1, and ALMS1-IT1 in COAD and paired non-cancerous tissue samples, 
respectively, from the Affiliated Hospital of Qingdao University (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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patients in the high-risk group had more neutrophils, 
CD8 + T cells, Tfh, and TIL, in addition to worse prog-
noses than those in the low-risk group. In addition, a 
recent study found a significant association between 
tumor-infiltrating plasma cells increased and good 
prognosis in patients with ovarian cancer, which is 
consistent with our results that patients in the low-risk 
group tend to have a better prognosis [33].

The study of B cells is controversial, with previous stud-
ies demonstrating their antitumor role in tumor immu-
nity; however, these have also been shown to promote 
tumorigenic effects [34]. In this study, we demonstrated 
the tumor-promoting role of B cells in a high-risk group 
of patients. Notably, cancer patients’ responses to ICIs 
treatments are related to the quantity and quality of T, 
NK, and B cells in the TIME [35].

ICIs have shown exciting results in non-small cell lung 
cancer, melanoma, colon cancer, and others [36–38]. 
According to some clinical trials, ICIs can still be useful 
for patients with malignancies who have already received 
chemotherapy or targeted therapy [39]. ICIs, including 
PD-1, PD-L1, and CTLA-4 inhibitors, provide treatment 
options for patients with malignant tumor [40]. The TMB 
is determined according to the total number of mutations 
per megabase in a tumor tissue sample, and studies have 
demonstrated that the higher the TMB, the more sig-
nificant the overall survival benefit for patients with high 
TMB and those treated with ICIs [41, 42]. Corroborating 
this, the current study revealed that patients in the high-
risk group had higher TMBs and expression of immune 
checkpoints, indicating that these patients may have a 
higher response rate to ICIs treatment than those in the 
low-risk group.

An increasing body of research suggests that lncR-
NAs play a predominantly oncogenic role in cancer 
[43, 44]. Due to their high tissue specificity and ease of 
detection in human bodily fluids, lncRNAs have great 
potential as diagnostic biomarkers and therapeutic 
targets [45]. Four disulfidptosis-related lncRNAs were 
identified in this study, including ZEB1-AS1, SNHG16, 
ALMS1-IT1, and SATB2-AS1. Several studies have 
demonstrated that ZEB1-AS1 plays an important role 
in regulating the proliferation, apoptosis, migration, 
invasion, and drug resistance of colon cancer cells [46, 
47]. Christensen et  al. demonstrated that SNHG16, 
which is upregulated in colon cancer, is regulated by 
Wnt signaling and contributes to the progression of 
COAD [48]. In addition, ALMS1-IT1 has been shown 
to be associated with immune infiltration in COAD 
and ferroptosis; thus, this lncRNA could be used as a 
biomarker for the prognosis of COAD [49, 50]. Fur-
thermore, SATB2-AS1 inhibits COAD metastasis by 

activating SATB2 through DNA demethylation in the 
SATB2 promoter region. Additionally, SATB2-AS1 
could inhibit T helper type 1 cells and immunocyte 
density in COAD [51].

In summary, lncRNA models associated with 
disulfidptosis independently predicted the prognosis 
of patients with COAD and were significantly asso-
ciated the TIME of patients as well as their sensitiv-
ity to immunotherapy and chemotherapy. We aimed 
to provide a rationale for the underlying mechanisms 
of disulfidptosis-related lncRNAs in COAD and their 
effects on clinical therapies. However, this investiga-
tion has some limitations. In addition to the relatively 
finite sample size, the model requires further biological 
validation.
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