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Abstract 

Prostate cancer (PCa) is a non-cutaneous malignancy in males with wide variation in incidence rates across the globe. 
It is the second most reported cause of cancer death. Its etiology may have been linked to genetic polymorphisms, 
which are not only dominating cause of malignancy casualties but also exerts significant effects on pharmacotherapy 
outcomes. Although many therapeutic options are available, but suitable candidates identified by useful biomarkers 
can exhibit maximum therapeutic efficacy. The single-nucleotide polymorphisms (SNPs) reported in androgen recep-
tor signaling genes influence the effectiveness of androgen receptor pathway inhibitors and androgen deprivation 
therapy. Furthermore, SNPs located in genes involved in transport, drug metabolism, and efflux pumps also influence 
the efficacy of pharmacotherapy. Hence, SNPs biomarkers provide the basis for individualized pharmacotherapy. The 
pharmacotherapeutic options for PCa include hormonal therapy, chemotherapy (Docetaxel, Mitoxantrone, Cabazi-
taxel, and Estramustine, etc.), and radiotherapy. Here, we overview the impact of SNPs reported in various genes 
on the pharmacotherapy for PCa and evaluate current genetic biomarkers with an emphasis on early diagnosis 
and individualized treatment strategy in PCa.
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Introduction
Prostate cancer is a frequently diagnosed malignancy, 
estimated 1.3 million newly diagnosed cases worldwide 
annually. It has surpassed breast cancer and become 
the most prevalent, increasingly crucial medical issue in 
males. Among 10 million clinically diagnosed PCa men, 
approximately 0.7 million are living with metastatic PCa, 
and more than 0.4 million deaths occur annually. This 
mortality rate is expected to double by 2040 [1]. Despite 
improvements in metastatic PCa treatment managing 
this disease remains challenging [2]. Prostate cancer cells 
are increasingly resistant to various treatments, which 
can affect the course of the disease and survival [3]. The 
mortality rate will be high if the development of resist-
ance continues to outpace the development of new treat-
ment options. Physicians can evaluate the chance of PCa 
recovery using different types of statistics called survival 
statistics [4]. According to the survival rate statistic, only 
a percentage of patients survive cancer [5, 6]. Since 2014, 
incidence rates for prostate cancer in its advanced stages 
have increased by 5% annually. Overall incidence rates 
have increased by 3% annually [7–9]. The above finding 
is not surprising due to the limited resources for prostate 
cancer screening and detection [10–12].

Almost 98% of PCa cases originated from the organ’s 
glandular part, and their microscopic examination is 
based on certain glandular patterns. The Gleason score is 
a commonly used assessment technique to grade prostate 
adenocarcinoma and has remarkable prognostic value 
[13]. Most malignancies arise in the peripheral glandu-
lar zone, which results in asymptomatic prostatic can-
cer at earlier stages, whereas symptomatic presentation 
occurs at the metastatic state of the disease [14]. Despite 
advanced ages, suggestive evidence provided by fam-
ily history data reported that the critical risk factors for 
PCa are genetic factors that may lead to the progression 
of abnormal prostatic cell growth and are responsible 
for developing cancerous cells [15]. The initial emer-
gence of PCa in the majority of men population is due 
to hereditary factors, having a family member’s history, 
and the chance of its occurrence in first-rank relatives is 
increased by two to three-fold [16]. However, the findings 
of segregation analysis of multi-case families supported 
an autosomal dominant inheritance mode, but it is esti-
mated that this inherited form causes only 9% of all PCa. 
A multigenic etiology has also been proposed for the 
majority of PCa cases. In intraepithelial neoplasia lesions, 
the multilayered luminal epithelium is observed, which 
serves as a promising biomarker of adenocarcinoma, 
such as loss of cytokeratin-5 and cytokeratin-14 (basal 
markers), the gain of cytokeratin-8 and cytokeratin-18 
(luminal markers), and altered expression of α-methyl 
acyl-CoA racemase [17].

In current clinical practice, inadequate diagnostic 
investigations are involved in screening PCa patients 
that are usually based on blood prostate-specific antigen 
(PSA) levels and the tumor stage. The classification of 
tumor stages is based on the blood PSA level, progression 
of PCa, and Gleason score of tumor grading. Though PSA 
is a commonly used diagnostic and prognostic marker of 
PCa, but numerous studies highlighted their poor cor-
relation with survival outcomes [18]. For early predic-
tion and prognosis of PCa, recent studies published 
evidence focused on the clinical importance of a genetic 
feature called Single Nucleotide polymorphisms (SNPs). 
Single nucleotide polymorphism (SNP) is the substitu-
tion, insertion, or deletion of a single nucleotide at a spe-
cific genomic position. It is the most prevalent type of 
genetic variation in people. A single base pair difference 
in the DNA sequence at a specific location in the genome 
causes the difference. SNPs may affect several aspects of 
an individual’s biology, including disease susceptibility, 
drug response, and phenotypic traits [19]. Many SNPs in 
the human genome appear roughly every 300 nucleotides 
[20]. Specific SNPs also impact susceptibility to disease 
and treatment response. For instance, a specific SNP may 
increase an individual’s risk of developing a specific dis-
ease or alter the response to a specific drug. These SNPs 
associated with certain traits or diseases are identified 
through genome-wide association studies (GWAS) [21]. 
Researchers identified phenotypic-related genetic mark-
ers by comparing SNP profiles of patients with healthy 
controls. The function of genes relating to particular 
pathways is altered by genetic variations that may have 
significant implications in clinical practice for personal-
ized medicine [22].

These studies have evaluated the coding sequences 
and assessed long noncoding RNAs (LncRNAs) having 
more than 200 nucleotides. Although LncRNAa does not 
translate, they interact with DNA, RNA, and proteins 
to perform their regulatory effects for differentiating, 
migrating, and proliferating cells and inducing apoptosis 
[23]. A polymorphism in the promoter region of LncRNA 
also modulates the expression pattern. Recently, a GAS5 
gene encodes tumor suppressor LncRNA (Growth arrest-
specific 5) reported to be involved in developing many 
cancers, such as lung, prostate, colorectal, and breast 
[24]. GAS5 is considered to cause the invasion, prolif-
eration, migration, and metastasis of PCa cells, but its 
exact expression level is still controversial [25]. Numer-
ous studies highlighted that the various genetic poly-
morphisms are linked with the risk level, grading, and 
mortality of PCa. In the promoter region of GAS5, a 5-bp 
indel polymorphism is reported as variant rs145204276, 
shown as “-/AGGCA”, alters the gene expression pattern, 
which results in increased susceptibility to cancers. This 
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SNP also significantly affects prognosis, disease stage, 
and the Gleason score of PCa [26].

An oncogenic transcription factor (TMPRSS2 and ERG 
fusion) is the most frequently reported chromosomal 
aberration in PCa, which causes carcinogenesis in > 50% 
of patients. In the prostate tumor-permissive inflamma-
tory microenvironment, epithelial transformation is fol-
lowed by a phenotypic and genotypic series of changes 
[27]. Up till now, about 5000 somatic mutations have 
been detected in prostate growth, and among these, the 
highly reported mutated genes are MED12, SCN11A, 
CDKN1B, SPOP, PIK3CA, PTEN, THSD7B, C14orf49, 
NIPA2, TP53, FOXA1, and ZNF595. Almost 15–25% 
risk of PCa is found in individuals having mutations in 
the BRCA  gene, and life-threatening prostate cancer 
is reported to be linked with the mutations in BRCA1, 
BRCA2, and HOXB13 [28].

Recent molecular genetic studies on the pathogenesis 
of the tumor, including the inactivation of tumor suppres-
sor genes and activation of oncogenes, have explained 
the multiple genetic alterations. The loss of heterozygo-
sity causes chromosomal instability that inactivates the 
tumor suppressor genes, which can serve as an indicator 
to identify these genes containing chromosomal regions 
for selective growth and are found as the primary source 
of tumorigenesis [29]. The high-frequency loss of hete-
rozygosity is a form of allelic loss observed in tumor sup-
pressor genes located on chromosomes 16q and 10q and 
are involved in the pathogenesis of human PCa [30]. As 
an alternative to curative PCa therapy, active surveillance 
(measuring cancer progression) is a strategy for moni-
toring old-age patients when their low life expectancy is 
anticipated. However, there is a very high chance of PCa 
diagnosis at an older age. A reduction of 46% in mortal-
ity risk has been observed in older men treated with local 
therapy compared to patients treated conservatively [31]. 
This review presents an overview of the influence of the 
SNPs reported in different genes on the pharmacother-
apy for PCa and assesses present genetic biomarkers with 
a focus on early diagnosis and personalized therapeutic 
approach in PCa.

Prostate cancer biology
There are three human prostate structural zones; central, 
transition, and peripheral. Mainly prostate tumors arise 
in the outermost peripheral zone, either with luminal 
or basal cancer-initiating epithelial cells, which give rise 
to lesions indicative of adenocarcinomas [32–34]. The 
PCa oncogenesis is linked with a series of interactions 
between various factors, including somatic acquired 
genetic mutations, germline susceptibility, macro-
environment, and microenvironment [35–37]. Tumors 
are complex tissues of multiple distinct cell types that 

undergo collaborative interactions during tumorigen-
esis. To maintain the tumor growth, invasion, or metas-
tasis, the tumor cells are highly selective to shape their 
microenvironment by allowing the critical supportive 
interaction among tumor cells via soluble factors and 
extracellular matrix (ECM) [38]. The multiple foci forms 
in localized prostate cancer have many genetic altera-
tions, diverse metastatic seeding capacities, and inher-
ent resistance to the treatment. It is also well established 
that prostate carcinogenesis is also promoted by urinary 
microbes-induced chronic inflammation and infec-
tions, which leads to the generation of oxidative stress by 
free radicals to damage the DNA [39]. The proliferative 
inflammatory atrophy increases the number of prolif-
erative luminal epithelial cells in the prostate, which are 
highly susceptible to epigenetic and genomic chromatin 
alterations that initiate malignant transformation and 
intraepithelial neoplasia [40].

There are several diagnostic tests to determine PCa 
staging, including prostate-specific antigen (PSA) blood 
tests, a digital rectal exam, imaging tests, and biopsies 
[41]. The specific stage of PCa plays a crucial role in 
determining treatment options and prognosis. PCa is 
characterized by three main terms: initiation, progres-
sion, and advancement. Imitation occurs when normal 
prostate gland cells are genetically mutated to cause 
PCa’s development [42]. The combination of genetic pre-
disposition and environmental factors can cause these 
mutations. Although the exact cause of PCa initiation 
is still unknown and is being studied, reported risk fac-
tors include age, family history, race, and certain genetic 
abnormalities [43]. PCa that occurs in distant parts of the 
body is called metastatic PCa. At this stage, treatment 
options may include hormone therapy, chemotherapy, 
targeted therapies, immunotherapy, and participation in 
clinical trials [44]. Figure 1 shows the different stages of 
PCA.

Prostatic intraepithelial neoplasia (PIN)
A premalignant condition of epithelial cells that occurs 
due to neoplastic growth in benign prostatic acini or 
ducts is called prostatic intraepithelial neoplasia. The 
reduction or loss of basal epithelium by hyper-prolifera-
tion of luminal epithelial cells is linked with a malignancy 
precursor called prostatic intraepithelial neoplasia [45]. 
Transformation into a malignant tumor has multiple 
steps, such as intraepithelial neoplasia origination, local-
ized PCa followed by advanced adenocarcinoma, and 
culmination with metastatic cancer [46]. A Gleason grad-
ing system defined by Donald Gleason is now widely used 
in clinical settings to grade the aggressiveness of pros-
tate cancers. The prostatic intraepithelial neoplasia can 
be categorized as high or low grade based on the extent 
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of intraepithelial neoplasia [47]. The prostatic intraepi-
thelial neoplasia is considered a high grade if lesions 
are produced by the multilayered luminal epithelium, 
which can serve as transformation-related biomarkers, 
such as the absence of basal markers [(KRT5), (KRT14) 
and TP63], gaining of luminal markers [(KRT18) and 
(KRT8)], and overexpression of α-methylacyl-CoA race-
mase (AMACR). The most common chromosomal aber-
ration is an oncogenic transcription factor resulting from 
the fusion of TMPRSS2 and ERG genes [48].

Metastatic prostate cancer
In metastatic cancer, invasion of tumor cells occurs in 
surrounding tissues where they undergo a series of inter 
and intracellular complex remodeling process, which 
has been classified into five stages. Each stage is highly 
energy-demanding for the cancer cells [49]. Prostate 
cancer-associated mortality generally causes by a meta-
static disease, which primarily metastases in the primary 
tumor adjacent lymph nodes, followed by the lungs, liver, 
and bone cancer. Bone metastases produce osteoblas-
tic lesions that cause bone pain, frequent fractures, and 
hypercalcemia [50]. Among other cancers, Epithelial-
mesenchymal transition (EMT) has been reported to 
be involved in the metastasis of prostate cancer cells by 
disseminating as circulating tumor cells (CTCs) into sys-
temic circulation that easily crosses physical barriers to 
develop bone metastasis [51].

In a mechanistic design study, molecular and pheno-
typic characteristics of CTCs were focused on under-
standing the dissemination of cancer cells to distant 
organs and detecting novel prognostic biomarkers. It 
was observed that the metastatic tumor cell invasion 
of the bones is caused by stromal cell-derived factor-1 
(SDF-1) and its receptor (CXCR4) [52]. SDF-1 anchor, 
Annexin A2, directs the binding of hematopoietic stem 
cells to the niche to enhance expression levels for prolif-
eration in prostate cancer cells and apoptosis resistance 
during patient chemotherapy [53]. Bone metastasis is a 
major clinical condition of PCa. Previous studies showed 

a comparison between non-metastatic and progressive 
castration-resistance human samples and reported that 
more than 80% of bone lesions were found in all men 
who die with PCa, and the mechanism behind the prev-
alence of PCa in bone is not well understood yet. How-
ever, the highest mortality rate was found in the patients 
diagnosed with skeletal metastasis [54]. In PCa-induced 
mortality, Ras and other GTP-binding proteins perform 
several important cellular functions, such as intracel-
lular signaling and cytoskeletal assembly. Ras is a glyco-
sylated transmembrane protein that acts as a membrane 
transducer and regulates the various downstream cellular 
events such as proliferation, apoptosis, and invasion [55]. 
The Ras family consists of h-ras, k-ras, m-ras, n-ras, and 
r-ras, associated with 30% of solid tumors. As the tumor 
load grows, the invasion of malignant cells also upsurges 
in the systemic circulation. The dissemination of Latro-
genic cells occurs during clinical procedures such as 
prostate biopsy, transurethral resection of the prostate 
(TURP), and brachytherapy [56].

A prostate biopsy involves the removal of small sam-
ples of tissue from the prostate gland using a needle. It is 
generally safe to perform this procedure; however, there is 
a small risk that the cells may be displaced and spread to 
other body parts, such as the bloodstream or nearby tissues 
[57]. The risk of significant complications from a prostate 
biopsy is relatively low. However, factors such as the nee-
dle traversing different areas of the prostate and possible 
bleeding at the biopsy site can contribute to cell dissemi-
nation during a biopsy [58]. Transurethral prostate resec-
tion (TURP) is a surgical procedure used to treat benign 
prostatic hyperplasia (BPH) by removing excess prostate 
tissue through the urethra with a resectoscope. Although 
the procedure aims to remove prostate tissue, iatrogenic 
cell dissemination is possible, particularly if the procedure 
involves cutting or manipulating tissue near the pros-
tate [59]. The possibility of iatrogenic cell dissemination 
exists in both cases. Healthcare professionals must take 
the appropriate precautions during these procedures to 
minimize complications and risks and monitor patients 

Normal Prostate Epithelium                     Prostatic Intraepithelial Neoplasia                       Adenocarcinoma                               Castration-resistance and metastastasis

Initiation                             Progression                          Advancement

Fig. 1 PCA initiation, progression, and advancement
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for adverse reactions [60]. Previous studies explained that 
tumor growth is linked with the cellular clearance process 
of the circulation, which may take almost 4  weeks. This 
cellular clearance is mainly related to the arrest of cellular 
clumps in the first capillary and other factors affecting the 
cellular motility of differential PCa cells and differences in 
the chemo-attraction [61].

Castration‑resistant prostate cancer (CRPC) and ADT
PCa progresses despite androgen deprivation therapy 
(ADT) or hormone therapy known as castration-resistant 
prostate cancer (CRPC). It is the primary treatment for 
advanced prostate cancer and reduces male hormones, 
specifically testosterone. These hormones fuel prostate 
cancer cell growth [62]. It is established that ADT is a cor-
nerstone in PCa management, both as a primary treatment 
and in combination with other treatments. ADT can be 
achieved by using a variety of approaches, such as surgi-
cal castration (the removal of the testicles) or medical cas-
tration (the use of medications that suppress testosterone 
production [63]. The application of ADT initially controls 
the growth and spread of prostate cancer, which leads to 
the shrinkage of tumors and the relief of symptoms, but 
in some cases, the cancer cells continue to grow despite 
low testosterone levels and lead to the development of 
CRPC [64]. ADT alleviates symptoms by reducing cancer 
cell growth in locally advanced and metastatic PCa condi-
tions. It can also be used as adjuvant therapy to eliminate 
residual cancer cells after primary treatment to reduce the 
risk of disease recurrence. This is done in combination with 
other treatments. In cases where PCa has spread to other 
body parts, ADT can improve symptoms, such as bone 
pain, by shrinking the tumors and decreasing their activity 
[65]. It is a vital component of palliative care and integral 
to improving the quality of life for patients with advanced 
disease. Along with other targeted therapies, such as abi-
raterone acetate or enzalutamide, ADT can further sup-
press androgen signaling pathways and inhibit cancer cell 
growth. These combinations of treatments have improved 
CRPC outcomes. Castration-resistant prostate cancer cells 
develop mechanisms to survive and grow despite low tes-
tosterone levels. These mechanisms include mutations in 
the androgen receptor, an increase in androgen synthesis, 
the amplification of the androgen receptor, and activating 
alternative signaling pathways [66] (Fig. 2).

Genetic biomarkers for early prostate cancer 
detection
Numerous cancer research studies have validated tumor-
associated genetic aberration-based biomarkers, which 
can help predict the risks, early diagnosis, and prediction 
of therapeutic outcomes. An aggressive tumor cannot be 
distinguished only by biopsy and blood PSA tests [79]. 

The dysregulation of LncRNAs controls the critical can-
cer hallmarks that can serve as an attractive biomarker 
for diagnosing PCa. Several cancer-specific LncRNAs are 
upregulated in PCa, such as PCATs, PCA3, SPRY4-IT1, 
SChLAP1, and TRPM2-AS. The altered expression pat-
tern of LncRNA promotes the progression of tumors and 
metastasis [80]. Several investigative studies on deter-
mining prostate cancer antigen 3 (PCA3) level in urine 
have confirmed the specificity and sensitivity of this 
non-invasive test [81]. Noncoding RNAs (ncRNAs) have 
gained significant importance in tumor biology and can 
potentially act as cancer biomarkers. PCAT-1 is a pros-
tate cancer-associated ncRNA transcript that acts as a 
prostate-specific regulator for cancer cell proliferation 
and is a suitable PCa marker [82]. α-methyl acyl-CoA 
racemase (AMACR) is a mitochondrial and peroxisomal 
enzyme overexpressed in prostate cancer, while its low 
expression level was observed in benign prostatic tissue. 
Hence, AMACR is a promising prostate tumor marker 
for early diagnosis [83] (Table 1).

PCa markers are also assessed in urine samples that are 
a favorable alternative to serum-based biomarkers. Golgi 
phosphoprotein-2, a Golgi membrane antigen encoded 
by GOLPH2, is reported to be overexpressed in almost 
90% of PCa patients, it does not only serve as a suitable 
biomarker for early diagnosis but also helps in distin-
guishing normal cells from cancerous cells [84]. The pre-
sent studies have successfully established the relationship 
between aggressive PCa phenotype and TMPRSS2-ERG 
fusion because the overexpression of the TMPRSS2-
ERG gene is linked with shorter survival of PCa patients. 
It also possesses prognostic significance as a tumor cell 
marker [85]. A protein kinase encoding the PIM1 gene is 
not expressed in the benign prostatic epithelium, but its 
expression level is elevated significantly in advanced PCa 
cases. Therefore PIM1 is a promising target for develop-
ing PIM1 inhibitor drugs [86]. Another useful prognostic 
biomarker is PTEN, a tumor suppressor usually deleted 
in prostate cancer and independently linked with the risk 
of lethal prostate cancer progression [87]. Hypermeth-
ylation of the PDLIM4 gene is also used as a marker for 
cancer detection because, in prostate cancerous cells, up-
regulation of the expression level of mRNA of PDLIM4 
and its protein was found, and it acts as a tumor suppres-
sor [88] (Table 1).

In multiple cancers, hypermethylation has been 
observed to indicate the earliest somatic genome alter-
ations. Several studies on cancer have also highlighted 
the aberrant methylation patterns at specific genes. The 
hypermethylation at GSTP1 is used to detect PCa and 
has been correlated significantly with the tumor stage. 
It also allows the early detection of more than 82% of 
PCa [89]. Several tumor suppressors (PTEN, RB1, and 



Page 6 of 20Rehman et al. Cancer Cell International          (2023) 23:247 

TP53) undergo mutations or allelic loss in an advanced 
stage of PCa, while the rare mutations are found in the 
RAS family (proto-oncogenes) [90]. After the surgical 
procedure, the DNA copy number alteration (CNA) 
burden across the genome of PCa patients is linked 
with metastasis. The CNA burden is an independent 
prostate-specific biomarker with a significant prognos-
tic impact in conservative treatment [91]. The initial 
localized prostate cancer management is very com-
plex. Three commonly available commercial tests (the 
Cell Cycle Progression score, the Genomic Prostate 
score, and Genomic Classifier) provide the maximum 
supporting information to manage and treat local-
ized prostate cancer. Among the prognostic markers, 
12 genes-based prostate markers help clinicians in the 
early diagnosis of PCa [92]. For appropriate assessment 
of pharmacotherapy, robust prognostic markers can be 
used, which are based on the altered expression pattern 

of 31 reported genes (ASPM, ASF1B, BUB1B, BIRC5, 
CENPF, CDC20, CDCA8, CDC2, CDCA3, CDKN3, 
CEP55, C18orf24, DLGAP5, DTL, FOXM1, PLK1, 
MCM10, NUSAP1, KIF11, KIF20A, KIAA0101, PRC1, 
RRM2, PBK, TOP2A, TK1, RAD51, RAD54L, PTTG1, 
CENPM, and ORC6L) [93]. Hypermethylation in CpG 
islands of DNA of cancer tissues is used as a diagnos-
tic marker of prostate cancer. DNA methylation occurs 
at the specific promoter of CpG islands that can cause 
gene repression, such as in the case of GSTP-1 and 
DAB2IP, while DNA hypermethylation does not occur 
in normal cells [94]. In the postoperative setting, bio-
chemical recurrence causes the progression of the dis-
ease, which can lead to lethal prostate cancer. Several 
studies have explained that metastasis development 
after biochemical recurrence is linked with the vali-
dated differential gene expression that can be used as 
metastatic biomarkers [95] (Table 1).
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Fig. 2 Signal transmission through AR is the main pathway for prostate cancer cell growth and spread. Therefore, regulating androgen receptors 
(ARs) in cells is the key to many cancer-related genes. Testosterone or dehydroepiandrosterone is converted to dehydroepiandrosterone by 5 
α reductase. DHT then dissociates HSP and AR to form a complex, which is transferred to the nucleus and activates cancer-associated genes. 
Androgens and androgen receptors (AR) in cells regulate cancer-related genes. It is possible to control human androgen-related malignant tumors 
by targeting androgen signaling pathways in tumor cells with anti-androgen, 5-α reductase inhibitors, heat shock protein 90 inhibitors, androgen 
receptor agonists, and serotonin inhibitors



Page 7 of 20Rehman et al. Cancer Cell International          (2023) 23:247  

Ta
bl

e 
1 

Ty
pe

s 
an

d 
fu

nc
tio

ns
 o

f g
en

et
ic

 m
ar

ke
rs

 o
f p

ro
st

at
e 

ca
nc

er

G
en

et
ic

 B
io

m
ar

ke
rs

M
ar

ke
r t

yp
es

Sa
m

pl
e 

ty
pe

s
Fu

nc
tio

ns
Re

fe
re

nc
es

SC
hL

A
P1

(ln
cR

N
A

s)
RN

A
Pl

as
m

a
ln

cR
N

A
s 

re
gu

la
te

 e
pi

ge
ne

tic
 m

od
ifi

ca
tio

n 
an

d 
tr

an
sc

rip
-

tio
n 

by
 m

od
ul

at
in

g 
hi

st
on

e 
or

 D
N

A
[9

6]

PC
A

3
Pr

os
ta

te
 c

an
ce

r a
nt

ig
en

 3
U

rin
e

Th
is

 g
en

e 
is

 p
ro

st
at

e-
sp

ec
ifi

c 
no

nc
od

in
g 

m
RN

A
, i

t 
is

 a
ss

es
se

d 
in

 a
 u

rin
e 

sa
m

pl
e 

to
 d

et
er

m
in

e 
th

e 
st

ag
e,

 
gr

ad
in

g,
 a

nd
 a

gg
re

ss
iv

en
es

s 
of

 P
Ca

[9
7]

PC
AT

-1
RN

A
 G

en
e

Bl
oo

d
PC

AT
-1

 is
 in

vo
lv

ed
 in

 c
an

ce
r. 

It 
re

gu
la

te
s 

pr
ol

ife
ra

tio
n,

 c
el

l 
cy

cl
e,

 a
po

pt
os

is
, m

et
as

ta
si

s, 
D

N
A

 re
pa

ir,
 a

nd
 h

om
ol

og
ou

s 
re

co
m

bi
na

tio
n

[9
8]

A
M

A
C

R 
G

en
e

Bl
oo

d
Th

is
 g

en
e 

en
co

de
s 

an
 e

nz
ym

e 
ca

lle
d 

α-
m

et
hy

la
cy

l-C
oA

 
ra

ce
m

as
e 

(A
M

A
C

R)
[9

9]

C
D

KN
2A

G
en

e
Ti

ss
ue

Cy
cl

in
-d

ep
en

de
nt

 k
in

as
e 

in
hi

bi
to

r 2
A

 lo
ca

te
d 

at
 c

hr
om

o-
so

m
e 

9
[1

00
]

G
O

LP
H

2
ci

s-
G

ol
gi

-lo
ca

lis
ed

 p
ro

te
in

Ti
ss

ue
In

 m
or

e 
th

an
 9

0%
 o

f c
as

es
, G

ol
gi

 m
em

br
an

e 
an

tig
en

 
is

 p
ro

du
ce

d 
by

 a
n 

ov
er

ex
pr

es
se

d 
ge

ne
[1

01
]

TM
PR

SS
2-

ER
G

Pr
os

ta
te

-s
pe

ci
fic

 a
nd

 a
nd

ro
ge

n-
re

sp
on

se
 g

en
e

U
rin

e 
sa

m
pl

e
TM

PR
SS

2 
is

 a
 s

er
in

e 
pr

ot
ea

se
 e

nc
od

in
g 

pr
os

ta
te

-s
pe

ci
fic

 
an

d 
an

dr
og

en
-r

es
po

ns
iv

e 
ge

ne
 in

vo
lv

ed
 in

 p
ro

st
at

e 
ca

rc
in

og
en

es
is

, a
nd

 th
e 

ER
G

 g
en

e 
en

co
de

s 
a 

pr
ot

ei
n 

th
at

 s
er

ve
s 

as
 a

 tr
an

sc
rip

tio
na

l r
eg

ul
at

or

[1
02

]

CC
N

D
2

Ce
ll 

cy
cl

e 
re

gu
la

to
ry

 g
en

e
Ti

ss
ue

Th
is

 g
en

e 
en

co
de

s 
pr

ot
ei

ns
 b

el
on

gi
ng

 to
 th

e 
cy

cl
in

 fa
m

-
ily

[1
03

]

PI
M

1
G

en
e

Bl
oo

d
PI

M
1 

is
 a

 p
ro

te
in

 k
in

as
e-

en
co

di
ng

 g
en

e.
 It

s 
ex

pr
es

si
on

 
le

ve
l i

s 
si

gn
ifi

ca
nt

ly
 h

ig
h 

in
 a

dv
an

ce
d 

pr
os

ta
te

 c
an

ce
r 

ca
se

s

[1
04

]

PT
EN

G
en

e
Bl

oo
d

Th
e 

ge
ne

 e
nc

od
es

 a
n 

en
zy

m
e 

fo
un

d 
in

 a
lm

os
t a

ll 
tis

su
es

[1
05

]

p1
4b

G
en

e
U

rin
e

M
et

hy
la

tio
n 

of
 th

is
 tu

m
or

 s
up

pr
es

so
r g

en
e 

lin
k 

w
ith

 th
e 

de
gr

ee
 o

f m
al

ig
na

nc
y

[1
06

]

PD
LI

M
4

A
 p

ro
te

in
 c

od
in

g 
ge

ne
W

ho
le

 b
lo

od
Re

du
ce

d 
ex

pr
es

si
on

 le
ve

ls
 o

f P
D

LI
M

4 
oc

cu
r b

y 
hy

pe
r-

m
et

hy
la

tio
n 

w
hi

ch
 is

 h
el

pf
ul

 in
 th

e 
de

te
ct

io
n 

of
 p

ro
st

at
e 

tu
m

or
ig

en
es

is

[1
07

]

N
KX

3A
Th

e 
pr

ot
ei

n 
en

co
de

d 
by

 th
e 

N
KX

3-
1 

ge
ne

W
ho

le
 b

lo
od

Tr
an

sc
rip

tio
n 

fa
ct

or
 h

el
ps

 in
 th

e 
de

ve
lo

pm
en

t o
f p

ro
st

at
e 

ep
ith

el
iu

m
. M

ut
at

io
n 

or
 lo

ss
es

 in
 th

is
 g

en
e 

m
ay

 le
ad

 
to

 th
e 

de
ve

lo
pm

en
t o

f p
ro

st
at

e 
ca

nc
er

[1
08

]

G
ST

P1
H

yp
er

m
et

hy
la

tio
n

A
n 

is
oz

ym
e 

en
co

de
d 

by
 th

e 
G

ST
 p

i g
en

e
U

rin
e

H
yp

er
m

et
hy

la
tio

n 
in

ac
tiv

at
es

 th
e 

G
ST

P1
, w

hi
ch

 p
la

ys
 

a 
ro

le
 in

 li
ve

r c
an

ce
r

[1
09

]

G
ST

P-
1

(G
lu

ta
th

io
ne

 S
-t

ra
ns

fe
ra

se
 P

1)
U

bi
qu

ito
us

 e
nz

ym
es

 c
au

se
 d

et
ox

ifi
ca

tio
n

W
ho

le
 b

lo
od

A
 tu

m
or

 s
up

pr
es

so
r i

n 
PC

a
[1

10
]

RB
1

G
en

e
W

ho
le

 b
lo

od
In

 a
dv

an
ce

d 
ca

nc
er

 s
ta

ge
s, 

al
le

lic
 lo

ss
 o

r m
ut

at
io

n 
le

ad
s 

to
 lo

ss
 o

f f
un

ct
io

n 
of

 tu
m

or
 s

up
pr

es
so

r
[1

11
]

C
N

A
 o

f G
en

om
e

Co
py

 n
um

be
r v

ar
ia

tio
ns

 (C
N

Vs
)

W
ho

le
 b

lo
od

C
N

Vs
 in

 th
e 

sp
ec

ifi
c 

ge
no

m
ic

 re
gi

on
s 

in
 s

om
at

ic
 c

el
ls

[1
12

]



Page 8 of 20Rehman et al. Cancer Cell International          (2023) 23:247 

Ta
bl

e 
1 

(c
on

tin
ue

d)

G
en

et
ic

 B
io

m
ar

ke
rs

M
ar

ke
r t

yp
es

Sa
m

pl
e 

ty
pe

s
Fu

nc
tio

ns
Re

fe
re

nc
es

TP
53

G
en

e
W

ho
le

 b
lo

od
In

 a
dv

an
ce

d 
ca

nc
er

 s
ta

ge
s, 

al
le

lic
 lo

ss
 o

r m
ut

at
io

n 
le

ad
s 

to
 lo

ss
 o

f f
un

ct
io

n 
of

 tu
m

or
 s

up
pr

es
so

r
[1

13
]

A
SC

/T
M

S1
 (P

YC
A

RD
)

A
n 

ad
ap

to
r p

ro
te

in
 a

ct
iv

at
in

g 
ca

sp
as

e-
1

Pl
as

m
a

Th
e 

im
m

un
e 

re
sp

on
se

 re
gu

la
to

r e
nc

od
ed

 b
y 

th
is

 g
en

e 
an

d 
its

 h
yp

er
m

et
hy

la
tio

n 
is

 fo
un

d 
in

 4
0%

 o
f c

as
es

[1
14

]

AS
PM

, A
SF

1B
, B

U
B1

B,
 B

IR
C5

, C
EN

PF
, C

D
C2

0,
 C

D
CA

8,
 C

D
C2

, 
CD

CA
3,

 C
D

KN
3,

 D
LG

AP
5,

 D
TL

, C
EP

55
,C

18
or

f2
4,

FO
XM

1,
 

PL
K1

, M
CM

10
, N

U
SA

P1
, K

IF
20

A,
 K

IA
A0

10
1,

 P
RC

1,
 R

RM
2,

 P
BK

, 
TO

P2
A,

 T
K1

, R
AD

51
, R

AD
54

L,
 P

TT
G

1,
 C

EN
PM

, a
nd

 O
RC

6L

G
en

es
W

ho
le

 b
lo

od
G

en
es

 to
 p

re
di

ct
 m

et
as

ta
tic

 ri
sk

 a
nd

 tr
ea

tm
en

t o
ut

co
m

es
[1

15
]

EP
B4

1L
3

A
 p

ro
te

in
 c

od
in

g 
ge

ne
W

ho
le

 b
lo

od
Th

is
 g

en
e 

en
co

de
s 

a 
co

rt
ic

al
 c

yt
os

ke
le

to
n 

pr
ot

ei
n 

in
 m

or
e 

th
an

 7
0%

 o
f p

ro
st

at
e 

ca
nc

er
 c

as
es

[1
16

]

C
pG

 is
la

nd
s

G
en

om
ic

 re
gi

on
s 

co
nt

ai
ni

ng
 a

 la
rg

e 
nu

m
be

r 
of

 C
pG

 d
in

uc
le

ot
id

e 
re

pe
at

s
W

ho
le

 b
lo

od
Pr

og
re

ss
io

n 
an

d 
de

ve
lo

pm
en

t o
f P

Ca
 o

cc
ur

 d
ue

 to
 h

yp
er

-
m

et
hy

la
tio

n 
in

 th
es

e 
re

gi
on

s, 
di

sr
up

tin
g 

th
e 

no
rm

al
 

fu
nc

tio
n 

of
 v

ar
io

us
 g

en
es

[1
17

]

AP
C,

 G
ST

P1
 o

r G
ST

P1
, R

AS
SF

1A
, R

AR
B2

, M
D

R1
G

en
es

W
ho

le
 b

lo
od

Co
m

bi
ne

d 
hy

pe
rm

et
hy

la
tio

n 
as

sa
ys

 c
an

 d
et

er
m

in
e 

be
ni

gn
 a

nd
 c

an
ce

ro
us

 a
lte

ra
tio

ns
 in

 th
e 

pr
os

ta
te

[1
18

]

RA
SS

F1
A

G
en

e
Se

ru
m

In
 b

en
ig

n 
pr

os
ta

te
, h

yp
er

m
et

hy
la

tio
n 

is
 o

bs
er

ve
d 

in
 th

e 
ge

ne
’s 

pr
om

ot
er

 re
gi

on
. W

hi
le

 in
 th

e 
pr

om
ot

er
 

re
gi

on
, a

 p
at

ch
y 

pa
tt

er
n 

of
 h

yp
er

m
et

hy
la

tio
n 

is
 in

di
ca

tiv
e 

of
 c

ar
ci

no
m

as

[1
19

]

RN
A

SE
L

G
en

e
W

ho
le

 b
lo

od
D

N
A

 h
yp

om
et

hy
la

tio
n 

ac
ts

 a
s 

th
e 

ha
llm

ar
k 

of
 th

e 
he

re
di

-
ta

ry
 p

ro
st

at
e 

ca
nc

er
 g

en
e

[1
20

]

TN
FS

R1
0D

/D
C

R2
G

en
e

W
ho

le
 b

lo
od

G
en

e 
do

w
n-

re
gu

la
te

s 
in

 P
Ca

 b
y 

hy
pe

rm
et

hy
la

tio
n.

 T
hi

s 
ge

ne
 e

nc
od

es
 D

R4
 a

nd
 D

R5
 re

ce
pt

or
s 

of
 th

e 
in

tr
ac

el
lu

la
r 

de
at

h 
do

m
ai

n 
(D

D
)

[1
21

]

Po
ly

co
m

b 
co

m
po

ne
nt

s 
(P

cG
 p

ro
te

in
s)

Tr
an

sc
rip

tio
na

l r
ep

re
ss

or
W

ho
le

 b
lo

od
In

cr
ea

se
d 

ex
pr

es
si

on
 o

f p
ol

yc
om

b 
co

m
pl

ex
es

 a
nd

 c
hr

o-
m

at
in

 m
od

ifi
ca

tio
n 

m
ay

 re
ve

al
 p

ro
st

at
e 

ca
nc

er
’s 

pr
og

re
s-

si
on

[1
21

]

H
D

A
C

1
G

en
e

W
ho

le
 b

lo
od

TM
PR

SS
2-

ER
G

 g
en

e 
fu

si
on

 c
au

se
d 

by
 a

 h
is

to
ne

 d
ea

ce
ty

-
la

se
 is

 in
vo

lv
ed

 in
 p

ro
st

at
e 

ca
nc

er
[1

22
]

D
LC

1
G

en
e

W
ho

le
 b

lo
od

M
et

hy
la

tio
n 

le
ad

s 
to

 g
en

e 
re

pr
es

si
on

 th
at

 o
cc

ur
s 

ex
te

n-
si

ve
ly

 in
 p

ro
st

at
es

 o
f o

ld
er

 m
en

; i
t m

ay
 b

e 
th

e 
m

ar
ke

r 
fo

r e
ar

ly
-s

ta
ge

 p
ro

st
at

e 
ca

nc
er

[1
23

]

LI
N

E-
1 

re
tr

ot
ra

ns
po

so
ns

C
la

ss
 I

tr
an

sp
os

ab
le

 e
le

m
en

ts
 in

 D
N

A
W

ho
le

 b
lo

od
In

 m
et

as
ta

tic
 c

as
es

, h
yp

om
et

hy
la

tio
n 

oc
cu

rs
 in

 th
es

e 
se

qu
en

ce
s, 

w
hi

le
 h

yp
er

m
et

hy
la

te
d 

re
tr

ot
ra

ns
po

so
ns

 a
re

 
ob

se
rv

ed
 in

 n
or

m
al

 c
on

di
tio

ns

[1
24

]

C
D

KN
1C

G
en

e
W

ho
le

 b
lo

od
H

yp
er

m
et

hy
la

tio
n 

ca
us

es
 th

e 
in

ac
tiv

at
io

n 
of

 th
e 

ge
ne

 
in

 p
ro

st
at

e 
ca

nc
er

[1
25

]

Ki
-6

7
N

uc
le

ar
 p

ro
te

in
W

ho
le

 b
lo

od
It 

is
 a

ss
oc

ia
te

d 
w

ith
 C

el
l-c

yc
le

-p
ro

lif
er

at
io

n 
an

d 
is

 a
 

pr
ed

ic
tiv

e 
m

ar
ke

r f
or

 P
Ca

[1
26

]



Page 9 of 20Rehman et al. Cancer Cell International          (2023) 23:247  

Ta
bl

e 
1 

(c
on

tin
ue

d)

G
en

et
ic

 B
io

m
ar

ke
rs

M
ar

ke
r t

yp
es

Sa
m

pl
e 

ty
pe

s
Fu

nc
tio

ns
Re

fe
re

nc
es

PS
CA

Pr
os

ta
te

 S
te

m
 C

el
l A

nt
ig

en
W

ho
le

 b
lo

od
In

cr
ea

se
d 

PS
C

A
 e

xp
re

ss
io

n 
lin

ke
d 

w
ith

 c
ap

su
la

r i
nv

as
io

n 
in

 p
ro

st
at

e 
ca

nc
er

[1
27

]

IG
F2

G
en

e
W

ho
le

 b
lo

od
Th

e 
IG

F2
 g

en
e 

en
co

de
s 

fo
r i

ns
ul

in
-li

ke
 g

ro
w

th
 fa

ct
or

 
2,

 w
hi

ch
 c

on
tr

ol
s 

th
e 

gr
ow

th
 a

nd
 d

iv
is

io
n 

of
 c

el
ls

. D
if-

fe
re

nt
ia

l m
et

hy
la

tio
n 

lo
ss

 b
ef

or
e 

m
an

ife
st

in
g 

ca
rc

in
om

as
 

an
d 

m
et

hy
la

tio
n 

ch
an

ge
 in

 IG
F2

 is
 a

 p
re

-n
eo

pl
as

tic
 

co
nd

iti
on

 in
 th

e 
pr

os
ta

te

[1
28

]

M
M

E
M

em
br

an
e 

m
et

al
lo

en
do

pe
pt

id
as

e
W

ho
le

 b
lo

od
Bi

om
ar

ke
r l

in
ke

d 
w

ith
 th

e 
pr

og
re

ss
io

n 
of

 P
Ca

[1
29

]

H
3K

4
D

N
A

 p
ac

ka
gi

ng
 p

ro
te

in
 H

is
to

ne
 H

3
W

ho
le

 b
lo

od
Th

e 
po

or
 p

ro
gn

os
is

 o
f P

Ca
 is

 li
nk

ed
 w

ith
 in

cr
ea

se
d 

di
m

et
hy

la
tio

n 
at

 ly
si

ne
 re

si
du

e
[1

30
]

H
3K

18
D

N
A

 p
ac

ka
gi

ng
 p

ro
te

in
 H

is
to

ne
 H

3
Pl

as
m

a
Th

e 
po

or
 p

ro
gn

os
is

 o
f P

Ca
 is

 a
ls

o 
lin

ke
d 

w
ith

 in
cr

ea
se

d 
ac

et
yl

at
io

n 
ac

tiv
at

io
n 

of
 th

e 
m

ar
ke

r
[1

31
]

JM
JD

3
H

is
to

ne
 d

em
et

hy
la

se
Ce

ll/
tis

su
e 

ex
tr

ac
t

Th
e 

ov
er

ex
pr

es
si

on
 o

f d
em

et
hy

la
se

 is
 fo

un
d 

in
 m

et
as

ta
tic

 
pr

os
ta

te
 c

an
ce

r
[1

32
]

ln
cR

N
As

 L
on

g 
no

n-
co

di
ng

 R
N

A
s, 

AM
AC

R  
A

lp
ha

-m
et

hy
la

cy
l-C

oA
 R

ac
em

as
e,

 P
CA

3 
Pr

os
ta

te
 C

an
ce

r A
nt

ig
en

-3
, P

CA
T-

1 
Pr

os
ta

te
 C

an
ce

r A
ss

oc
ia

te
d 

Tr
an

sc
rip

t-
1,

 G
O

LP
H

2 
G

ol
gi

 M
em

br
an

e 
Pr

ot
ei

n-
1,

 T
M

PR
SS

2-
ER

G
 

Tr
an

sc
rip

tio
na

l R
eg

ul
at

or
 E

rg
-T

ra
ns

m
em

br
an

e 
Pr

ot
ea

se
 S

er
in

e 
2,

 P
IM

1 
Pr

ot
o-

O
nc

og
en

e 
Se

rin
e/

Th
re

on
in

e-
Pr

ot
ei

n 
ki

na
se

, P
TE

N
 P

ho
sp

ha
ta

se
 a

nd
 Te

ns
in

 H
om

ol
og

, D
TL

 D
en

tic
le

le
ss

 E
3 

U
bi

qu
iti

n 
Pr

ot
ei

n 
Li

ga
se

 H
om

ol
og

, 
N

KX
3A

 o
m

eo
bo

x 
pr

ot
ei

n 
N

KX
-3

, G
ST

P1
 G

lu
ta

th
io

ne
 S

-T
ra

ns
fe

ra
se

 P
i G

en
e,

 R
B1

 R
et

in
ob

la
st

om
a 

Pr
ot

ei
n 

1,
 C

N
A 

of
 G

en
om

e 
Co

py
 N

um
be

r A
lte

ra
tio

n 
of

 G
en

om
e,

 T
P5

3 
Tu

m
or

 P
ro

te
in

 p
53

, A
SP

M
 A

ss
em

bl
y 

Fa
ct

or
 fo

r 
Sp

in
dl

e 
M

ic
ro

tu
bu

le
s, 

AS
F1

B 
A

nt
i-S

ile
nc

in
g 

Fu
nc

tio
n 

1B
 H

is
to

ne
 C

ha
pe

ro
ne

, B
U

B1
B 

BU
B1

 M
ito

tic
 C

he
ck

po
in

t S
er

in
e/

Th
re

on
in

e 
Ki

na
se

 B
, A

SC
 A

po
pt

os
is

-A
ss

oc
ia

te
d 

Sp
ec

k-
lik

e 
Pr

ot
ei

n 
Co

nt
ai

ni
ng

 a
 C

A
RD

, T
M

S1
 T

ar
ge

t o
f 

M
et

hy
la

tio
n-

In
du

ce
d 

Si
le

nc
in

g,
 B

IR
C5

 B
ac

ul
ov

ira
l I

A
P 

Re
pe

at
 C

on
ta

in
in

g 
5,

 C
EN

PF
 C

en
tr

om
er

e 
Pr

ot
ei

n 
F, 

CD
C2

 C
yc

lin
 D

ep
en

de
nt

 K
in

as
e 

1,
 C

D
CA

3 
Ce

ll 
D

iv
is

io
n 

Cy
cl

e 
A

ss
oc

ia
te

d 
3,

 C
D

CA
8 

Ce
ll 

D
iv

is
io

n 
Cy

cl
e 

A
ss

oc
ia

te
d 

8,
CD

KN
3 

Cy
cl

in
 D

ep
en

de
nt

 K
in

as
e 

In
hi

bi
to

r 3
, C

D
C2

0 
Ce

ll 
D

iv
is

io
n 

Cy
cl

e 
20

, D
LG

AP
5 

D
LG

 A
ss

oc
ia

te
d 

Pr
ot

ei
n 

5,
 C

EP
55

 C
en

tr
os

om
al

 P
ro

te
in

 5
5,

 C
18

or
f2

4 
Sp

in
dl

e 
A

nd
 K

in
et

oc
ho

re
-A

ss
oc

ia
te

d 
Pr

ot
ei

n 
1,

 F
O

XM
1 

Fo
rk

he
ad

 B
ox

 
M

1,
 P

LK
1 

Po
lo

 li
ke

 K
in

as
e 

1,
 M

CM
10

 M
in

ic
hr

om
os

om
e 

M
ai

nt
en

an
ce

 1
0 

Re
pl

ic
at

io
n 

In
iti

at
io

n 
Fa

ct
or

, P
RC

1 
Pr

ot
ei

n 
Re

gu
la

to
r O

f C
yt

ok
in

es
is

 1
, K

IA
A0

10
1 

PC
N

A
 C

la
m

p 
A

ss
oc

ia
te

d 
Fa

ct
or

, R
RM

2 
Ri

bo
nu

cl
eo

si
de

-D
ip

ho
sp

ha
te

 
Re

du
ct

as
e 

Su
bu

ni
t M

2,
 T

O
P2

A 
D

N
A

 To
po

is
om

er
as

e 
II 

A
lp

ha
, N

U
SA

P1
 N

uc
le

ol
ar

 a
nd

 S
pi

nd
le

 A
ss

oc
ia

te
d 

Pr
ot

ei
n 

1,
 K

IF
20

A 
Ki

ne
si

n 
Fa

m
ily

 M
em

be
r 2

0A
, T

K1
 T

hy
m

id
in

e 
ki

na
se

 1
, R

AD
51

 R
A

D
51

 R
ec

om
bi

na
se

, R
AD

54
L,

 P
TT

G
1 

Pi
tu

ita
ry

 T
um

or
-T

ra
ns

fo
rm

in
g 

G
en

e 
1,

 C
EN

PM
 C

en
tr

om
er

e 
Pr

ot
ei

n 
M

, E
PB

41
L3

 E
ry

th
ro

cy
te

 M
em

br
an

e 
Pr

ot
ei

n 
Ba

nd
 4

.1
 L

ik
e 

3,
 R

AS
SF

1A
 R

as
 A

ss
oc

ia
tio

n 
D

om
ai

n 
Fa

m
ily

 1
 Is

of
or

m
 A

, R
AR

B2
 R

et
in

oi
c 

Ac
id

 R
ec

ep
to

r B
2,

 
AP

C 
Ad

en
om

at
ou

s 
Po

ly
po

si
s 

Co
li,

 G
ST

P1
 G

lu
ta

th
io

ne
 S

-T
ra

ns
fe

ra
se

 P
i 1

, M
D

R1
 M

ul
ti 

D
ru

g 
Re

si
st

an
ce

, R
N

A
SE

L 
Ri

bo
nu

cl
ea

se
 L

, T
N

FS
R1

0D
 H

um
an

 T
um

or
 N

ec
ro

si
s 

Fa
ct

or
 R

ec
ep

to
r S

up
er

fa
m

ily
, M

em
be

r 1
0D

, D
CR

2 
D

ec
oy

 
Re

ce
pt

or
 2

, P
cG

 p
ro

te
in

s P
ol

yc
om

b 
Co

m
po

ne
nt

s, 
H

D
AC

1 
H

is
to

ne
 D

ea
ce

ty
la

se
 1

, D
LC

1 
D

el
et

ed
 in

 L
iv

er
 C

an
ce

r 1
, C

D
KN

1C
 C

yc
lin

 D
ep

en
de

nt
 K

in
as

e 
In

hi
bi

to
r 1

C,
 IG

F2
 In

su
lin

 L
ik

e 
G

ro
w

th
 F

ac
to

r 2
, H

3K
4 

H
is

to
ne

 H
3 

ly
si

ne
 K

4,
 

JM
JD

3 
Ju

m
on

ji 
do

m
ai

n-
co

nt
ai

ni
ng

 3



Page 10 of 20Rehman et al. Cancer Cell International          (2023) 23:247 

Association between single nucleotide 
polymorphisms (snps) and prostate cancer
The inter-individual germline DNA differences are 
called genetic polymorphisms, which are differences in 
genomic sequences that occur between individuals at 
the frequency of about 1% of the general population. The 
most commonly reported polymorphisms in the repeated 
sequences (microsatellites) are Single-nucleotide poly-
morphisms (SNPs) [67]. A genome base pair variation 
in the DNA sequence is called SNP, with a frequency of 
about 1 out of 800 base pairs. These SNPs induce clini-
cally significant changes in cellular proteins and enzy-
matic machinery. Several studies suggested that SNPs 
are not only important in the inheritance of genes within 
families but exert a strong influence on the susceptibil-
ity or risk of prostate cancer in certain individuals than 
others [68]. It has been reported that the entire human 
genome contains almost 2 million SNPs which are clas-
sified based on their functions into the following types; 
promoter regions SNPs are called regulatory SNPs 
(rSNPs); A SNP region at which nucleotide substitution 
causes the substitution of amino acid/ affects a protein is 
called as coding SNP (cSNP). Silent SNPs (sSNPs) are not 
involved in amino acid substitution and are present in the 
exon region; in the intronic region, (iSNPs) are located; 
and intergenic regions SNPs are called genome SNPs 
(gSNPs) (Fig. 1) [69].

SNPs are also responsible for altering the gene expres-
sion pattern and protein function. Regulatory SNPs and 
amino acid-substituting SNPs cause differences in the 
functional and phenotypic traits, respectively. Moreover, 
the gene expression level is also affected significantly by 
sSNPs and iSNPs [70]. The rearrangements that occur 
in the genomic structure or copy number alterations are 
usually involved in the early development of prostate 
cancer, however, SNPs are less commonly involved in the 
early development of PCa. In 40–60% of early prostate 
cancer patients, genomic aberrations are observed, such 
as fusion in TMPRSS2-ERG, whereas 5–15% of patients 
exhibited loss of function mutation in SPOP genes, and 
3–5% of patients showed gain-of-function mutations in 
FOXA1. The androgen receptor gene (AR) alterations 
are also rarely observed in early prostate cancer [71]. 
Most prostate tumors in Asian men are caused by recur-
rent hotspot mutations in CHD1, FOXA1, and ZNF292, 
while only a few cases showed TMPRSS2-ERG fusions. In 
localized PCa, few deletions in PTEN and mutations in 
the TP53 gene have been detected, and the frequency of 
occurrence of these deletions increases in patients with 
advanced disease states [72]. It has been well established 
by fine-mapping and genome-wide association stud-
ies (GWAS) that the susceptibility of PCa is associated 
with more than 100 commonly reported SNPs. The 8q24 

polymorphisms are reportedly strongly linked with pros-
tate cancer susceptibility, representing a promising bio-
logical marker for diagnosis and pharmacotherapy [73]. 
The variants of genes involved in oxidative stress, steroid 
metabolism, angiogenesis, cell adhesion, DNA repair, and 
cell cycle can also serve as suitable candidates for the dis-
ease state. An association analysis has reported 63 sus-
ceptibility loci for PCa in more than 140,000 men [74].

Previously, the clinical diagnosis was based on the digi-
tal examination or detection of blood levels of prostate-
specific antigen (PSA) for prostate cancer screening. 
While the risk of PCa progression was also co-related 
to PSA, tumor stage, and Gleason score [75]. Recently, 
many studies highlighted the importance of SNPs and 
genomic alterations in the prediction, prognosis, and 
outcomes of pharmacotherapy of PCa. Apart from the 
coding sequence’s role, tumor biology has assessed the 
effects of almost 200 nucleotides long noncoding RNAs 
(LncRNAs) in the development of PCa, which do not 
translate into proteins [76]. By interacting with macro-
molecules, LncRNAs perform several important cellular 
regulatory functions such as differentiation, migration, 
proliferation, and apoptosis [77]. The LncRNA pro-
moter region containing genetic variants modulates gene 
expression patterns of methylation. Recently, the GAS5 
gene encoded LncRNA termed Growth arrest-specific 5 
(GAS5) was found to act as a tumor suppressor in pros-
tate, breast, lung, and colorectal cancers. It is considered 
that GAS5 may be involved in the migration, invasion, 
proliferation, and metastasis of PCa cells; however, the 
exact GAS5 expression level is still controversial in PCa 
cells [78]. Several studies have evidence that the down-
regulation of microRNA-21/microRNA-1284 and up-
regulation of PTEN/ PCDC4/AKT are linked with the 
expression of GAS5 to induce apoptosis and reduce the 
proliferation rate of prostate cancer cells (Fig. 1) [47]. Fig-
ure 2 represents the functions and locations of SNP genes 
in translated and untranslated regions.

Pharmacogenomics and pharmacogenetics 
of prostate cancer
The phenotypic variations occur due to an alteration of 
expression level or activity in the corresponding genes, 
which are not only linked with vulnerability to dis-
ease but also significantly affect pharmacotherapy out-
comes [133]. Pharmacogenetics is the variability in drug 
response due to heredity or polymorphism in a single 
gene. This term is used to study the genes involved in 
the metabolism of drugs, whereas ‘Pharmacogenom-
ics’ is the study of all genes in the DNA, which may help 
determine the drug’s response [134]. Irinotecan treats 
prostate cancer by exerting cytotoxic effects by 7-ethyl-
10-hydroxycamptothecin (SN-38), an active metabolite. 
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The irinotecan-induced toxicity is associated with the 
polymorphisms in the genes involved in the irinotecan 
metabolic pathway. A polymorphism in the UDP-glucu-
ronosyltransferase encoding gene UGT1A1 (UGT1A1*28 
and UGT1A1*6) causes a decrease in metabolic enzyme 
activities, which results in delay in SN-38 metabolism and 
a higher incidence rate of adverse events [135]. Pharma-
cotherapy is linked with genetic background and inter-
actions with several factors, such as acquired somatic 
genetic alterations, inherent germline susceptibility, and 
micro-environmental (immune cells) and macro-envi-
ronmental (blood, lymph vessels) conditions [136]. For 
PCa patients, excessive advancement has been made in 
the therapeutic landscape of pharmacotherapy, such as 
Androgen-deprivation therapy (ADT) which is consid-
ered the gold standard for the primary pharmacotherapy 
of PCa [137]. Recently, second-generation anti-androgen 
agents have been developed for castration-resistant pros-
tate cancer (CRPC) patients, such as CYP17 inhibitor 
abiraterone, apalutamide, enzalutamide, and daroluta-
mide [138]. These drugs are also used for hormone-sen-
sitive prostate cancer (HSPC) patients; however, initially, 
these were developed for treating CRPC patients. Nowa-
days, various therapeutic options are available for CRPC 
and HSPC patients. Among taxane chemotherapy, doc-
etaxel and cabazitaxel have been used for CRPC treat-
ment, whereas docetaxel is used to treat HSPC [139]. 
Also, there is a need to identify useful, suitable candi-
dates for maximum efficacy and individualized pharma-
cotherapy regimen. The aberrant activation of androgen 
receptor signaling pathways (AR) is linked with castrate-
resistant prostate cancer. Therefore, polymorphisms in 
AR pathway-related genes significantly impact the thera-
peutic efficacy of primary androgen deprivation therapy 
(PADT) by influencing the AR signaling activity [140]. 
The SNPs of various other genes have also significantly 
impacted the therapeutic outcome of primary ADT for 
the treatment of prostate cancer, as shown in (Table 2).

Genome-wide association studies reported that 
androgen metabolism and pharmacotherapy out-
comes are related to multiple SNPs reported in vari-
ous genes. For example, a variant cSNP (rs1047303) of 
3β-hydroxysteroid dehydrogenase 1 (3β-HSD1) encodes 
by HSD3B1 influences the enzymatic activity sig-
nificantly, so carriers of this variant are the poor drug 
metabolizer [141]. The prognostic impact of this vari-
ant was observed in patients in the USA and confirmed 
in an Asian cohort study, which reported that this vari-
ant is rare in Asian patients but successfully validated 
as a prognostic marker in primary ADT plus docetaxel 
for HSPC [142]. There are four reported SNPs (rs6162, 
rs743572, rs1004467, and rs6163) in the CYP17A1 genes 
influencing prostate cancer progression to CRPC after 

ADT. Furthermore, the risk of development of CRPC 
is also linked with dehydroepiandrosterone (DHEA), 
a steroidal hormone that acts as a precursor of intra-
tumoral androgen biosynthesis that controls the pro-
gression of cancer and is an important target for novel 
therapies [143]. Enzymes encoded by CYP19A1 catalyze 
the conversion of androgens to estrogen. Three SNPs 
(rs10459592, rs2470152, rs4775936) reported in this gene 
are related to the risk of development of prostate cancer 
[144]. In HSD3B1, the validation of prognostic values of 
cSNP (rs1047303 and rs1856888) was performed in ADT 
plus docetaxel therapy for HSPC, and it was found that 
the low risk of progression of the disease is linked with 
(rs1856888) which is located in the variant G allele [145]. 
Another study on iSNP in CYP19A1 described that a 
high risk of progression of the disease is associated with 
the variant C allele in rs1870050 [146]. The function and 
expression pattern of HSD17B2 is reported to reduce 
prostate cancer, as it suppresses AR signaling and cell 
growth by blocking androgen synthesis. Various stud-
ies on gene expression profiling have explained that the 
disease progression is caused by altering expression pat-
terns of specific genes (HSD17B2, HSD17B3, SRD5A1, 
and SHBG) [147]. SLCO2B1 and SLCO1B3 are involved 
in the steroidal hormone uptake, and thrombotic throm-
bocytopenic purpura (TTP) is linked with three SNPs 
present in SLCO2B1 expressed in various tissues. These 
SNPs transport steroid conjugates, such as estrone-3-sul-
fate and DHEAS. SLCO1B3 expresses in different types of 
cancer cells and is responsible for the uptake of several 
hormones [148]. In-vivo studies confirmed that tumor 
growth is enhanced by HIF1a signaling, whereas its stable 
expression is linked with the restoration of tumor growth. 
After evaluating SNPs in the binding sites of estrogen and 
androgen receptors, it was found that the 5 SNPs local-
ized on ARRDC3, TACC2, SKAP1, FLT1, and BNC2 
are specifically associated with prostate cancer mortal-
ity [149]. It is also observed that BNC2 (rs16934641) is 
linked with the progression of the disease, while ALPK1 
(rs2051778) is associated with ACM. SNP in the TACC2 
(rs3763763) is involved in ACM and prostate cancer-spe-
cific mortality. The less significant associations of SKAP1 
(rs7209855) and KLHL14 (rs12970312) were observed 
with PCSM [150]. Similarly, NR4A2 (rs2691786), 
FBXO32 (rs7830622), AATF (rs 9330247), and KLHL14 
(rs12970312) were found to be less significantly associ-
ated with ACM. The high expression level of BGLAP is 
responsible for the survival of bone metastasized tumor 
cells in prostate cancer [151] (Table 2).

The survival rate of CRPC patients has been improved 
with the use of novel androgen receptor pathway inhibi-
tors (ARPIs) (Enzalutamide, Apalutamide, Daroluta-
mide, and Abiraterone) because their therapeutic effects 
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Table 2 Types of genetic polymorphisms (SNPs) in various drugs-related genes associated with the outcome of pharmacotherapy of 
prostate cancer patients

Gene Name Function of gene rs number Type of polymorphism Chromosome Therapeutic agents References

CYP17A1 Metabolism of androgen rs6162 sSNP 10 Abiraterone acetate [152]

rs743572 rSNP [153]

CYP19A1 Metabolism of androgen rs1870050 iSNP 15 Anastrozole, Letrozole [154]

rs4775936

CYP1B1 Encodes drug metabolizing 
enzyme

rs1056836 cSNP 2 Docetaxel [155]

HSD3B1 Metabolism of androgen rs1047303 cSNP 1 Abiraterone acetate [156]

rs1856888 gSNP [142]

HSD17B2 Metabolism of androgen rs4243229 iSNP 16 Enzalutamide [152]

rs7201637

HSD17B3 Metabolism of androgen rs2257157 iSNP 9 Abiraterone acetate [152]

HSD17B4 Metabolism of androgen rs7737181 iSNP 5 Abiraterone acetate [145]

AKR1C3 Metabolism of androgen rs12529 cSNP 10 Abiraterone acetate [157]

ABCB1 Encodes protein act as drug 
excretion pump

rs2032582 cSNP 7 Docetaxel + Thalidomide [158]

rs1128503

rs1045642

ABCB11 encodes protein act as drug 
excretion pump

rs7602171 iSNP 2 Docetaxel + Thalidomide [159]

ABCG2 encodes protein act as drug 
excretion pump

rs2231142 cSNP 4 Docetaxel + Vinorelbine/Estra-
mustine phosphate

[160]

SLCO1B3 Androgen transporter rs4149117 cSNP 12 Docetaxel [161]

SLCO2B1 Encodes protein act as andro-
gen transporter

rs1077858 iSNP 11 Docetaxel [162]

rs1789693 iSNP [163]

rs12422149 cSNP [164]

GNRH2 Related to the synthesis 
of androgen

rs6051545 cSNP 20 Abiraterone acetate [165]

SHBG Androgen-binding protein rs6259 cSNP 17 Enzalutamide [150]

AR Steroid receptor CAG repeat Coding region Xq11-12 Docetaxel [166]

ATP7A Copper level regulator rs2227291 SNV X Cisplatin [167]

ABCC6 Transporter protein rs2238472 SNV 16 Docetaxel + Thalidomide [168]

ABCB4 MRP6 rs2302387 SNV 7 Docetaxel + Thalidomide [169]

ESR1 Steroid receptor rs1062577 rSNP 6 Docetaxel + Thalidomide [152, 170]

rs2234693 iSNP

rs9340799

NR3C2 Steroid receptor rs5522 cSNP 4 Docetaxel + Thalidomide [165]

YB-1 Transcription factor rs12030724 iSNP 1 Abiraterone [171]

HIF1A Transcription factor rs11549465 cSNP 14 Docetaxel [171]

ARRDC3 Target gene of AR rs2939244 rSNP 5 Abiraterone [149]

FLT1 Androgen-binding rs9508016 rSNP 13 Enzalutamide [149]

SKAP1 Protein steroid receptor rs6054145 rSNP 20 Abiraterone acetate [149]

FBXO32 Steroid receptor rs7830622 rSNP 8 Abiraterone acetate [67]

BNC2 Steroid RECEPTOR rs16934641 rSNP 9 Abiraterone acetate [149]

TACC2 Transcription rs3763763 rSNP 10 Bicalutamide [149]

ALPK1 Factor rs2051778 rSNP 4 Enzalutamide [172]

LSAMP Transcription rs13088089 rSNP 3 Abiraterone [173]

CCL17 Transcription rs13088089 rSNP 3 Leuprolide [173]

ALPK1 Transcription factor rs2051778 rSNP 4 Enzalutamide [174]

LSAMP Transcription rs13088089 rSNP 3 Bicalutamide [175]

NAT2 Xenobiotics detoxifier rs1799931 SNV 8 Docetaxel + Thalidomide [176]

PSMD7 NFκB targeted gene rs2387084 rSNP 16 Enzalutamide [173]
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Table 2 (continued)

Gene Name Function of gene rs number Type of polymorphism Chromosome Therapeutic agents References

PPAR-δ Fatty acid uptake, transport and
β-oxidation

rs6922548 SNP 6 Docetaxel + Thalidomide [177]

rs2016520 [178]

rs1883322 [178]

rs3734254 [179]

rs7769719 [168]

rs4148943 [168]

MON1B NFκB targeted gene rs284924 rSNP 16 Abiraterone acetate [67]

GSTM3 Antioxidant rs7483 cSNP 1 Docetaxel + Thalidomide [180]

GSTP1 Antioxidant rs1138272 cSNP 11 Docetaxel + Thalidomide [126]

CAT Antioxidant rs564250 gSNP 11 Docetaxel + Thalidomide [159]

CHST3 Development and mainte-
nance of the skeleton

rs12418 SNV 10 Docetaxel + Thalidomide [160]

rs730720

rs4148950

rs1871450

rs4148945

SLC28A3 Nucleoside transporter rs56350726 cSNP 9 Docetaxel + Thalidomide [161]

SLC5A6 Transporter rs1395 cSNP 2 Docetaxel + Thalidomide [159]

SLC10A2 Sodium/bile acid Co-trans-
porter

rs2301159 SNV 13 Leuprolide [176]

SULT1C2 Encode Sulfotransferase 1C2 
in humans

rs1402467 SNP 2 Docetaxel + Thalidomide []

LRP2 Encode protein act as a trans-
porter for Sterol and Steroid

rs6433107 iSNP 2 Abiraterone acetate [182]

rs3944004

rs830994

rs3770613

rs831003

EGF Growth factor rs4444903 rSNP 4 Degarelix [183]

IRS2 Growth factor rs7986346 gSNP 13 Degarelix [149]

TGFBR2 TGF-β signaling rs3087465 iSNP 3 Abiraterone acetate [184]

BMP5 TGF-β signaling rs317027 gSNP 4 Abiraterone acetate [172]

IL18 Cytokine rs187238 rSNP 11 Docetaxel + Thalidomide [185]

APC Wnt signaling rs2707765 iSNP 5 Degarelix [186]

rs497844

BGLAP Metabolism of bone rs1800247 rSNP 1 Estramustine phosphate [187]

EDN1 Vasoconstrictor rs1800541 iSNP 6 Enzalutamide [188]

rs2070699

CASP3 Apoptosis rs4862396 gSNP 4 Abiraterone acetate [149]

TRMT11 Methyltransferase rs1268121 iSNP 6 Estramustine phosphate [189]

rs6900796

COMT Methyltransferase rs4680 cSNP 22 Estramustine phosphate [190]

KIF3C miRNA target site rs6728684 rSNP 2 Docetaxel + Thalidomide [191]

IFI30 miRNA target site rs1045747 rSNP 19 Docetaxel + Thalidomide [191]

CDON miRNA target site rs3737336 rSNP 11 Docetaxel + Thalidomide [192]

GABRA1 miRNA target site rs998754 rSNP 5 Docetaxel + Thalidomide [67]

PALLD miRNA target site rs1071738 rSNP 4 Abiraterone acetate [191]

VEGFA Angiogenesis rs1570360 rSNP 6 Docetaxel, Celecoxib + Cyclo-
phosphamide

[193]

SYT9 miRNA target site rs4351800 rSNP 11 Abiraterone acetate [194]

rs16901979, gSNP

rs7931342
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depend upon the activity of molecules involved in their 
uptake and metabolism. For instance, SLCO2B1 encodes 
OATP2B1, which is responsible for the uptake of abira-
terone into cells metabolized by 3-HSD and 5-reduc-
tase [195]. It is reported that the therapeutic effect of 
abiraterone depends on SNPs in the genes involved in 
the transport and metabolism of androgen. Few SNPs 
are associated with prognosis after ARPI treatment, 
such as (rs2486758) in CYP17A1 and (rs1047303) in 
HSD3B1. The overlapping of several genes has been 
observed in the prognosis because ARPIs and primary 
ADT outcomes depend on the SNPs located in differ-
ent genes (CYP17A1 and YB-1) [61]. Similarly, SNPs in 
various genes [(rs1789693, rs1077858, and rs12422149 
in SLCO2B1), (rs523349 in SRD5A2) and (rs1047303 in 
HSD3B1)] are acting as prognostic markers in ARPIs for 
CRPC and primary ADT for HSPC. It has been found 
that a variant allele in HSD3B1 (rs1047303) is a prognos-
tic marker for patients treated with abiraterone [196]. 
Docetaxel is used to treat various types of cancers. Sev-
eral studies have shown a correlation between efficacy 
and adverse effects of docetaxel with genetic polymor-
phism in transport genes (ABCC2, ABCB1, ABCG1, 
SLCO1B3, ABCG2) and metabolizing genes (CYP1B1, 
CYP3A4, CYP2C8, and CYP3A5). In CYP1B1, reported 
cSNP (rs1056836, 4326C>G, L432V) is linked with the 
poor therapeutic response of the drug and prognosis 
[197]. The patient’s response to taxane chemotherapy 
depends on SNPs found in various positions in estrogen 
receptor-1 (ESR1). These SNPs serve as potential predic-
tive biomarkers for taxane chemotherapy. The resistance 
to Taxane therapy is induced by the OATP1B3 transport 
protein in prostate cancer cells encoded by SLCO1B3 

[198]. Another predictive marker for PCa that affects the 
efficacy of taxane therapy is cSNP (rs4149117), located 
in SLCO1B3. Although SNPs are influencing pharmaco-
therapy, but still there are only a few genetic markers that 
have been used in pharmacotherapy or individualized 
treatment strategy for cancer patients [199]. In markers 
validation studies, the reproducibility of some SNPs has 
occurred successfully. In contrast, other studies failed to 
produce consistent results because of racial differences, 
and there are variations in the frequency of genetic poly-
morphisms [200]. Figure 3 exhibits the signals transduc-
tion through AR.

Conclusion
Disease risk is associated with genetic variations. Most 
PCa research focuses on a limited number of genetic 
markers commonly used in clinical practice. These mark-
ers include PSA, TMPRSS2-ERG Gene Fusion, PTEN 
Loss, and mutations in  BRCA1 and BRCA2. However, 
many novel genetic markers have been identified in 
recent years. Genome-wide association studies (GWASs) 
provide valuable information on identifying SNP groups 
that accurately predict prostate cancer risk, development, 
and pharmacotherapy response. Clinically, multiple drugs 
are available to treat Prostate Cancer, but Individualized 
treatment regimens for patients with advanced-stage 
prostate cancer are largely determined by the availability 
of suitable genetic biomarkers (SNPs). Combining SNPs 
with traditional clinicopathological parameters will lead 
to earlier diagnosis, better prognoses, and more effective 
pharmacotherapy. Additionally, SNP-based personalized 
medicine will reduce the need for ineffective pharmaco-
therapy trials in prostate cancer patients. Further studies 
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are needed to validate these SNPs in PCa progression 
and to identify biomarker inter-individual variations. In 
terms of the future perspective of this field, integrating 
multiple genetic markers, along with clinical and patho-
logical parameters, may enhance risk stratification, prog-
nosis prediction, and treatment selection. This will also 
help tailor interventions and healthcare decisions based 
on individual genetic makeup.
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