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Abstract

Hepatocellular carcinoma (HCC) is the most predominant primary liver cancer, causing many illnesses and deaths
worldwide. The insidious clinical presentation, difficulty in early diagnosis, and the highly malignant nature make
the prognosis of HCC extremely poor. The complex and heterogeneous pathogenesis of HCC poses significant
challenges to developing therapies. Urine-based biomarkers for HCC, including diagnostic, prognostic, and
monitoring markers, may be valuable supplements to current tools such as serum a-fetoprotein (AFP) and seem

future clinical transformation and applications.

promising for progress in precision medicine. Herein, we reviewed the major urinary biomarkers for HCC and
assessed their potential for clinical application. Molecular types, testing platforms, and methods for building
multimolecule models in the included studies have shown great diversity, thus providing abundant novel tools for
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Introduction

Primary liver cancer is one of the leading malignancies
of the digestive system, including hepatocellular carci-
noma (HCC), which accounts for the majority (75-85%)
of liver cancers, followed by cholangiocarcinoma (ICC)
and other rare histological types. Liver cancer is the
6th most prevalent and the 3rd most lethal cancer type.
About 906,000 new cases and 830,000 new deaths were
reported in 2020. The disease burden is more significant
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in East Asia, Southeast Asia, North Africa, and West
Africa than in other regions [1]. The major risk factors for
HCC include chronic hepatitis B virus (HBV) or hepa-
titis C virus (HCV) infection, food or water contamina-
tion of aflatoxin, and alcoholism. The main risk factors
vary from region to region. In high-risk regions such as
China, South Korea, and sub-Saharan Africa, chronic
HBYV infection, aflatoxin exposure, or both are the lead-
ing etiologies for HCC, while HCV infection may be the
primary factor in other regions [1, 2]. Furthermore, the
etiological spectrum of HCC is undergoing a shift, i.e.,
a decline in the prevalence of hepatitis and the increase
in HCC burden caused by overweight, diabetes, nonal-
coholic fatty liver disease (NAFLD), and nonalcoholic
steatohepatitis (NASH) [3]. Therefore, traditionally high-
risk countries such as China, which have gained huge
benefits from preventing and controlling HBV, face novel
challenges [4].

HCC is a highly aggressive malignancy with insidious
and non-specific clinical manifestations. Therefore, cases
are mostly at advanced stages when diagnosed, leading to
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a limited prognosis. In China, the 5-year age-standard-
ized net survival rate of liver cancer patients from 2010 to
2014 was only 14.1% [5]. Currently, surgical intervention
is the primary modality of treatment for HCC patients to
acquire long-term survival. However, survival benefits
significantly rely on clinical staging. According to a study
based on 10,996 Chinese patients with HCC treated with
surgery between 2009 and 2019, the 5-year survival rate
of patients with advanced tumors is only 23.8%, which is
<1/3rd of those with early tumors [6]. Thus, early detec-
tion of HCC can preserve the liver function reserve and
provide several therapeutic options [6, 7]. Although
the diagnostic tools have improved, the un-specific and
diverse biological behavior hinders the early detection of
HCC [8].

Tumor markers from plasma or serum have been
widely explored and used, but HCC lacks reliable bio-
markers. For example, the sensitivity and specificity of
the most commonly used tumor marker, serum AFP,
is insufficient. The sensitivity of AFP ranges from 39 to
65%, while the specificity ranges from 79 to 94%, depend-
ing on different cutoff values [9]; the sensitivity for early
HCC is only 32-49% [10]. AFP also shows an elevation
in benign lesions such as hepatitis and cirrhosis [11].
Various guidelines no longer recommend AFP alone as
a diagnostic test; rather, the combination of screening
or diagnostic imaging studies, such as ultrasound, com-
puted tomography (CT), and magnetic resonance imag-
ing (MRI), are required [12, 13]. As a result, the current
diagnostic algorithms for HCC are constrained by inad-
equate equipment and professional staff; this situation is
pronounced in developing regions with a heavy burden of
HCC. Therefore, there is an urgent need for simple and
easy testing methods as well as accurate and reliable bio-
markers to reducing the mortality of HCC.

Urine testing is a noninvasive method widely studied
as an indicator of the state of health, and the specimens
can be collected, transported, and stored easily [14]. As
an ultrafiltrate of blood, urine accumulates abnormal
waste products from circulation to maintain homeosta-
sis, including markers of early oncogenesis, which might
be more abundant and detectable than markers from
blood [15, 16]. In addition, since urine does not main-
tain a homeostatic environment like blood, the urine
samples are resistant to environmental changes and less
likely to be disturbed or contaminated during the exami-
nation procedures [15]. The total abundance of proteins,
nucleic acids, and other molecules is lower in urine than
in blood, further facilitating the accurate identification
of the biomarkers due to the lower signal-to-noise ratio.
In recent years, there has been an increasing trend for
studies that identify HCC biomarkers from the urine;
some of these markers have shown promising value in
the diagnosis, treatment, monitoring, and prognosis of
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HCC [8, 16-21]. In addition, multi-omics approaches
that allow high-throughput comprehensive profiling of
urine samples are also gaining popularity [14]. The clini-
cal transformation of these findings has great significance
in improving the management of HCC and the prognosis
of patients.

This review aimed to summarize the progress in urine-
based biomarkers for HCC to improve the clinicians’
understanding of cutting-edge discoveries and develop
novel biomarkers to improve HCC management.

Testing of urine samples

The origin, detection, and application of urinary bio-
markers for HCC are illustrated in Fig. 1. In terms of
composition, urinary biomarkers for HCC include prod-
ucts derived from each level of the Central Dogma and
the downstream physiological and pathological processes
involving DNA, RNA, proteins, and metabolites [14].
These molecules in urine require several common char-
acteristics. First, a small molecular weight (<20 kDa) and
appropriate electric charge are essential since most of
these markers are produced pre-renally and filtered into
the urine via the kidney. Second, the markers should be
cancer-specific rather than dependent on the changes
in homeostasis. Finally, a sufficient concentration of the
markers in the urine is required for reliable detection
[22].

Various types of testing platforms are used for different
markers. Radioimmunoassay (RIA) and enzyme-linked
immunosorbent assay (ELISA) are commonly used for
the quantitative determination of proteins and metabo-
lites, while DNA and RNA markers are quantified by
polymerase chain reaction (PCR). With recent advances
in detection tools, the throughput, sensitivity, and accu-
racy of urinary molecular tests have been improved
markedly, facilitating a comprehensive screening of
tumor markers in urine. For example, proton nuclear
magnetic resonance ( [1] H-NMR) and gas or liquid chro-
matography-mass spectrometry (GC-MS/MS or LC-MS/
MS) facilitate high-throughput quantification of urinary
metabolites or proteins (Fig. 2A, B), whereas microarray
and next-generation sequencing (NGS) supports exten-
sive screening of urinary nucleic acids. Additionally, a
variety of machine learning algorithms, including logis-
tic regression (LR), principal component analysis (PCA),
partial least squares discriminant analysis (PLS-DA), and
random forest (RF), are utilized to build multi-molecule
models [23].

The clinical applications of the reviewed biomarkers
are primarily to aid in the diagnosis, prognostic assess-
ment, or monitoring of treatment response of HCC. Sen-
sitivity, specificity, and area under the receiver operating
characteristic curve (AUROC) are the main parameters
for evaluating diagnostic efficacies (Figs. 3A and 4A-C).
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Fig. 1 Urinary biomarkers for HCC: the origins, testing platforms, and applications. The components of the urine samples, including proteins, nucleic
acids, and metabolites, are tested and screened for biomarkers of HCC with indicative value in the diagnosis, prognosis, and treatment monitoring of HCC

Kaplan-Meier survival analysis is commonly used to
judge the stratification power for survival outcomes
(Figs. 5A-C and 6F). The correlations with well-estab-
lished prognostic indicators, such as pathological tumor
features and clinical stages, also reflect the prognostic
efficacy of urinary markers. Also, some markers have
shown potential in predicting HCC risk in community

populations, evaluating the treatment response, and pre-
dicting recurrence.

The information on the included studies is described
in Tables 1 and 2. Notably, there is an increasing trend
of multi-molecule model studies that might overcome
the intra- and inter-tumor heterogeneity of HCC com-
pared to single-molecule biomarkers, especially when the
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Fig. 2 Representative multi-metabolite models in HCC. (A) Typical original results from testing platforms [1] H-NMR analysis of urine samples, Reprinted
from Shariff et al, 2010. (B) Typical original results from testing platforms GC-MS/MS analysis of urine samples. Reprinted from Osman et al, 2017. (C)
Alterations in urinary metabolic profiles from non-cirrhosis liver disease to liver cirrhosis and HCC (left) Distinct metabolomic profiles of HCC, cirrhosis,
liver disease, and normal control illustrated by the PCA score plot. (right) Correlation between levels of urinary metabolites and disease categories and
clinical stages of HCC. Reprinted from Ladep et al,, 2014. (D) Differential metabolites and altered metabolic pathways between HCC and normal control.
(left) Metabolomic alterations in HCC compared to normal controls illustrated by heatmap. (right) Major dysregulated pathways in HCC are illustrated by
pathway-associated metabolite set enrichment analysis. Reprinted from Liang et al, 2016
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Fig. 4 Representative urinary ctDNA biomarkers for HCC. (A) Diagnostic performance of multi-ctDNA marker panel for HCC. Reprinted from Su et al,
2014. (B) A two-stage model combining ctDNAs and serum AFP in the diagnosis of HCC. Reprinted from Kim et al, 2022. (C) Improving the specificity of
urinary ctDNA marker mRASSF1A by detecting the methylation at different sites. (a) Different methylation sites in the promoter and first exon of RASSF1A
gene. (b) Methylation of P1 is the most specific HCC marker among the three types of mRASSF1A, with the highest AUROC. Reprinted from Jain et al, 2015

model components belong to distinct cancer signaling
pathways [23, 24].

Urinary proteins

Transforming growth factor (TGF)

TGF-a is a single-chain polypeptide with three disulfide
bonds and has a strong mitogenic activity on various
cell types. In 1987, Yeh et al. determined the concentra-
tion of TGF-a in the urine of HCC patients via RIA and
found it to be significantly elevated, with a sensitivity of
71.7%, superior to serum AFP. However, when combined
with serum AFDP, the sensitivity of urine TGF-« reached
93.5% [25]. On the other hand, TGF-p1 is a homodimeric
polypeptide that stimulates cell growth and malignant

transformation through autocrine mechanisms. TGF-1
could be produced by HCC cells or tumor stroma and
is mainly metabolized and cleared in the liver. There-
fore, both the tumor size of HCC and the liver function
could affect the level of TGF-p1 [26]. In 1997, Tsai et al.
reported that an AUROC of 0.730 distinguishes HCC
from liver cirrhosis, with a sensitivity of 53.1% and a
specificity of 98.9%; when combined with serum AFP, the
sensitivity increased to 84.0% and the specificity to 97.8%
[17]. This study further proved that urinary TGF-B1 was
an independent risk factor for HCC in a dose-dependent
manner [odds ratio (OR) 1.08, 95% confidence interval
(CI): 1.04-1.12] and was correlated with large tumor size
(=3 cm), diffuse growth pattern, and poor liver function.
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Fig. 5 Representative urinary protein biomarkers for HCC. (A) Prognostic value of urinary protein TGF-31 in HCC patients illustrated by Kaplan-Meier
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Reprinted from Huang et al, 2015

In addition, the levels of urinary TGF-B1 decreased sig-
nificantly after transarterial chemoembolization (TACE),
and hence were correlated with overall survival (OS) in
HCC patients [27] (Fig. 5A). In summary, both urine
protein markers are easy to test and have shown to be
valuable for the diagnosis, treatment monitoring, and
prognosis assessment of HCC. Nonetheless, no corre-
lation has been established between the urinary TGF-a
or TGF-P1 levels and serum AFP [17, 25]; both markers
have a complementary diagnostic value in AFP-negative
patients. However, follow-up studies for these markers
are yet lacking.

Urinary trypsin inhibitor (UTI)

UTTI and its precursor, inter-a-trypsin inhibitor (Ia), are
synthesized in the liver and excreted in the urine, exert-
ing an anti-inflammatory role in inflammatory tissues
[28]. In 2001, Noie et al. quantified urinary UTI levels in
61 patients who underwent partial liver resection (includ-
ing 40 HCC patients). Urinary UTI increased early in
the postoperative period and showed a correlation with

serum concentrations of C reactive protein (CRP); the
maximum increase (AuUTImax) was positively corre-
lated with indocyanine green (ICG) clearance, indicating
a liver function reserve and total operation time, while it
was negatively correlated with resection rate [29]. These
findings are consistent with the theory that urinary UTI
is an acute-phase protein associated with residual hepatic
functional reserve. In 2004, Lin et al. used ELISA and
found that UTI levels in urine decreased with the aggra-
vation of liver damage and were significantly lower in
patients with hepatitis and liver cirrhosis than in normal
controls but were slightly increased in HCC compared to
liver cirrhosis [30]. The postoperative dynamics of uri-
nary UTI are similar to those of serum CRP [29], suggest-
ing that this molecule could be considered a monitoring
parameter, albeit it lacks direct diagnostic and prognostic
value in HCC.

Neutrophil gelatinase-associated lipocalin (NGAL)
NGAL, also known as Lipocalin 2 (Lcn2), is a secreted
glycoprotein that binds to a variety of hydrophobic
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molecules that endows it with critical transport func-
tions, such as anti-infection immune response, the
intra- and extracellular clearance functions [31], and
the regulation of proliferation, invasion, and metasta-
sis of cancer cells [32]. Zhang et al. revealed that the
overexpression of NGAL and its cell surface receptor,
NGALR, in HCC tissues is associated with poor patho-
logical features and postoperative survival [33]. In the
urine samples, Abdelsameea et al. quantified NGAL con-
centrations using ELISA and found that urinary NGAL
levels increased with the progression of the disease from
normal to chronic hepatitis to liver cirrhosis and HCC.
Urinary NGAL could diagnose HCC from liver cirrhosis
with an AUROC of 0.95, a sensitivity of 90%, and a speci-
ficity of 87.5%. When combined with serum AFP, the
AUROC reached 99.7% [18]. Although urinary NGAL
has shown diagnostic and prognostic value, it still lacks
specificity for HCC [34]. Therefore, its potential in HCC
screening is limited as current evidence only supports its
complementary use for serum AFP.

Matrix metalloproteinases (MMPs)

MMPs, especially MMP-2 and MMP-9, promote angio-
genesis and tumor invasion by degrading the basement
membranes composed primarily of type IV collagen [35].
Tissue- and serum-based studies have demonstrated the

role of MMP-2 in promoting the progression of HCC [36,
37]. Suh et al. determined the levels of urinary MMP-2
and MMP-9 in HCC patients receiving radiotherapy and
found that the levels of MMP-2 before radiotherapy were
significantly correlated with recurrence and short pro-
gression-free survival (PFS) (Fig. 5B). The combination of
urinary MMP-2 and serum vascular endothelial growth
factor (VEGF)-to-platelet (PLT) ratio (VEGF/PLT) inde-
pendently predicted poor prognosis (OR 2.12, 95% CI:
1.01-4.55) [38]. These results suggested that MMP-2 is a
prognostic factor and a potential therapeutic target.

Multiprotein models

Urine contains many proteins of various types, about
30% of which are derived from outside the urinary sys-
tem [39]. With the development of testing platforms,
urine-based proteomics has been widely used to screen
for urological [40] and other malignancy markers [41,
42]. Several studies from various regions have explored
urinary multiprotein models or proteomic markers for
HCC [19, 43-46]. Abdalla et al. screened DJ-1, chroma-
tin assembly factor-1 (CAF-1), and heat shock protein
60 (HSP60) as potential markers by LC-MS/MS in an
Egyptian post-HCV HCC cohort. Quantitative reverse
transcription PCR (RT-qPCR) confirmed the significant
overexpression of the three corresponding genes. The
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overexpression of CAF-1 and HSP60 could diagnose
HCC with a sensitivity of 61% and a specificity of 92%
[19]. Huang et al. identified 83 upregulated proteins in
HCC (mainly involved in signal transduction, inflamma-
tory response, calcium ion binding, and other pathways)
and 8 downregulated proteins (mainly tubulins). Further
genomic, transcriptomic, and proteomic analysis of open
datasets revealed the co-upregulation of S100A9 and
GRN [47] (Fig. 5C-left and middle), the known promo-
tors for HCC invasion and proliferation [48, 49]. Thus,
diagnostic and prognostic panels for HCC were built
with these markers [43] (Fig. 5C-right). Two studies from
China proposed a random forest diagnostic model with
7 markers, and a quick-test qualitative diagnostic model
with 2 markers, respectively. Both models showed excel-
lent sensitivities and specificities of >80% [44, 45]. In a
cohort from UK, Bannaga et al. used capillary electro-
phoresis mass spectrometry (CE-MS/MS) to compare
the protein profiles of HCC, liver cirrhosis, non-cirrho-
sis, and normal controls and identified 31 differential
peptides. Then, a support vector machine (SVM) model,
“HCC-31", was established with an adequate diagnostic
power for HCC in the validation set (AUROC 0.88, 95%
CI: 0.81-0.93) [46] (Fig. 3A). In addition, in silico map-
ping deduced 5 upregulated proteases and 2 downregu-
lated proteases, confirmed by immunohistochemistry
(IHC) [46] (Fig. 3B). This might suggest future therapeu-
tic targets against proteases that drive ECM remodeling,
invasion, and spread of cancer cells [50]. Proteomic anal-
ysis has provided novel methods for HCC urinary marker
screening. The present findings suggested several multi-
protein models as diagnostic or prognostic tools, which
have provided promising results validated through histo-
logical, genomic, and transcriptomic studies. Thus, it can
be expected that many urinary protein markers for HCC
would be identified in the future.

Urinary nucleic acids

DNA

As in other cancer types, DNA alterations are critical
for initiating and progressing HCC. The DNA changes
identified from the body fluids of HCC patients may pro-
vide novel biomarkers for the screening and early diag-
nosis of HCC [24]. Circulating free DNAs (cfDNAs) are
DNA fragments of about 160 bp, mainly derived from
cell phagocytosis and released into circulation [51]. As
an essential component of liquid biopsies, cfDNAs reflect
tumor genetic characteristics more comprehensively than
traditional tissue biopsies [24]. Circulating tumor DNAs
(ctDNAs) refer to the subset of cfDNAs that are directly
derived from tumor cells. Urine is abundant with kidney-
filtered low molecular weight DNAs (LMW DNAs) that
can be used to identify DNA markers [51, 52]. Notably,
the diagnostic sensitivity of DNA markers is expected to
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continue to increase due to significant advances in detec-
tion depth. However, considering the diverse etiologies,
the signaling pathways involved in HCC, and the highly
heterogeneous nature of cancer, combinations of several
DNA markers from different pathways are preferred for
diagnosis [24] (Fig. 4A).

To date, studies of urine DNA markers have mainly
focused on several HCC-specific DNA mutations
and methylations, including TP53 249T, mRASSFIA,
mGSTPI1, and hTERT 124. In 2011, Lin et al. first intro-
duced the TP53 249T mutation, an HCC-specific muta-
tion in the urine, detected in 9/17 patients but not in
any of the controls [53]. Hann et al. demonstrated the
potential of mRASSFI1A, mGSTP1, and TP53 249 T for
the early prediction of post-treatment recurrence during
follow-up in 10 HCC cases. In 5 cases with tumor recur-
rence, all three DNA markers showed significant eleva-
tion prior to MRI confirmation. These markers could
be positive for up to 9 months before MRI20 indicated
recurrence. Wang et al. constructed a multifactor model
by combining urinary mRASSFIA, mGSTPI, and TP53
249T and serum AFP that could distinguish HCC from
hepatitis or cirrhosis with 87% sensitivity and 90% speci-
ficity, outperforming AFP alone. In addition, the pres-
ent study compared different algorithms in the modeling
process, including logistic regression (LR), classification
and regression trees (CART), random forest (RF), and a
two-step model combining LR with RFE. RF and the two-
step models proved to have the best AUROC and robust-
ness [23]. Kim et al. established a diagnostic ctDNA
panel in an international multicenter cohort based on
the same three markers. The application of the ctDNA
panel in AFP-negative patients significantly improved
the diagnostic power of HCC to a sensitivity of 78.6%
and a specificity of 90% (Fig. 4B). Specifically, this model
increased the diagnostic sensitivity for early HCC from
40-77% [54]. Zhang et al. concluded that the positive
rate of urinary TP53 249T, CTNNBI 32-37, hTERT 124,
and mRASSF1A was significantly increased from hepati-
tis and cirrhosis to HCC [55]. mRASSFI1A is the abnor-
mal methylation of RASSFIA, a tumor suppressor gene
from the RAS-associated domain family [56]. To further
improve the specificity to HCC, Jain et al. compared the
diagnostic power of methylation at different sites, reveal-
ing that P1 methylation had the best performance com-
pared to E1 and P2 regions, and the sensitivity of P1
methylation of RASSFIA in AFP-negative HCC patients
was up to 81.1% [56] (Fig. 4C).

RNA

MicroRNAs (miRNAs) are non-coding RNAs with a
length of about 22 nucleotides. Dysregulation of miR-
NAs has been linked to a variety of diseases, including
cancers [57], thereby deeming them as appropriate tools
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for cancer management. The miRNAs may be actively
released into circulation by microvesicle secretion or pas-
sively by apoptosis and necrosis [58] and filtered into the
urine. The stability and resistance to endogenous RNase
activity of miRNAs allow for the freezing and storage of
samples, facilitating the development of urinary miRNA-
based biomarkers [59]. Abdalla et al. screened for miRNA
markers through the expression profiling of urine sam-
ples. Results showed that miR-625, miR-532, and miR-
618 were upregulated, while miR-516-5p and miR-650
were downregulated in HCV-infected patients and post-
HCV HCC patients. miR-618 and miR-650, the top two
differentially expressed markers in RT-qPCR, together
could diagnose HCC with an accuracy of 69% [60]. Simi-
larly, Switlik et al. identified miR-532-3p and miR-765 as
a diagnostic panel that could stratify HCC patients into
two prognostic groups with distinct histological classes,
clinical stages, and metastatic status [61]. Zhou et al.
identified miR-93-5p as a candidate biomarker by ana-
lyzing public sequencing datasets. The upregulation of
miR-93-5p in tissues, plasma, and urine was confirmed
in clinical samples (Fig. 6A—C). Urinary miR-93-5p could
diagnose early HBV-related HCC with 87.5% sensitivity
and 97.4% specificity, which was superior to serum AFP
(Fig. 6D). One month after radical resection, urinary
miR-93-5p decreased to normal levels (Fig. 6E). More-
over, the prognosis of patients with high urinary miR-
93-5p levels was worse than in those with lower urinary
miR-93-5p levels [16] (Fig. 6F).

Urinary metabolites

Polyamines

Polyamines are essential for the proliferation of normal
and tumor cells. During the initiation and progression of
HCC, the activity of guanylate decarboxylase is elevated,
resulting in increased levels of polyamines [62]. In 1985,
Kubota et al. reported that the urinary total polyamine
levels were abnormally elevated in patients with vari-
ous malignancies, including liver, gastrointestinal tract,
and hematologic cancers, and decreased to the normal
range after treatment [63]. In 1998, Antoniello et al.
revealed a significant increase in urinary total, free, and
acetylated polyamines in HCC patients using reversed-
phase high-performance liquid chromatography (HPLC).
Total putrescine (PUT), spermine (SPM), and spermi-
dine (SPD) levels were significantly increased, among
which PUT and SPD were mainly excreted in the acety-
lated form, while SPM was excreted in the free form [64].
Enjoji et al. reported that N [1], N [12]-diacetylspermine
(DiAcSPM) could distinguish HCC from cirrhosis with
a sensitivity of 65.5% and a specificity of 76.0%, but the
efficacy in diagnosing early HCC was not significant.
In addition, urinary DiAcSPM levels were significantly
reduced after treatment [65]. Using ultra-HPLC-tandem
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mass spectrometry (UHPLC-MS/MS), Yu et al. quanti-
fied several polyamines and their metabolites in tissues,
plasma, and urine in rat HCC models. Urinary N-ace-
tylspermidine (NSPD), N-acetylspermine (NSPM), N
[1], N [8]-diacetylspermidine (DiAcSPD), and DiAcSPM
were significantly higher in the models than in the con-
trols and decreased to the normal range after receiving
anticancer drugs [66]. Studies by Enjoji et al. and Yu et al.
suggested that polyamines might be useful as diagnostic
and treatment monitoring markers in HCC. Yu et al. also
compared the polyamines in tissue and body fluids and
concluded that the synthesis of PUT and its metabolism
to NSPD was enhanced in HCC. Moreover, the urine
samples were sensitive for the detection of polyamine
metabolites and potentially enriched with polar N-acety-
lated polyamines [66]. A similar conclusion was obtained
by Liu et al. in an HCC patient cohort study, wherein
NSPD, SPM, and SPD were significantly increased in
the urine of hepatic cancer patients [67]. Nonetheless,
whether polyamines are cancer-specific biomarkers is
controversial. Hyltander et al. compared urinary poly-
amine levels in cancer patients and non-cancer patients
undergoing major surgeries and minor surgeries, sug-
gesting that the molecules are mainly associated with the
metabolic stress of patients rather than cancers. Host fac-
tors, such as serum albumin concentrations, liver func-
tion, and liver metastases, might primarily determine
altered excretion of polyamines in cancer patients [68].

Nucleotides

The hypothesis that the balance between intracellular
cAMP and ¢cGMP may regulate cell growth, prolifera-
tion, and malignant transformation has been substanti-
ated by in vivo and in vitro studies in various malignant
tumors [68, 69]. Accumulating evidence suggests that
increased cGMP or altered activity of guanylate cyclase
are features of malignant tissues. In 1982, Dusheiko et
al. observed that RIA-quantified urinary cGMP levels
were significantly higher in HCC patients than in healthy
controls, while cAMP levels were similar to those of con-
trols. However, the findings were not specific to HCC,
as dynamic changes in cGMP and cAMP were observed
in other malignancies and patients with damaged liver
functions [70]. The study by Turner et al. reached similar
conclusions in cervical and breast cancer [71], suggesting
that cyclic nucleotide metabolism is inclined to cGMP
in malignant tumors [70, 71]. Urinary concentrations of
nucleotides are determined by the balance of multiple
processes, such as synthesis, degradation, and excretion,
which might be affected by liver function status. These
factors limit the clinical translational studies of urinary
nucleotides as HCC biomarkers.
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L-Fucose

L-Fucose is located at the non-reducing end of the sugar
chain of the conjugated sugar compounds. The diagnostic
value of serum L-fucose in primary liver cancer has been
reported as early as 1984 [72]. In 1990, Sakai et al. deter-
mined the concentration of L-fucose in the urine by bio-
chemical methods and observed abnormally increased
levels in patients with cirrhosis (19/21) and liver cancers
(35/41), as well as in other diseases, such as gastric can-
cer, lung cancer, and gastric ulcer, suggesting a lack of
specificity for HCC [73]. Currently, follow-up studies on
urinary L-fucose are lacking.

Volatile organic compounds (VOCs)

Dysfunctional cytochrome P450 may contribute to the
progression of HCC [74]. The byproducts of cytochrome
P450 include various VOCs. Based on this theory, Ban-
naga et al. identified seven VOCs between HCC and
controls in the urine by GC-MS/MS, while the diagnos-
tic model based on urinary VOCs distinguished between
HCC and cirrhosis with an AUROC of 0.97 [75]. Ban-
naga et al. also established another multi-VOC diagnos-
tic model by combining the solid-phase microextraction
(SPME) technique with radial basis function networks
(RBEN), which proved to be valuable for the diagnosis
of a variety of cancers, including complementary diag-
nostic value for serum AFP in HCC [76]. However, the
current research on VOCs is preliminary, and additional
evidence is required to assess the clinical applications of
such biomarkers.

Multi-metabolite models
Tumor cells have specific metabolic characteristics,
which could be represented by measuring the metabo-
lites in body fluids [14]. The concept of “metabolomics”
or “metabonomics” refers to the high-throughput analy-
sis of metabolites in biological specimens. “metabolo-
mics” focuses on the panoramic landscape of metabolites
in samples, while “metabonomics” emphasizes the met-
abolic responses to pathological factors [77, 78]. Sev-
eral recent studies have applied these methodologies to
screen for urinary metabolite biomarkers. The main test-
ing platforms include proton NMR ( [1] H-NMR) and MS
[22, 79, 80] (Fig. 2A, B). Both methods have a comple-
mentary value to each other. MS has advantages in detec-
tion sensitivity, while [1] H-NMR has strengths in sample
preparation and the reproducibility of the results [81].
Using [1] H-NMR, Cox et al. examined urine sam-
ples from hepatitis B, cirrhosis, and HCC patients and
reported major differential metabolites, including upreg-
ulated carnitine and downregulated creatinine, hippu-
rate, and trimethylamine-N-oxide (TMAO) in HCC [82].
Shariff et al. established a urinary multi-metabolite model
for HCC via PCA and PLS-DA, and the sensitivity and
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specificity to distinguish HBV-related HCC from cirrho-
sis were 89.5% and 88.9%, respectively. The top contrib-
uting metabolites are upregulated creatine and carnitine
and downregulated creatinine and acetone, which might
be related to the changes in muscle mass, energy metabo-
lism, and lipid metabolism [83]. A similar conclusion was
derived in another cohort with HCV infection. Major
differential metabolites include upregulated carnitine
and creatine and downregulated TMAO, and the multi-
metabolite model could distinguish between HCC and
cirrhosis with a sensitivity of 81% and a specificity of 71%
[84]. In a cohort with a heterogeneous etiological back-
ground, Shariff et al. identified increased carnitine and
formate and decreased creatinine, hippurate, citrate, and
p-cresol sulfate in the urine of HCC patients. Further-
more, the PLS-DA model showed a sensitivity of 53.6%
and a specificity of 96% for diagnosing HCC, which is
superior to serum AFP in the same cohort [85]. Ladep et
al. revealed alterations in urinary metabolic profiles from
non-cirrhosis liver disease to liver cirrhosis and HCC
(Fig. 2C-left). The diagnostic panel composed of inosine,
indole-3-acetate, N-acetylated amino acid (NAA), and
galactose can distinguish HCC from cirrhosis with an
efficacy better than serum AFP. In addition, the urinary
metabolic markers were significantly associated with
clinical stages [86] (Fig. 2C-right). Similarly, Wang et al.
observed the separation of metabolic profiles between
HCC rat models and controls, which was parallel to the
progression of HCC. Pathway enrichment analysis indi-
cated that taurine and hypotaurine metabolism was
involved in HCC [80].

Using GC-MS/MS, Li et al. detected urinary meta-
bolic alterations from controls to HCC and HCC with
lung metastasis (HLM) in rat models. Downregulated
serine, glycine, 5-oxyproline, and malate and upregu-
lated 2-methylsuccinic acid levels were observed in HLM
samples compared to HCC samples. The multi-metabo-
lite model can accurately distinguish between HCC and
HLM models [87]. In clinical cohorts, the PLS-DA and
PCA multi-metabolite models established by Chen et
al. and Osman et al. distinguished between HCC and
healthy controls with excellent accuracy superior to
serum AFP [8, 88]. Wu et al. established a PCA diagnos-
tic model combining serum AFP to 18 urinary metabo-
lites; the AUROC for diagnosing HCC reached 0.9725
[79]. These studies suggested the potential of urinary
metabolites in the screening and surveillance of HCC as
supplementation to serum AFP. Regarding the prediction
of postoperative recurrence, Ye et al. determined a prog-
nostic model including ethanolamine, lactic acid, acotinic
acid, phenylalanine, and ribose, which could distinguish
between HCC patients with and without recurrence with
an accuracy of 100% [89]. Notably, this result needs exter-
nal validation in large cohorts. Based on LC-MS/MS,



Deng et al. Cancer Cell International (2023) 23:239

Liang et al. screened 15 differential metabolites between
HCC patients and healthy controls (Fig. 2D-left). The sig-
nificantly altered pathways included bile acid biosynthe-
sis, the citric acid cycle, tryptophan metabolism, and the
urea cycle (Fig. 2D-right). A model involving 5 metabo-
lites was selected via significance analysis for microarrays
(SAM), which showed an AUROC of 0.903, a sensitiv-
ity of 96.5%, and a specificity of 83% in diagnosing HCC
[90]. Shao et al. developed a pseudo-targeted detection
method based on liquid chromatography-hybrid triple
quadrupole linear ion trap mass spectrometry (LC-
QTRAP-MS/MS), which combines good signal quality
and detection sensitivity [91]. Carnitine C4:0 and hydan-
toin-5-propionic acid were selected to build a diagnostic
panel that detects early HCC with an AUROC of 0.773 in
external validation [92].

Other techniques, such as surface-enhanced Raman
spectroscopy (SERS), have also been utilized to analyze
the biochemical fingerprints in body fluids [93]. Dawuti
et al. identified several dysregulated metabolites of nucle-
otides and amino acids using SERS. The SVM model
along these metabolites could distinguish HCC from cir-
rhosis with a sensitivity of 79.6%, while the sensitivity of
serum AFP was only 34.5% in the same cohort [94].

Metabolomic or metabonomic studies have recently
become a hot research topic. The multi-metabolite
models derived from the current studies seem promis-
ing for managing HCC, especially for the discrimination
between HCC and liver cirrhosis [83, 84, 92, 94]. In addi-
tion, the consistency of the results from distinct testing
platforms, regions, and etiological backgrounds further
supports the interpretability, universality, and applica-
tional value of these biomarkers. Interestingly, some
studies have shown an overlap between HCC cirrhosis
metabolic difference and cirrhosis healthy metabolic dif-
ference [82-84, 92, 94] (Fig. 2C-left). Additionally, animal
experiments have shown a progressive shift of metabolic
profiles parallel to the development of HCC [80, 82],
while other studies can significantly distinguish between
HCC and healthy people but not between HCC and cir-
rhosis [88]. Taken together, these findings suggested
that the metabolic biomarkers may reflect the biological
behavior of malignant tissues and are influenced by the
background hepatic lesions. These conclusions were in
line with the biological and clinical features of HCC. On
the other hand, these findings suggested that the specific-
ity of the metabolic markers in diagnosing HCC from cir-
rhosis patients should be under intensive focus.

Other urinary biomarkers

The markers mentioned above were primarily devel-
oped in HCC cohorts or HCC animal models to pro-
vide a direct value for the clinical management of HCC.
Some studies focused on urinary markers associated with
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exposure to aflatoxin and inflammatory oxidative stress;
both are essential factors in the pathogenesis of HCC.
These markers may contribute to prevention, screening,
and surveillance of HCC in high-risk populations.

Urinary aflatoxin and its metabolites

Aflatoxin exposure is a widely acknowledged risk factor
of HCC [1, 2]. Significant concentrations of several afla-
toxin derivatives in serum and urine, such as aflatoxin-
albumin adducts and aflatoxin-N7-guanine adducts, have
been associated with aflatoxin-DNA adducts in liver tis-
sues, suggesting a potential value for the assessment of
aflatoxin exposure [95]. In a prospective cohort, Ross et
al. quantified urinary aflatoxin B1 (AFB,) and aflatoxin
metabolites, including AFP;, AFM,, and aflatoxin DNA
adducts AFB;-N [7]-Gua, which were markedly elevated
in HCC patients. The presence of any of these com-
pounds was an independent risk factor for HCC [relative
risk (RR) 3.8, 95% CIL: 1.2-12.2], and AFP; showed the
highest RR of 6.2 (95% CI: 1.8-21.5). In addition, a signif-
icant risk was associated with urinary aflatoxin products
in the HBsAg-positive group [21]. Also, the synergistic
risk effect of serum HBsAg and urinary aflatoxin metabo-
lites was observed by Wang et al. [96]. A cross-sectional
study revealed that the average levels of urinary aflatoxin
metabolites in random volunteers were positively asso-
ciated with average HCC mortalities in the same county
[97]. Although the contribution of these studies to clini-
cal precision medicine is not direct, aflatoxin-related bio-
markers may play roles in the prevention, screening, and
surveillance of HCC.

Urinary biomarkers associated with oxidative stress

Chronic inflammation, continuous damage, and regen-
eration of liver tissues are the common pathological pro-
cesses in HCC with different etiological backgrounds
[98]. Oxidative stress is the imbalance between exog-
enous and endogenous reactive oxygen species (ROS)
and the anti-oxidant function. Excessive ROS can directly
mediate lipid peroxidation and DNA damage and pro-
mote the progression of liver disease and liver cancers
[99]. Therefore, oxidative stress-related metabolites
have the potential to serve as the markers of cancer risk,
especially in populations with a known background of
chronic inflammatory liver diseases, such as chronic
hepatitis and liver cirrhosis. Nair et al. quantified urinary
etheno-deoxyadenosine (e-dA), a DNA-reactive aldehyde
produced by the reaction of DNA with lipid peroxida-
tion products and found that e-dA levels were 20-90
times higher in patients with HCC, cirrhosis, or chronic
hepatitis compared to asymptomatic HBV carriers [100].
In a large follow-up cohort, Yuan et al. revealed signifi-
cantly elevated urinary 8-epi-Prostaglandin F2a (8-epi-
PGF2a), a product of lipid peroxidation, in patients who
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developed HCC compared to the controls. The group of
patients with the highest quartile of 8-epi-PGF2ua levels
had a RR of 2.55 (95% CI: 1.62—4.01). In addition, a sig-
nificant increase could be detected as early as 10 years
before the diagnosis of HCC [101]. Ma et al. identified
urinary 15-F,-isoprostane (15-F,.-IsoP) as a risk fac-
tor for HCC. The group with the highest quartile of
15-F,,-IsoP levels had an OR of 1.75 (95% CI: 0.70-4.42)
in females and an OR of 8.84 (95% CI: 2.74-28.60) in
males [102]. In addition, Wu et al. reported a synergistic
risk effect of urinary AFB,, 15-F,.-IsoP, and 8-o0x0-7,8-di-
hydro-2’-deoxyguanosine (8-oxodG), markers of oxida-
tive stress, suggesting that 15-F,-IsoP may also serve as a
marker for aflatoxin exposure [103].

Conclusions and outlook

This review summarized a series of urinary biomarkers
of different molecular types and their application in the
screening and surveillance, diagnosis, treatment, moni-
toring, and prognosis of HCC. Next, we compared each
marker from the “starting point’ i.e., its cohort informa-
tion, detection platform, and modeling method, to the
“endpoint’, namely its direction of dysregulation, diag-
nostic power, and prognostic power. The included stud-
ies are mainly from East Asia and Africa, which is in line
with the significant disease burden of HCC that needs to
be addressed in these regions. The subjects of these stud-
ies included HCC patients with diverse backgrounds,
including HBV and HCV infection, aflatoxin exposure,
and NAFLD, which was conducive to generalizing the
current conclusions. Most of the reviewed studies have
set control groups comprising patients with chronic hep-
atitis and liver cirrhosis for HCC screening; early HCC in
patients with cirrhosis is a prominent challenge in man-
aging HCC.

The analysis of urinary biomarkers for HCC has shown
an increasing trend in recent years. The significant
advances in detection methods and analytical algorithms
would facilitate the future detection of many molecular
markers. Notably, many of these are early-stage studies,
including animal experiments and preliminary analysis of
raw data, and are still far from clinical application, which
requires simplified diagnostic models and easy detec-
tion techniques. Nevertheless, many researchers have
improved the reliability of their conclusions by validation
in independent cohorts using serum and tissue samples
and analysis compared to or in combination with serum
AFP.

Although urinary biomarkers provide promising tools
for solving the bottleneck problems in managing HCC,
future research and clinical translation must over-
come several challenges. First, a simple method should
be established to determine the biomarkers in urine
quantitatively. Second, the sensitivity and specificity of
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the biomarkers should be validated in large, indepen-
dent, and prospective cohorts. In addition, the speci-
ficity toward HCC should be further demonstrated,
especially after adjusting the influence of liver dysfunc-
tion, background liver lesions, and secondary homeosta-
sis disorders. Therefore, additional studies are needed to
investigate the biological functions and molecular inter-
actions of these biomarkers.
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