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the treatment plan may include a variety of therapeutic 
methods to maximize the therapeutic efficiency. Radio-
therapy and surgery are the most effective treatments 
for non-metastatic and localized tumors but are ineffec-
tive in metastatic cancers. As a result, metastasis is the 
leading cause of cancer death, accounting for more than 
90% of all cancer mortalities [3]. Since, anticancer drugs 
can reach any part of the body through the bloodstream, 
they are considered as the common treatment options for 
metastatic tumors [4]. However, chemotherapeutic side 
effects and multidrug resistance highlight the need for 
novel and effective targeted therapies based on molecu-
lar tumor biology [5, 6]. Such targeted therapies disrupt 
particular oncogenes and signaling pathways to trigger 
apoptosis and immune system stimulation with a lower 

Background
Despite significant advances in cancer treatment, it is 
still considered as one of the main causes of human 
deaths globally [1, 2]. Surgery, hormone therapy, chemo-
radio therapy, and targeted therapy are among the rou-
tine cancer treatment options. In some circumstances, 
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Abstract
Surgery and chemo-radiotherapy are used as the common first-line treatment options in many cancers. However, 
tumor relapse is observed in many cancer patients following such first-line treatments. Therefore, targeted therapy 
according to the molecular cancer biology can be very important in reducing tumor recurrence. In this regard, 
a wide range of monoclonal antibodies against the growth factors and their receptors can offer more targeted 
treatment in cancer patients. However, due to the importance of growth factors in the normal biology of body 
cells, side effects can also be observed following the application of growth factor inhibitors. Therefore, more 
specific factors should be introduced as therapeutic targets with less side effects. Krüppel-like factors 2 (KLF2) 
belongs to the KLF family of transcription factors that are involved in the regulation of many cellular processes. 
KLF2 deregulations have been also reported during the progression of many tumors. In the present review we 
discussed the molecular mechanisms of KLF2 during tumor growth and invasion. It has been shown that the KLF2 
as a tumor suppressor is mainly inhibited by the non-coding RNAs (ncRNAs) through the polycomb repressive 
complex 2 (PRC2) recruitment. This review is an effective step towards introducing the KLF2 as a suitable diagnostic 
and therapeutic target in cancer patients.
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side effects compared with chemotherapeutic modalities 
[7]. Transcription factors are the main transcriptional 
regulators [8]. Accordingly, understanding the role of 
transcription factors, downstream targets, and upstream 
regulators in tumor cells can help us to develop novel 
therapeutic approaches to overcome drug resistance [9]. 
Krüppel-like factors (KLFs) are a family of developmental 
transcription factors that participate in the modulation 
of cell growth and differentiation [10, 11]. KLF2 belongs 
to the KLF protein family that contains Cys2/His2 zinc-
finger domains to interact with GC boxes in promoter 
sequences and exert as transcriptional activators or sup-
pressors [12]. KLF2 can be regulated by ubiquitination, 
non-coding RNAs, and signaling pathways [13–17]. The 
polycomb repressive complex 2 (PRC2) belongs to the 
Polycomb proteins complex that inhibits gene expres-
sion through histone modification. PRC2 consists of 
EZH2, EED, and SUZ12 components. EZH2 catalyzes the 
H3K27me3 that results in transcriptional inhibition [18]. 
It has been reported that PRC2 complex has a key role in 
regulation of KLF2 expression in tumor cells via histone 
methylation in promoter region [19, 20]. KLF2 functions 
as a tumor suppressor or oncogene in different tumors 
[21, 22]. Therefore, in the present review, we discussed 
the molecular mechanisms of the KLF2 during tumor 
progression to introduce that as a reliable diagnostic and 
therapetutic target in cancer patients (Tables  1 and 2) 
(Fig. 1).

Gastric, esophageal, and oral cancers
SUZ12 has a pivotal role in promotion of tumor cell 
proliferation and metastasis. Up regulation of SUZ12 
has been observed in different types of human cancers 
[23–25]. There was significant SUZ12 up regulation in 
gastric cancer (GC) tissues that was associated with dis-
tant metastasis, tumor size, stage, and lower survival. 
SUZ12 induced GC cell proliferation and metastasis by 
KLF2 and CDH1 down regulations [26]. LSD1 is one 
of the components of CoREST transcriptional co-sup-
pressor complex by demethylation of H3K4m1/m2 [27, 
28]. Several studies demonstrated that LSD1 plays criti-
cal roles in cell growth, differentiation, EMT, and inva-
sion [29–31]. Down regulation of LSD1 reduced GC 
cell proliferation and invasion while promoted apopto-
sis. LSD1 had an oncogenic role via inhibition of KLF2 
through H3K4 demethylation [32]. Long non-coding 
RNAs (LncRNAs) are involved in X chromosome inac-
tivation, self-renewal, differentiation, and apoptosis 
[33–35]. Deregulation of lncRNAs was also associated 
with several cancers by the modulation of gene expres-
sion through chromatin remodeling, histone modifica-
tion, and microRNAs sponging [36, 37]. They are also 
correlated with tumor cell metastasis and poor progno-
sis [38, 39]. There was significant DLEU1 up regulation 

in GC tissues that was linked with the poor prognosis. 
Downregulation of DLEU1 suppressed the prolifera-
tion of GC cells by provoking cell cycle arrest. DLEU1 
directly interacted with LSD1 in promoter regions of 
KLF2, consequently promoting H3K4me2 modifica-
tion [20]. Suppression of ZFAS1 reduced GC cell growth 
while promoted apoptosis. ZFAS1 recruited the EZH2 
and LSD1 to NDK2 and KLF2 promoters that inhibited 
their transcription through H3K27me3 and demethyl-
ation of H3K4me2. ZFAS1 had a critical role in inhibition 
of tumor suppressors by EZH2 and LSD1 recruitments 
in GC cells [19]. There were LINC00202 up regulations 
in GC tissues and cells. Downregulation of LINC00202 
significantly decreased the GC cell proliferation. The 
KLF2 expression level was affected by the high level of 
LINC00202 that recruited the EZH2. LINC00202 attenu-
ated the GC progression by KLF2 inhibition [40]. There 
was significant LINC01296 up regulation in esopha-
geal squamous cell carcinoma (ESCC) tissues compared 
with normal tissues that was correlated with lymph node 
metastasis, TNM stage, and poor prognosis. Silencing of 
LINC01296 decreased ESCC cell proliferation and inva-
sion. LINC01296 down regulated the KLF2 via binding 
to EZH2 in ESCC cells [41]. There was AFAP1-AS1 up 
regulation in GC tissues. AFAP1-AS1 induced GC cell 
proliferation and invasion through KLF2 targeting [42].

Epithelial-to-mesenchymal transition (EMT) is known 
as a critical biological process in which epithelial cells 
are altered into mesenchymal cells during particular 
physiological and pathological contexts to acquire inva-
sive properties [43, 44]. CXCR4 is activated via bind-
ing to SDF1, which is a critical oncogene [45]. It has 
been shown that CXCR4 was significantly correlated 
with EMT in lung cancer [46]. MiR-32-5p up regulated 
the CXCR4 through KLF2 targeting, which induced cell 
proliferation and EMT process in oral squamous cell 
carcinoma (OSCC) cells [47]. β-catenin is the critical 
modulator of the Wnt/β-catenin signaling pathway that 
is involved in tumor progression [48]. Wnt pathway also 
participates in GC progression via EMT modulation [49]. 
HOXA11-AS induced GC cell progression by β-catenin 
up regulation via WDR5 interaction, KLF2 down regula-
tion, and EZH2 mediated P21 inhibition [50]. PI3K/AKT 
signaling as the main down stream cascade of the growth 
factor receptors has a key role in tumor progression [51, 
52]. PTEN functions as a tumor suppressor by the inhibi-
tion of PI3K/AKT [53]. It has been reported that KLF2 
was significantly down regulated in GC tissues compared 
to normal tissues that was associated with overall sur-
vival. KLF2 reduced cell migration while promoted apop-
tosis by the suppression of PTEN/AKT signaling in GC 
cells. It promoted PTEN expression and inhibited AKT-
mTOR signaling. KLF2 also induced apoptosis by regu-
lating p16/CDKN2A and p27/CDKN1B [54].
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ncRNA KLF2 regulation Tumor Type Samples KLF2 
Function

Clinical 
Application

Year Study

TUG1 KLF2 down 
regulation

Hepatocellular 
carcinoma

77T 77 N tissues HepG2, Hep3B, MHCC-
97 H cell lines Nude mice

Tumor 
suppressor

Diagnosis 2015 Huang 
(15)

ZFAS1 KLF2 down 
regulation

Gastric cancer 54T 54 N tissues BGC823, SGC7901, 
MGC803, AGS, HGC27 cell line Nude mice

Tumor 
suppressor

Diagnosis 2017 Nie 
(19)

DLEU1 KLF2 down 
regulation

Gastric cancer 68T 68 N tissues AGS, SGC7901, MGC803, 
and BGC823 cell lines

Tumor 
suppressor

Diagnosis 2018 Li (20)

LINC00202 KLF2 down 
regulation

Gastric cancer 60T 60 N tissues AGS and SGC-7901 cell 
lines

Tumor 
suppressor

Diagnosis 2021 Xu 
(40)

LINC01296 KLF2 down 
regulation

Esophageal 
squamous cell 
carcinoma

78T 78 N tissues EC109, EC9706, and TE-1 
cell lines Nude mice

Tumor 
suppressor

Diagnosis 2018 Wang 
(41)

AFAP1-AS1 KLF2 down 
regulation

Gastric cancer SGC-7901 and AGS cell lines Tumor 
suppressor

Diagnosis 2020 Yuan 
(42)

MiR-32-5p KLF2 down 
regulation

Oral squamous 
cell carcinoma

30T 30 N tissues SCC-9, SCC-15, SCC-25, 
CAL-27, and Tca-8113 cell lines

Tumor 
suppressor

Diagnosis 2022 Qin 
(47)

HOXA11-AS KLF2 down 
regulation

Gastric cancer BGC823, SGC7901 and AGS cell lines 
Nude mice

Tumor 
suppressor

Diagnosis 2017 Liu 
(50)

LINC00460 KLF2 down 
regulation

Colorectal cancer 60T 60 N tissues HCT116, SW480, HT-29, 
and Lovo cell lines Nude mice

Tumor 
suppressor

Diagnosis 2018 Lian 
(58)

L22NC03-N64E9.1 KLF2 down 
regulation

Colorectal cancer 50T 50 N tissue DLD-1, Lovo, HT-29, 
SW480, SW620, and HCT116 cell line

Tumor 
suppressor

Diagnosis 2017 Lian 
(59)

SNHG1 KLF2 down 
regulation

Colorectal cancer 160T 80 N tissues HCT-116, HCT-8, SW-
480, SW-620, DLD-1 and HT-29 cell lines 
Nude mice

Tumor 
suppressor

Diagnosis 2018 Xu 
(67)

HOXA-AS2 KLF2 down 
regulation

Colorectal cancer 69T 69 N tissues HCT116, DLD1, SW480, 
SW620, HT-29 and LOVO cell lines Nude 
mice

Tumor 
suppressor

Diagnosis 2017 Ding 
(68)

miR-25-3p KLF2 down 
regulation

Colorectal cancer 27T 27 N tissues SW480, LS174T, SW620, 
LOVO, and HCT116 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2018 Zeng 
(75)

LINC01133 KLF2 down 
regulation

Non-small cell 
lung cancer

68T 68 N tissues PC9, SPC-A1, NCI-H1975, 
H1299, and A549 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2016 Zang 
(83)

miR-572 KLF2 down 
regulation

Non-small cell 
lung cancer

46T 46 N tissues A549, H1299, PC-9, H358, 
and SPC-A1 cell lines

Tumor 
suppressor

Diagnosis 2022 Sun 
(85)

AGAP2-AS1 KLF2 down 
regulation

Non-small cell 
lung cancer

80T 80 N tissues A549, PC9, SPCA1, H1975 
and H1299 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2016 Li (91)

LINC00511 KLF2 down 
regulation

Non-small cell 
lung cancer

57T 57 N tissues A549, PC9 and H460 cell 
lines

Tumor 
suppressor

Diagnosis 2019 Zhu 
(92)

XIST KLF2 down 
regulation

Non-small cell 
lung cancer

53T 53 N tissues A549, SK-MES-1, H1299, 
95D, H460, H520, H1975, H157, SK-LU-1, 
and SPC-A-1 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2016 Fang 
(93)

miR-126-5p KLF2 up regulation Lung 
adenocarcinoma

78T 78 N tissues H1975, A549 and H1650 
cell lines Nude mice

Tumor 
suppressor

Diagnosis 2022 Han 
(94)

FBXL19-AS1 KLF2 down 
regulation

Hepatocellular 
cancer

60T 60 N tissues SMMC7721 and HCCLM3 
cell lines

Tumor 
suppressor

Diagnosis 2021 Chen 
(111)

ANRIL KLF2 down 
regulation

Hepatocellular 
cancer

77T 77 N tissues HepG2, Hep3B, and 
MHCC-97 H cell lines BALB/c nude mice

Tumor 
suppressor

Diagnosis 2015 Huang 
(112)

DUXAP8 KLF2 down 
regulation

Hepatocellular 
carcinoma

HepG2 and Hep3 cell lines Tumor 
suppressor

Diagnosis 2019 Jiang 
(113)

IRAIN KLF2 down 
regulation

Pancreatic cancer 37T 37 N tissues AsPC-1, BxPC-3, and 
PANC-1 cell lines

Tumor 
suppressor

Diagnosis 2016 Lian 
(128)

SNHG15 KLF2 down 
regulation

Pancreatic cancer 48T 48 N tissues AsPC-1, BxPC-3 and 
PANC-1 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2017 Ma 
(129)

DUXAP8 KLF2 down 
regulation

Pancreatic cancer 58T tissues AsPC-1, BxPC-3, and PANC-1 
cell lines Athymic mice

Tumor 
suppressor

Diagnosis 2018 Lian 
(130)

LINC00702 KLF2 down 
regulation

Ovarian cancer 36T 36 N tissues ES-2, SKOV-3, A2780, and 
HEY cell lines

Tumor 
suppressor

Diagnosis 2019 Wang 
(137)

Table 1 Oncogenic ncRNAs inhibit the KLF2 by PRC2 recruitment
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Colorectal cancer
CUL4A belongs to the cullin family of proteins that 
functions as an oncogene by regulation of cell prolif-
eration, differentiation, and apoptosis [55–57]. There 
was LINC00460 up regulation in colorectal cancer 
(CRC) tissues that was positively associated with lymph 
node involvement, stage, and tumor size. Downregu-
lation of LINC00460 reduced CRC cell proliferation 

while promoted apoptosis. LINC00460 functioned as 
an oncogene by engaging EZH2 and H3K27me3 to the 
KLF2 promoter, consequently the inactivation of KLF2. 
LINC00460 negatively regulated miR-149-5p to up regu-
late CUL4A. LINC00460 inhibition repressed CRC pro-
gression through either EZH2/KLF2 and miR-149-5p/
CUL4A pathways [58]. There was L22NC03-N64E9.1 up 
regulation in CRC tissues that was correlated with CRC 

Table 2 KLF2 functions as a tumor suppressor or oncogene by the transcriptional regulation of target genes
KLF2 target gene Tumor Type Samples KLF2 Function Clinical 

Application
Year Study

TGF-β/Smad down 
regulation

Hepatocellular 
carcinoma

SMMC-7721, MHCC97H, MHCC97L, and 
HCCLM3 cell lines

Tumor suppressor Diagnosis 2020 Li (14)

PTEN/AKT down 
regulation

Gastric cancer 15T 15 N tissues HGC-27, SNU-1, SGC-7901, 
NCI-N87, KATOIII, AGS, MKN-28, MKN-45, BGC-
823, MGC-803 and GES-1 cell lines Nude mice

Tumor suppressor Diagnosis and 
prognosis

2017 Wang 
(54)

P21 up regulation Colon cancer HCT116, mutp53, SW1116, and HEK293A cell 
lines

Tumor suppressor Diagnosis 2019 Lu (66)

HIF-1Α/ NOTCH-1 down 
regulation

Colorectal 
cancer

SW480 HT29, SW620 and HCT116 cell lines Tumor suppressor Diagnosis 2017 Wang 
(74)

WEE1 down regulation Ovarian cancer OV167, OV177, OV202 and OV207 cell lines Tumor suppressor Diagnosis 2005 Wang 
(77)

P21/ P15 up regulation Non-small cell 
lung cancer

113T 113 N tissues A549, SPC-A1, SK-MES-1, 
NCI-H1299, and NCI-H1650 cell lines

Tumor suppressor Diagnosis and 
prognosis

2015 Yin (82)

P15/ P21 up regulation Non-small cell 
lung cancer

47T 47 N tissues A549, HCC827, SK-MES-1, NCI-
H1299 and NCI-H1975 cell lines

Tumor suppressor Diagnosis and 
prognosis

2017 Jiang 
(84)

Glutamine transaminase 
down regulation

Non-small cell 
lung cancer

A549, NCI-H1299 cell lines Tumor suppressor Diagnosis 2020 Xiao 
(99)

Hedgehog/Gli1 down 
regulation

Hepatocellular 
carcinoma

38T 38 N tissues L02, Chang, 7404 and Huh-7 
cell lines Nude mice

Tumor suppressor Diagnosis 2019 Lin (104)

C-Myc up regulation Hepatocellular 
carcinoma

60T 60 N tissues HuH-7 and HepG2 cell lines 
Nude mice

Oncogene Diagnosis 2016 Zou 
(114)

B-Catenin/TCF down 
regulation

Pancreatic 
cancer

52T 52 N tissues BXPC3 and Suit2 cell lines Tumor suppressor Diagnosis 2016 Zhang 
(127)

P21 up regulation Pancreatic 
cancer

HPAC and SW1990 cell lines Nude mice Tumor suppressor Diagnosis 2020 Yuedi 
(131)

P16, P21, And P27 up 
regulation and CCND1/ 
Survivin down regulation

Breast cancer 20T 20 N tissues MCF10A, MCF-7, T47D, SK-BR-
3, CAL-51 and MDA-MB-231cell lines

Tumor suppressor Diagnosis 2022 Zhu 
(136)

MMP2 down regulation Prostate cancer 30T 30 N tissues PC-3 and 22Rv1 cell lines Tumor suppressor Diagnosis 2019 Wang 
(142)

IRF4 up regulation Multiple 
myeloma

3T tissues RPMI8226, MM.1 S and U266 cell 
lines

Oncogene Diagnosis 2016 Ohgu-
chi (154)

* Tumor (T) tissues and Normal (N) margins

ncRNA KLF2 regulation Tumor Type Samples KLF2 
Function

Clinical 
Application

Year Study

SNHG7 KLF2 down 
regulation

Ovarian cancer 30T 30 N tissues A2780, OCC1, H8710 and 
SK-OV3 cell lines Nude mice

Tumor 
suppressor

Diagnosis 2020 Bai 
(138)

GHET1 KLF2 down 
regulation

Prostate cancer 30T 30 N tissues LNCap and C4-2 cell lines Tumor 
suppressor

Diagnosis 2019 Zhu 
(143)

LINC00665 KLF2 down 
regulation

Prostate cancer 50T 50 N tissues PC-3, DU-145, 22RV1, 
LNCaP cell lines Nude mice

Tumor 
suppressor

Diagnosis 2021 Xue 
(144)

SNHG6 KLF2 down 
regulation

Osteosarcoma 58T 58 N tissues KHOS, MG-63, and U2OS 
cell lines Nude mice

Tumor 
suppressor

Diagnosis 2018 Ruan 
(165)

* Tumor (T) tissues and Normal (N) margins

Table 1 (continued) 



Page 5 of 12Taghehchian et al. Cancer Cell International          (2023) 23:233 

progression. L22NC03-N64E9.1 induced CRC cell prolif-
eration through down regulation of KLF2 via interacting 
with EZH2 [59].

The p53 is a tumor suppressor that plays an important 
role in mediating cell cycle arrest, apoptosis, and genomic 
stability [60]. It inhibits tumor progression via mediat-
ing transcription of different downstream target genes 
which are participated in apoptosis and cell-cycle arrest 
[61]. Several studies found that simvastatin had thera-
peutic influence on several types of cancers by NF-kB, 

AKT, JNK, and CASP3/Bcl-2/cIAP mediated apoptosis 
[62–65]. Simvastatin remarkably up regulated KLF2 in 
p53-muted colon cancer cells. KLF2 was demonstrated to 
intervene in the anti-proliferative impact and anti-metas-
tasis consequence of simvastatin on mutp53 colon cancer 
cells. Anti-proliferative effects of KLF2 were revealed by 
p21 up regulation in mutp53 cancer cells [66].

CDKN2B belongs to the cyclin-associated kinase 
inhibitors that may form a complex with CDK4 or CDK6 
and inhibits the activation of the cyclin-dependent kinase 

Fig. 1 KLF2 is mainly targeted by the oncogenic ncRNAs during tumor progression. (Created with BioRender.com)
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to suppress cell cycle. There was significant SNHG1 up 
regulation in CRC tissues that was associated with poor 
prognosis. SNHG1 up regulated the CCND2 through 
the miR-154-5p sponging. SNHG1 interacted with EZH2 
for a PRC2-associated down regulation of KLF2 and 
CDKN2B [67]. HOXA-AS2 induced CRC cell prolifera-
tion by promotion of cell proliferation while inhibition of 
apoptosis. HOXA-AS2 epigenetically suppressed the p21 
and KLF2 transcription via interacting with EZH2 and 
LSD1 [68].

HIF-1α is an important modulator of hypoxic response 
in cancer cells [69]. Accumulating evidence revealed that 
hypoxia plays a critical role in tumor progression, angio-
genesis, distant metastasis, and cancer therapy [70, 71]. It 
has been demonstrated that HIF-1α can interact with the 
Notch target gene to regulate its signaling in cancer stem 
cells [72]. Notch-1 induces tumorigenesis in CRC and 
preserves cells from apoptosis [73]. KLF2 repressed CRC 
cell growth through suppressing the HIF-1α/ Notch-1 
axis [74]. Exosomal miR-25-3p intervened in the con-
struction of a pre-metastatic niche in nude mice through 
promotion of the vascular permeability and subsequent 
CRC metastasis. MiR-25-3p targeted the KLF2 and KLF4 
in HUVECs that resulted in ZO-1, occludin, and Clau-
din5 down regulations while VEGFR2 up regulation [75].

Lung cancer
KLF2 inhibits the leukemia cell growth by p21 up regu-
lation [76], while down regulates the Wee1 to pro-
mote apoptosis [77]. WW domain-containing protein 1 
(WWP1) induces the ubiquitination and degradation of 
KLF2 [78]. Smurf1 plays important roles in regulating 
cell polarity and tumor progression via mediating BMP-
Smad, RhoA signaling pathways [79, 80]. WWP1 and 
Smurf1/2 have been also demonstrated to mediate Smads 
degradation in TGF-b signaling pathway [81]. Smurf1 as 
the HECT-type ubiquitin ligase might promote the KLF2 
degradation in lung tumor cells [13]. There were signifi-
cant KLF2 down regulations in non small-cell lung can-
cer (NSCLC) tissues that was correlated with tumor size, 
tumor stage, lymphatic metastasis, and survival. KLF2 
repressed NSCLC cell growth via p21 and p15 targeting 
[82]. There was LINC01133 up regulation in NSCLC cells 
that was correlated with poor prognosis. LINC01133 had 
an oncogenic role in NSCLC cells through associating 
with EZH2 and LSD1, and KLF2, P21, and CDH1 down 
regulations. LINC01133 promoted EMT via CDH1 down 
regulation in NSCLC cells [83]. It has been indicated 
that KLF2 was notably downregulated in NSCLC tissue 
samples that was correlated with NSCLC lymph node 
metastasis and advanced TNM stage. KLF2 remark-
ably inhibited tumor cell viability while induced apop-
tosis through the expression of p15 and p21 in NSCLC 
cells [84]. There was miR-572 up regulation in NSCLC 

samples that was significantly correlated with metastasis 
and prognosis. MiR-572 promoted NSCLC cell prolifera-
tion and migration via KLF2 targeting [85].

EZH2 is a catalytic subunit of PRC2 that has a histone 
methyltransferase function to mediate the H3K27me3 
tails of different target genes [86]. LSD1 is a histone 
demethylase as the core subunit of the REST suppres-
sor which particularly demethylases H3K4me1/2 [87]. 
LncRNAs can modulate the transcription of target genes 
by interacting with PRC2 [88]. LATS2 belongs to the 
LATS family of protein kinases that is involved in spindle 
construction and genome integrity [89, 90]. It has been 
documented that there was AGAP2-AS1 up regulation 
in NSCLC tissues that was correlated with poor progno-
sis. AGAP2-AS1 acted as an oncogene in NSCLC cells 
through the LATS2 and KLF2 down regulations. AGAP2-
AS1 recruited the EZH2 and LSD1 to down regulate 
the LATS2 and KLF2 in NSCLC cells [91]. LINC00511 
induced the NSCLC progression via LATS2 and KLF2 
down regulations followning the recruitment of EZH2 
and LSD1 to their promoter sequences, respectively [92]. 
XIST mediates cell proliferation and invasion via epi-
genetically inhibiting KLF2 in NSCLC cells. There was 
XIST up regulation in NSCLC tissues that was associated 
with poor prognosis and poor overall survival. KLF2 acts 
as tumor suppressor in NSCLC cells and its’ expression 
could be repressed through XIST via recruiting EZH2 
to its promoter region [93]. MiR-126-5p down regula-
tion was found in lung adenocarcinoma tissues that was 
correlated with poor prognosis. MiR-126-5p suppressed 
EZH2 to increase the expression level of KLF2 and 
decreased BIRC5 expression, that inhibited lung tumor 
cell proliferation, migration while increased radiosensi-
tivity and apoptosis [94].

The ATP production by glycolysis is lower than oxi-
dative phosphorylation that can be substituted by the 
higher glucose absorption in tumor cells. Glycolysis also 
supplies many nutrients to maintain the tumor cell prolif-
eration [95, 96]. Tumor cells have a high level of the glu-
tamine consumption to prepare their required energy for 
the cell proliferation and growth [97, 98]. It was shown 
that KLF2 significantly reduced the NSCLC cell prolifera-
tion through the reduced glutamine consumption follow-
ing the glutamine transaminase down regulation [99].

Hepatocellular cancer
Hedgehog (Hh) signaling pathway participates in the pro-
motion of tumor cell growth and metastasis [100]. Sonic 
(Shh), Desert (Dhh), and Indian (Ihh) encode secre-
tory proteins that act as Hh ligands [101]. The secreted 
Hh ligand associates with Hip1, Patched 2 (Ptch2), and 
Ptch1 as transmembrane receptors through dissemi-
nation [102]. The Ptch receptor inhibits the effect of 
Smo in ligand loss. Activation of Smo may induce Gli1 



Page 7 of 12Taghehchian et al. Cancer Cell International          (2023) 23:233 

transcription factor [103]. There was KLF2 down regu-
lation in hepatocellular cancer (HCC) tissue that sup-
pressed the cell growth and metastasis by repressing the 
Hedgehog/Gli1 signaling cascade. KLF2 competed with 
Gli1 to interact with HDAC1 to inhibit the Hedgehog sig-
nal [104].

TGF-β belongs to the TGF-β cytokine family that con-
tains activin, nodal, and bone morphogenetic proteins 
[105]. TGF-β signaling is activated by TGF-β ligand 
that promotes Smad2/3 through phosphorylation. Then 
smad2/3/4 oligomeric complex enters into the nucleus 
to regulate the TGF-β target genes [106–108]. KLF2 has 
been found to reduce TGFβ/Smad signaling in endothe-
lial cells through Smad7 up regulation [109, 110]. TGF-β 
promoted the expression of KLF2 in numerous HCC 
cells. KLF2 suppressed the TGF-β/Smad pathway by pro-
voking the transcriptional activity of Smad3 and Smad4 
[14].

FBXL19-AS1 promoted the HCC cell proliferation 
while inhibited apoptosis via KLF2 down regulation 
[111]. There was ANRIL up regulation in HCC tissues 
that was associated with tumor size and stage. It may 
modulate cell growth by epigenetic inhibition of KLF2 via 
interacting with PRC2. The expression of ANRIL could 
also be regulated by SP1. SP1-mediated ANRIL expres-
sion modulated the KLF2 expression. ANRIL suppressed 
KLF2 transcription through cooperating with EZH2 and 
SUZ12 in HCC cells and recruitment of PRC2 to the 
KLF2 promoter [112]. DUXAP8 was considerably up 
regulated in HCC that was correlated with poor progno-
sis. DUXAP8 induced HCC cell growth by KLF2 down 
regulation [113]. There was TUG1 up regulation in HCC 
tissues that was associated with tumor size and BCLC 
stage. The high expression level of TUG1 was promoted 
through SP1 and mediated HCC cell growth by epige-
netically inhibiting KLF2 via interacting with PRC2 [15]. 
KLF2 was significantly up regulated in HCC tissues com-
pared to surrounding normal liver tissues. KLF2 induced 
HCC cell proliferation through c-MYC targeting [114].

Pancreatic cancer
CDK protein family has critical roles in cell cycle and 
gene expression regulation through interacting with 
transcription factors to mediate RNA polymerase II 
activity [115–117]. CDK8 as a part of the mediator com-
plex, which contains cyclin C, MED12, and MED13, 
modulates transcription [118–120]. CDK8 induces the 
β-catenin expression in pancreatic cancer that enters 
into the nucleus to mediate the activation of angio-
genesis-promoting transcription factors [121–123]. 
KLF2 is a critical downstream target of β-catenin that is 
involved in transcriptional regulation of several target 
genes [16, 17]. KLF2 was also known as a critical tran-
scriptional modulator of endothelial inflammation, that 

could suppress VEGF-associated angiogenesis and tissue 
edema, and its upregulation may elevate the expression 
level of Semaphorin-3 F (SEMA3F) [124, 125]. The high 
expression level of CDK8 in pancreatic cancer was con-
siderably associated with poor prognosis. KLF2 inhibited 
cancer cell angiogenesis. CDK8 was critical for tumor 
vessel progression in pancreatic carcinoma through the 
β-catenin-KLF2 axis [126]. KLF2 inhibited the growth 
and metastasis of pancreatic cancer cells by interaction 
with b-catenin that suppressed the activity of b-catenin/
TCF complex [127].

P15 is a CDK inhibitor that functions through inhibi-
tion of CDK activation by CCND resulting in cell cycle 
G1 arrest. There was significant IRAIN up regulation in 
pancreatic cancer tissues that was associated with larger 
tumor sizes, higher TNM stages, and lymph node metas-
tasis. IRAIN induced cell proliferation directly through 
interacting with EZH2 and LSD1 complexes and sup-
pressing KLF2 and P15 in pancreatic cancer cells [128]. 
SNHG15 induced pancreatic cancer cell proliferation by 
repressing P15 and KLF2 expression via EZH2-related 
H3K27me3 [129]. There was significant DUXAP8 up reg-
ulation in pancreatic cancer tissues that was correlated 
with the larger size of the tumor, advanced clinical stage, 
and shorter survival rate. DUXAP8 promoted the cell 
proliferation and tumor progression in pancreatic cancer 
through p21 and KLF2 down regulations following inter-
action with EZH2 and LSD1 [130]. KLF2 also induced 
pancreatic tumor cell senescence through cooperating 
with FOXO4 and promoting the expression of p21 [131].

Breast, ovarian, and prostate cancers
Wee1 is a tyrosine kinase that regulates cell cycle pro-
gression. M-phasepromoting factor (MPF), which is 
a member of the CDC2 and cyclin B complex, could 
mediate the G2/M transition through cell cycle. MPF is 
required for mitosis and is also necessary for DNA dam-
age-associated apoptosis. Wee1 negatively modulates the 
MPF complex via CDC2 phosphorylation that leads to 
mitosis deregulation and resistance to apoptosis [132–
134]. KLF2 recruited the SP1/CPBP to down regulate 
the WEE1 that sensitized ovarian tumor cells toward the 
DNA damage mediated apoptosis [77]. It has been sug-
gested that KLF2 can be introduced as a promising target 
to increase the sensitivity of breast cancer (BCa) to cispl-
atin via down regulation of WEE1 [135]. KLF2 promoted 
cell apoptosis while inhibited cell proliferation through 
p16, p21, and p27 up regulations and CCND1 and sur-
vivin down regulations in breast tumor cells [136]. Silenc-
ing of LINC00702 decreased the ovarian cancer (OC) cell 
proliferation. It facilitated the progression of OC through 
binding to EZH2 to suppress the transcription of KLF2 
[137]. SNHG7 inhibition reduced the OC cell growth and 
invasive. SP1 up regulated the SNHG7 that interacted 
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with EZH2 to inhibit KLF2 expression in ovarian tumor 
cells [138].

Matrix metalloproteinases (MMPs) are a multifunc-
tional family of zinc-dependent endopeptidases that 
has a critical role in the degradation of the extracellular 
matrix (ECM). These extracellular molecules are secreted 
via cells that supply structural and biochemical associates 
with normal physiological cells. MMP2 has a critical role 
in tumor cell migration due to the degradation of colla-
gens [139–141]. KLF2 was considerably down regulated 
in prostate cancer (PCa) tissues in comparison with nor-
mal margins. It suppressed the prostate tumor cell inva-
sion through MMP2 inhibition [142]. KLF2 inhibits CRC 
cell proliferation by promoting HIF-1α/Notch-1 signal 
pathway [74]. There was GHET1 up regulation in PCa 
tissues that was negatively linked to KLF2 expression. 
GHET1 promoted the PCa progression through decreas-
ing the level of KLF2 expression. Accumulating evidences 
demonstrated that HIF-1α and Notch-1 were also con-
siderably down regulated through GHET1 inhibition in 
prostate tumor cells [143]. LINC00665 was significantly 
up regulated in PCa tissues and cell lines. LINC00665 
down regulation reduced the PCa cell proliferation and 
migration. It facilitated the malignant progression of 
PCa by epigenetically suppressing the expression level of 
KLF2 via interaction with EZH2 and LSD1 [144].

Myeloma and osteosarcoma
Histone methylation is one of the main regulators of 
chromatin remodeling and gene expression that is 
required for several biological activities such as cell pro-
liferation, DNA damage, and stress response [145, 146]. 
KDM3A belongs to the Jumonji histone demethylases 
family that acts as a coactivator for the androgen receptor 
and mediates the elimination of H3K9me1 and H3K9me2 
[147]. It has a critical role as a modulator of spermato-
genesis, self-renewal, metabolic gene expression, and 
sex resolvation [147–150]. IRF4 belongs to the inter-
feron regulatory family of transcription factors that has 
a crucial role in mediating the plasma cell differentiation 
[151–153]. Silencing of KDM3A induced apoptosis in 
myeloma cells through KLF2 and IRF4 up regulations by 
H3K9 elimination. Down regulation of KLF2 promoted 
apoptosis and that KLF2 positively regulated the IRF4 
promoter [154].

The epidermal growth factor-like protein-7 (EGFL7) 
stimulates endothelial cell survival, migration, and dif-
ferentiation [155, 156]. Deregulation of EGFL7 has been 
frequently observed in multiple types of solid tumors and 
acute myeloid leukemia [157, 158]. Multiple myeloma 
(MM) cells can evade drug treatment via integrin-medi-
ated cellular adhesion. ITGB3 promotes MM cell pro-
liferation, protease secretion, and invasion [159–161]. 
EGFL7 is involved in angiogenesis by interaction with 

ITGB3 and Notch receptors [162]. EGFL7 induced MM 
growth through ITGB3 and KLF2 up regulations [163].

KLF2 functions as a tumor suppressor by PCNA and 
CCND1 down regulations while p21 up regulation [164]. 
It has been documented that SNHG6 was up regulated 
in osteosarcoma tissues that was correlated with tumor 
grade and shorter overall survival. Downregulation of 
SNHG6 repressed cell proliferation while increased 
apoptosis. There was a negative association between p21, 
KLF2, and SNHG6 and a positive association between 
CCND1 and SNHG6. SNHG6 facilitated the osteosar-
coma cell proliferation via p21 and KLF2 modulations 
[165].

Conclusions
It has been reported that the KLF2 has mainly a tumor 
suppressor function that can be suppressed by the onco-
genic ncRNAs following the PRC2 recruitment. On the 
other hand, ncRNAs can promote the tumor cell growth 
and proliferation by PRC2 mediated KLF2 targeting. 
Therefore, KLF2 and its ncRNA regulators can be intro-
duced as appropriate therapeutic and diagnostic targets 
in cancer patients. Considering that the PRC2 complex 
as an KLF2 inhibitor has an oncogenic role, PRC2 inhibi-
tors can indirectly inhibit the tumor growth and progres-
sion by KLF2 activation. On the other hand, it has been 
shown that lncRNAs promote PRC2-mediated KLF2 
down regulation in tumor cells. Therefore, inhibition of 
lncRNAs/PRC2 axis can up regulate the KLF2 to reduce 
tumor progression. Besides the therapeutic importance, 
lncRNAs/PRC2/KLF2 axis can also be used as a diagnos-
tic/prognostic marker in cancer patients. However, due 
to the pivotal role of KLF2 and PRC2 in normal cellular 
processes, targeted therapy against the PRC2/KLF2 axis 
results in side effects in normal cells and tissues. There-
fore, it is required to use the novel methods to deliver 
the inhibitors of PRC2/KLF2 axis locally and specifically 
to the tumor tissue in order to reduce the side effects 
as much as possible. Indeed, further animal studies and 
clinical trials are needed to be able to use the lncRNAs/
PRC2/KLF2 axis for diagnostic and therapeutic purposes 
in cancer patients.
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