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Abstract 

Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with a high mortality 
and poor survival rate. Abnormal tumor metabolism is considered a hallmark of HCC and is a potential therapeutic tar-
get. This study aimed to identify metabolism-related biomarkers to evaluate the prognosis of patients with HCC.

Method The Cancer Genome Atlas (TCGA) database was used to explore differential metabolic pathways based 
on high and low epithelial-mesenchymal transition (EMT) groupings. Genes in differential metabolic pathways 
were obtained for HCC metabolism-related molecular subtype analysis. Differentially expressed genes (DEGs) 
from the three subtypes were subjected to Lasso Cox regression analysis to construct prognostic risk models. Stard5 
expression in HCC patients was detected by western blot and immunohistochemistry (IHC), and the role of Stard5 
in the metastasis of HCC was investigated by cytological experiments.

Results Unsupervised clustering analysis based on metabolism-related genes revealed three subtypes in HCC 
with differential prognosis. A risk prognostic model was constructed based on 11 genes (STARD5, FTCD, SCN4A, ADH4, 
CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, and SLC2A1) obtained by LASSO Cox regression analysis of the three 
subtypes of DEGs. We validated that the model had a good predictive power. In addition, we found that the high-
risk group had a poor prognosis, higher proportion of Tregs, and responded poorly to chemotherapy. We also found 
that Stard5 expression was markedly decreased in HCC tissues, which was associated with poor prognosis and EMT. 
Knockdown of Stard5 contributed to the invasion and migration of HCC cells. Overexpression of Stard5 inhibited EMT 
in HCC cells.

Conclusion We developed a new model based on 11 metabolism-related genes, which predicted the prognosis 
and response to chemotherapy or immunotherapy for HCC. Notably, we demonstrated for the first time that Stard5 
acted as a tumor suppressor by inhibiting metastasis in HCC.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most com-
mon malignant tumors and is the third leading cause of 
cancer-related deaths worldwide [1]. The 5 year survival 
rate is less than 12%. Most HCC cases are at advanced 
stages when diagnosed [2], thereby leading to poor prog-
nosis and posing challenge to treatment. Traditionally, 
clinical staging and vascular tumor invasion are essen-
tial contributors to clinical outcomes and may help to 
predict survival [3]. However, these clinicopathological 
risk factors are limited in terms of prognostic evaluation 
and are insufficient to distinguish between high-risk and 
low-risk patients. Sensitivity to adjuvant chemotherapy is 
even more unpredictable. Thus, there is an urgent need 
to explore novel prognosis-related genes, building a com-
prehensive model to predict clinical outcomes.

Epithelial-mesenchymal transition (EMT) is a favorable 
feature of malignant cells [4]. Some cells lose their epi-
thelial characteristics and obtain a mesenchymal pheno-
type during the transition, eventually leading to a loss of 
intercellular junctions [4]. Thus, EMT not only promotes 
invasion and metastasis, but also leads to enhanced 
stemness of tumor cells, contributing to the develop-
ment of chemoresistance [5], immunosuppression [6] 
and targeted therapy resistance [7]. Therefore, developing 
new therapeutic strategies to control EMT is essential in 
oncogenesis, metastasis, and treatment. Unfortunately, 
reversing EMT in tumor cells has not yet been achieved 
[8].

Metabolic reprogramming is generally recognized to be 
a new hallmark of cancer [4], most notably the “Warburg 
effect.” In addition to dysregulated glucose metabolism, 
metabolic reprogramming in tumor cells is character-
ized by abnormal nucleotide metabolism, amino acid 
metabolism, mitochondrial biosynthesis, and the rest of 
pathways [9]. The study of these metabolic reprogram-
ming will shed light on the molecular events of malig-
nancy and facilitate to identify preferable approaches for 
diagnosis and treatment. Recent findings suggested that 
metabolic demand is altered in EMT-activated cells to 
meet increased motility and aggressiveness [10]. In some 
cases, metabolic reprogramming can also drive EMT, 
and the link between the two is reciprocal. In certain 
cancer types, tumors undergoing metabolic reprogram-
ming are correlated with worse survival [11]. Metabolic 
reprogramming of cancer cells has tremendous impact 
on immune microenvironment [12], thereby influencing 
the efficacy of immunotherapy. Therefore, understanding 
the mechanisms of metabolic reprogramming in different 
EMT states is crucial for improving patient survival.

In this study, The Cancer Genome Atlas (TCGA)-
LICH was used to analyze differential metabolic path-
ways according to different EMT status groups. Based 

on the unsupervised cluster analysis of the differential 
metabolic pathway genes, three clusters with significant 
differences in survival were obtained. Using differential 
expression analysis and LASSO-Cox regression, 11 genes 
were selected to establish a prognostic risk model. This 
prognostic model may help to optimize risk stratification 
and identify appropriate therapeutic strategies for HCC 
patients. Moreover, the correlation between Stard5 and 
EMT has been broadly verified in  vitro and in patients, 
which provides a target for exploring the interaction 
between EMT and metabolic reprogramming.

Materials and methods
Data acquisition
The mRNA expression profiles of HCC patients and the 
corresponding clinical profiles, including age, gender, 
grade, stage, alcohol consumption, Hepatitis B, Hepa-
titis C and survival time, were downloaded from the 
TCGA-LIHC database (https:// gdc. nci. nih. gov/) and 
were detailed in Table. 1. Validation dataset GSE14520 
was downloaded from Gene Expression Omnibus (GEO) 
database, and survival information for the samples was 
shown in Table. 2.

Calculation of EMT enrichment scores
A total of 145 epithelium (EPI) genes and 170 mesen-
chyme (MES) genes were obtained from PMID: 25214461 
[13]. Based on the above gene sets, the samples’ EPI 
enrichment score and MES enrichment score were cal-
culated by the R package GSVA (v1.34.0), and the EMT 
enrichment score was subtracted from the two. Surv_
cutpoint of R package survminer (v0.4.8) was used to find 
the most appropriate node to differentiate EMT-H from 
EMT-L groups. Survival analysis of the two groups was 
performed by the R package surv (v3.2–7). Differences in 
clinical characteristics between the EMT subgroups were 
detected using Kruskal wallis test.

Calculation of metabolic signature enrichment scores
Enrichment scores for metabolic pathways were calcu-
lated for samples based on metabolic pathway-related 
genes provided by PMID: 33917859 [14]. The differences 
of metabolic enrichment scores between EMT groups 
were analyzed using Kruskal wallis test.

Subtypes identification based on metabolic 
reprogramming
A subtype analysis related to metabolic reprogramming 
of HCC was performed based on genes of metabolic 
pathways, which had significant differences between 
the EMT-H and EMT-L groups. Unsupervised cluster 
analysis was applied to all samples in the TCGA-LIHC 
dataset through the R package ConsensusClusterPlus 

https://gdc.nci.nih.gov/
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(v1.50.0) with the algorithm K-means. The clusters were 
then analyzed for survival using R package survival and 
survminer.

Functional enrichment analysis
Differentially expressed genes (DEGs) of the clusters 
were acquired by the R package limma [15]. A threshold 
of | log2foldchange|> 1 and adjusted p < 0.05, were consid-
ered for DEGs. Overlapping DEGs from the three clusters 
were used for subsequent analysis. The Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis 
and Gene Ontology term (GO) analysis, which consists of 
biological processes (BP), cellular component (CC), and 
molecular function (MF), were performed using DEGs 
shared by the three clusters [16].

Construction of a prognostic model
Univariate Cox regression analysis was applied to the 
significant DEGs, using p < 0.01 as the threshold, in 
combination with the overall survival data. DEGs were 
then further filtered by LASSO-Cox regression analy-
sis, and risk score models were constructed, a pro-
cess that resorted to the R package glmnet (v4.0–2). 
Lambda screening was used for cross-validation. The 
model corresponding to lambda.min was used to col-
lect the gene expression matrix. The risk score for each 
sample was calculated using the following equation: 
RScorei =

∑n
j=1 expji × βj . The median risk score was 

used to classify high-and low-risk groups. A p-value of 
Kaplan–Meier survival analysis < 0.05 was considered to 
indicate a significant difference between the two groups. 
The area under the curve (AUC) values for the model 
were calculated using the survival data and demonstrated 
by time-dependent receiver operating characteristic 
(ROC) curves, with AUC values greater than 0.6 indicat-
ing good predictive power of the prediction model.

Immune cell infiltration and chemotherapy resistance 
prediction analysis
To explore the response of patients to Erlotinib, Shi-
konin, Metformin, Bortezomib, Metformin, and Lapat-
inib, the predictive value of IC50 was obtained using the 
R package pRRophetic (v 0.5) analysis. The difference in 
IC50 between the high-and low-risk groups was tested 
using the Wilcoxon test. R package CIBERSORT (v1.03) 
was used to analyze the proportion of immune cells in all 
patients.

Clinical HCC patient samples and cell culture
To validate the expression levels of genes in the prognos-
tic model, we collected 80 tumors and adjacent normal 
tissues from patients with HCC. All patients participat-
ing in this study signed an informed consent form. This 

Table 1 The clinical characteristics of TCGA-LIHC samples

TCGA-tumor

Age

  > 65 138

  <  = 65 229

 Negative 40

Gender

 MALE 248

 FEMALE 119

Grade

 G1 55

 G2 176

 G3 119

 G4 12

 NA 5

Stage

 Stage I 171

 Stage II 85

 Stage III 83

 Stage IV 4

 [Discrepancy] 2

 NA 22

Alcohol consumption

 Yes 115

 No 252

Hepatitis B

 Yes 103

 No 264

Hepatitis C

 Yes 56

 No 311

EMT group

 EMT-H 19

 EMT-L 348

Cluster

 Cluster1 251

 Cluster2 104

 Cluster3 12

OS

 Alive 237

 Dead 130

Table 2 Survival information for GSE14520 data set

GSE14520

OS

 Alive 136

 Dead 85
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project was approved by the Human Research Ethics 
Committee of Zhongshan Hospital, Fudan University 
(Y2021-242). Tumors and adjacent normal tissues were 
then collected from patients who underwent surgical 
resection of the liver. All tissues were obtained imme-
diately after surgical resection and frozen at −  80  °C. 
Huh7 cells, derived from the Chinese Academy of Sci-
ences, were cultured in DMEM medium (D5796, sigma) 
containing 10% fetal bovine serum (16140071, Gibco) at 
37 °C and 5%  CO2.

Quantitative real-time PCR analysis
Total RNA was extracted from the tumors and adja-
cent normal tissues and reverse transcribed to cDNA 
using the Kit (EZBioscience, MN, USA). Then, quantita-
tive PCR amplification was operated by a CFX384 real-
time PCR machine (Bio-Rad, USA) using SYBR Green 
(Vazyme, China). Gene abundances were normalized to 
GAPDH. The primer sequences were shown in Table 3.

Immunohistochemistry (IHC)
HCC and adjacent normal tissues were deparaffinized, 
rehydrated, blocked for endogenous peroxidase activ-
ity, antigen repair, and blocking, before being incu-
bated overnight at 4  °C with primary antibodies against 
Stard5(ab178688, Abcam), N-cadherin, vimentin, 

E-cadherin and zo-1(9782  T, CST). The sections were 
then incubated with horseradish peroxidase-conjugated 
secondary antibodies for 1  h at room temperature and 
stained with 3, 3-diaminobenzidine tetrahydrochloride 
(DAB). Finally, cells were observed under a microscope.

Construction of stable cell lines
The cDNA or shRNA (Genepharma, China) targeting 
Stard5 were recombined into lentiviral vectors to overex-
press or knockdown Stard5, then transfected into 293 T 
cells. The mature infectious lentivirus was collected after 
72  h. Stable Stard5-overexpressing and Stard5-knock-
down Huh7 cell lines were constructed and verified by 
western blot.

Western blot
Cells were lysed to extract total protein and heated to 
100 °C for 20 min. Protein was added onto 8–12% SDS-
PAGE electrophoreses and transferred to the PVDF 
membrane, then the blocked PVDF membrane was incu-
bated with 1:1000 diluted Stard5 (ab178688, Abcam), 
β-Actin (3700 T, CST), N-cadherin, vimentin, E-cadherin 
and zo-1 (9782 T, CST) antibody at 4 °C overnight. After 
washing with TBST, the PVDF membrane was incubated 
with a 1:10000 diluted secondary antibody for 1.5  h at 
room temperature. Finally, a chemiluminescence analysis 
was performed.

Wound healing assay
The cells were inoculated in six-well plates at 1 ×  106 cells 
per well to form a dense monolayer after 12 h. Lines were 
drawn with a 200 μL tip to the cell layer to form straight 
cell wounds. After washing with PBS, the cells were incu-
bated with serum-free medium at 37  °C for 48  h. The 
wound width was recorded at 0 and 48 h.

Transwell migration and invasion assays
80  μl BD Matrigel mixture (diluted 1:10 with DMEM) 
was pre-coated in a transwell chamber (3513, Corning) 
at 37  °C overnight. Cells were diluted with serum-free 
DMEM and 4 ×  104 cells were added to the upper cham-
ber. Then, 500 μl of DMEM containing 30% fetal bovine 
serum was added to the bottom chamber. After incuba-
tion at 37 °C for 48 h, the chambers were fixed in 4% par-
aformaldehyde for 2 h. Cells in the upper chamber were 
removed, then stained with crystal violet, washed with 
PBS and photographed under a microscope.

Statistical analysis
R software (version 4.0.1) and GraphPad Prism (version 
9.0) were used for statistical analysis of the experimental 
data. Pair or unpaired Student t-tests were used for com-
parison of data between two groups. The Mann–Whitney 

Table 3 Primer sequences for Real-time PCR

Gene Primer sequences

STARD5-F CCG GGA AGG CAA TGG AGT TT

STARD5-R TCA TCC CAC TTC ACT CGT AGG 

FTCD-F TCC CGA CTT ATC GAC ATG AGC 

FTCD-R GCC GTA CAG GTA AAC TGG C

SCN4A-F TTC ACA GGG ATC TAC ACC TTTGA 

SCN4A-R CAC AAA CTC TGT CAG GTA CGC 

ADH4-F AGT TCG CAT TCA GAT CAT TGCT 

ADH4-R CTG GCC CAA TAC TTT CCA CAA 

CFHR3-F TAC CAA TGC CAG TCC TAC TATGA 

CFHR3-R CCG ACC ACT CTC CAT TAC TACA 

CYP2C9-F GCC TGA AAC CCA TAG TGG TG

CYP2C9-R GGG GCT GCT CAA AAT CTT GATG 

CCL14-F CCA AGC CCG GAA TTG TCT TCA 

CCL14-R GGG TTG GTA CAG ACG GAA TGG 

GADD45G-F CAG ATC CAT TTT ACG CTG ATCCA 

GADD45G-R TCC TCG CAA AAC AGG CTG AG

SOX11-F AGC AAG AAA TGC GGC AAG C

SOX11-R ATC CAG AAA CAC GCA CTT GAC 

SCIN-F ATG GCT TCG GGA AAG TTT ATGT 

SCIN-R CAT CCA CCA TAT TGT GCT GGG 

SLC2A1-F ATT GGC TCC GGT ATC GTC AAC 

SLC2A1-R GCT CAG ATA GGA CAT CCA GGGTA 
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test was used when the data did not conform to a normal 
distribution. One-way analysis of variance (ANOVA) was 
used to compare  three or more groups. Differences 
between the groups were considered statistically signifi-
cant at p < 0.05.

Results
Cluster 1 has the best prognosis based on subtypes 
identification of differential metabolic pathways 
between EMT subgroups
The study flowchart was shown in Fig. 1. First, we down-
loaded the expression data and clinical data of LIHC from 
the UCSC Xena database, removing the cases with miss-
ing survival information, and finally included 367 cancer 
samples. Expression matrix, which contains 16515 pro-
tein-coding genes, was subsequently used in the analysis. 
Based on the EMT score of each sample, we obtained 348 
EMT-L samples and 19 EMT-H samples. Kaplan–Meier 
survival analysis showed that the overall survival (OS) of 
the EMT-L group was significantly longer than that of the 

EMT-H group (Fig.  2a). We then compared the clinical 
characteristics between the EMT subgroups. No signifi-
cant differences in clinical characteristics were observed, 
possibly due to the small sample size of EMT-H sam-
ples (Additional file  1: Fig. S1a). Next, we obtained the 
genes of LIPID, NUCLEOTIDE, Carbohydrate, TCA, 
ENERGY, VITAMIN, and AMINOACID metabolic path-
ways and calculated the pathway enrichment scores for 
each sample. We found that LIPID, ENERGY, Carbohy-
drate, VITAMIN, and AMINOACID levels were signifi-
cantly different between the EMT subgroups (Fig. 2b). It 
is implied that metabolic reprogramming occurred when 
tumors underwent EMT. The shared signature genes in 
the different metabolic pathways were also shown, with 
LIPID and VITAMIN sharing the most signature genes 
[26] (Additional file 1: Fig. S1b). Then, unsupervised clus-
ter analysis based on the genes contained in these five 
metabolic pathways was performed (Fig.  2c). The most 
appropriate number of cluster was three (Fig. 2d, e). The 
Kaplan–Meier curves showed significant differences in 

Fig. 1 Flowchart illustrating the process of establishing a prognostic model for HCC in this study
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Fig. 2 Subtype identification based on differential metabolic pathways between EMT subgroups. a. KM curves for EMT subgroup. b. Heat map 
of enrichment scores for seven metabolic pathways. c. Heat map of unsupervised cluster analysis of patients. d. Cumulative distribution profile. 
e. Unsupervised cluster fragmentation. f. KM curves for survival analysis of each subtype. g. PCA results based on different subtypes. h. Heat map 
of enrichment scores for differential metabolic pathways. i. Distribution of three subtypes in subgroups with different clinical characteristics. * 
p < 0.05, ** p < 0.01, and *** p < 0.001
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survival among the three subtypes (Fig.  2f ). Heat maps 
showed that enrichment scores for three critical meta-
bolic pathways were also different among the three sub-
types (Fig.  2h). We further investigated the differences 
in age, gender, grade, stage, alcohol consumption, Hep-
atitis B, Hepatitis C, and EMT subgroups among the 
three clusters, and found that the grade, stage, and EMT 
groups differed significantly (Fig. 2i).

Functional enrichment analysis
We retrieved the DEGs among clusters, including 
1739 DEGs between cluster1 and cluster2, 4779 DGEs 
between cluster1 and cluster3, 2519 DEGs between clus-
ter2 and cluster3, and finally obtained 638 DEGs after 
intersection of the three clusters (Additional file  2: Fig. 

S2a). Functional enrichment analysis was then performed 
on the 638 DEGs. The pathways enriched by KEGG and 
BP were mainly focused on metabolic pathways related 
to catabolic or biosynthetic process (Fig. 3a, b). The path-
ways enriched for CC mainly focused on cell adhesion, 
such as collagen-containing extracellular matrix, api-
cal part of cell, etc. (Fig. 3c). The pathways enriched for 
MF mainly involved metabolism-related enzyme activity 
(Fig. 3d).

Development and estimation of the prognostic model 
consist with eleven metabolism-related genes
We identified 150 genes that were significantly associated 
with overall survival (P < 0.01) by univariate Cox regres-
sion analysis from 638 DEGs (Additional file 3: Fig S3a), 

Fig. 3 Functional enrichment analysis of differentially expressed genes (DEGs). a KEGG pathway enrichment analysis results, showing only the first 
20 pathways. b–d GO enrichment analysis results, showing only the first 20 terms. (b) molecular function, (c) biological process and (d) cellular 
components
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and top six genes showed the Kaplan–Meier curve (Addi-
tional file  3: Fig. S3b). Eleven genes were then selected  
as active covariates to evaluate the patients’ risk score 
using the Lasso Cox regression algorithm (Fig. 4a–c). The 
risk score was calculated using the following formula: 
risk score = STARD5× (−0.0699)+ FTCD × (−0.0335)

+SCN4A× (−0.0281)+ ADH4 × (−0.0134)+ CFHR3

×(−0.0050)+ CYP2C9× (−0.0043)+ CCL14 × (−0.0016)

+GADD45G × (−0.0013)+ SOX11× 0.0151+ SCIN

×0.0231+ SLC2A1× 0.0723 . The above equation shows 
that high levels of STARD5, FTCD, SCN4A, ADH4, 
CFHR3, CYP2C9, CCL14, and GADD45G were progno-
sis-protective factors associated with low risk. However, 
high expression of SOX11, SCIN, and SLC2A1 was asso-
ciated with high risk. We divided the sample into high 
(n = 183) and low-risk groups (n = 184) using the median 
risk score as the cut-off point, and the expression of 11 
genes was shown in the heat map (Fig.  4d). Kaplan–
Meier curve showed that the high-risk group had a 
lower survival rate than low-risk group (Fig.  4e, g, h) 
(p < 0.0001). The prognostic model area under the curve 
(AUC) values of the time-dependent ROC curve were 
0.77, 0.71, and 0.69 for 1 year, 3 year, and 5 year survival, 
respectively, which demonstrated that the multi-gene 
signature had better prognostic performance in predict-
ing patient outcomes (Fig.  4f ). Next, we performed risk 
stratification of patients according to their clinical char-
acteristics. The results showed significant differences in 
risk scores between grade, stage, and EMT subgroups 
(Fig. 4i), which supported the accuracy of our risk model. 
Additionally, compared to the low-risk group, the num-
ber of plasma cells, Tregs, and macrophages M0 was sig-
nificantly higher, while T cells CD4 + memory resting, 
NK cells activated, monocytes, mast cells resting were 
significantly lower (Fig. 4j). We also analyzed response to 
the drugs Erlotinib, Shikonin, Metformin, Bortezomib, 
Metformin, and Lapatinib, and found that the high-risk 
group was more likely to show resistance to the drugs 
(Fig. 4k). Hence, our risk model might be useful in pre-
dicting the response to immunotherapy and chemother-
apy in patients with HCC.

External prognostic and diagnostic validation 
of the eleven-genes-based prognostic model
We downloaded the GSE14520 dataset as a validation 
set, from which 221 samples with survival data were 
extracted. Risk scores were calculated according to the 
model of each patient. The expression of some genes 
in the prognostic model was shown in the heat map 
(Fig. 5a). Kaplan–Meier survival analysis showed that the 
high-risk group had poorer OS rate than low-risk group 
(p = 0.0035) (Fig.  5b, d, e). The prognostic model AUC 
values of the time-dependent ROC curve were 0.66, 0.68, 
and 0.67 for 1 year, 3 ear, and 5 year survival, respectively, 
indicating good predictive power of the prediction model 
(Fig. 5c). In addition, we also used the LIRI-JP database 
from ICGC data portal as a validation set, which also 
validated the stability of the model (Additional file 4: Fig. 
S4a–e).

Validation of expression level of eleven genes in HCC 
tissues
To validate whether the expression of the 11 genes in 
HCC tissues was consistent with our model, we deter-
mined their expression in tumors and adjacent normal 
tissues of 28 HCC patients by qRT-PCR. The results sug-
gested that the mRNA levels of STARD5, FTCD, SCN4A, 
ADH4, CFHR3, CYP2C9, CCL14, and GADD45G were 
downregulated (Fig.  6a–h), and SOX11, SCIN, and 
SLC2A1 were overexpressed in HCC tissues (Fig.  6i–k). 
Furthermore, the representative protein expression of 
nine genes in HCC and normal liver tissues was retrieved 
from the Human Protein Atlas (https:// www. prote inatl 
as. org), of which two genes were not found. Consistent 
with the qRT-PCR results, the protein level of STARD5, 
FTCD, ADH4, CYP2C9, CCL14, and GADD45G were 
low in HCC tissues (Additional file 5: Fig. S5a–f). SOX11, 
SCIN, and SLC2A1 were overexpressed in HCC tissues 
(Additional file 5: Fig. S5g–i).

Stard5 down-regulation is associated with poor prognosis 
of HCC
Currently few studies are available on Stard5 in can-
cer, with one paper showing that hypermethylation of 

(See figure on next page.)
Fig. 4 Eleven-genes-based prognostic model construction. a Lasso-Cox regression coefficient selection and variable screening. b Cross-validation 
in the LASSO-Cox regression model to select the tuning parameter. c. Display of regression coefficients corresponding to filtered variables. d. Heat 
maps of gene expression in prediction models. e. Validation of KM curves for models. f. Validation of ROC curves. g. Distribution of risk scores for all 
samples. h. Scatter plots of survival time for all patients. i. Correlation of risk scores with various clinical characteristics. j. Analysis of the difference 
in the proportion of immune-infiltrating cells between high- and low-risk groups. k Prediction of chemotherapy resistance in patients from high 
and low-risk groups. * p < 0.05, ** p < 0.01, and *** p < 0.001

https://www.proteinatlas.org
https://www.proteinatlas.org
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Fig. 4 (See legend on previous page.)
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the STARD5 in clear cell renal cell carcinoma is signifi-
cantly associated with poor prognosis [17]. Our prog-
nostic model indicated that Stard5 deficiency in HCC 
was associated with poor prognosis, and we observed 
that STARD5 mRNA was markedly decreased in 82% 
(23/28) of HCC tumors compared to the correspond-
ing adjacent normal liver tissue (Fig.  6a). Western blot 
analysis of six randomly selected pairs of HCC samples 
showed that Stard5 expression was significantly reduced 
in tumors (Fig.  7a). Furthermore, in 80 HCC patients, 
Stard5 expression was scored as moderately positive in 
25%, while 36.25% were strongly positive, compared to 
28.75% moderately positive and 52.5% strongly positive 
in adjacent normal liver tissue (Fig. 7b, c). Next, patients 
were divided into low (negative and weakly positive) 
and high (moderately and strongly positive) expression 
groups based on Stard5 expression in the tumor tissue. 
Kaplan–Meier survival analysis showed that low Stard5 
expression was associated with significantly poorer 
TTR (Fig. 7d) and shorter OS (Fig. 7e) than high Stard5 
expression. Together, these data suggest that reduced 
Stard5 expression in tumor tissues may be an important 
indicator of poor prognosis in HCC.

Stard5 deficiency promotes EMT and metastasis in HCC
Stard5 was derived from our EMT-related prognos-
tic model, so we first examined the impact of Stard5 on 
EMT. Western blot analysis showed that knockdown of 
Stard5 increased the expression of mesenchymal markers 
(N-cadherin and Vimentin) and decreased the expression 
of epithelial markers (E-cadherin and zo-1) in Huh 7 cells 
(Fig. 8a). EMT is an important step before cell invasion 
and migration, and we subsequently explored the role 
of stard5 in the invasion and migration of Huh 7 cells. 
In the wound-healing and transwell assays, the migra-
tion and invasion abilities decreased in shSTARD5 cell 
line (Fig.  8b–d). Furthermore, overexpression of Stard5 
in Huh 7 cells decreased the levels of Vimentin and 
N-cadherin and increased those of E-cadherin and zo-1 
(Fig.  9a). Upregulation of Stard5 inhibited cell invasion 
and migration (Fig. 9b–d). We then detected N-cadherin, 
Vimentin, E-cadherin, zo-1 as well as Stard5 protein in 
15 human HCC samples. Stard5 expression was scored 
and classified into stard5 low- and high- expression 
groups according to the median. The expression of mes-
enchymal markers (N-cadherin and Vimentin) was nega-
tively associated with Stard5 expression, while epithelial 

Fig. 5 External validation of the efficacy for the risk model using GSE14520. a. Heat maps of gene expression in prediction models. b. Validation 
of KM curves for models. c. Validation of ROC curves. d. Distribution of risk scores for all samples. e. Scatter plots of survival times for all patients
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markers (E-cadherin and zo-1) were positively associ-
ated with Stard5 expression (Fig. 10a). These data suggest 
that Stard5 deficiency induces EMT, resulting in HCC 
metastasis.

Discussion
In our study, we constructed a risk model selected 
from multiple metabolic pathways based on differences 
between the high and low EMT groups in HCC, which 
contained 11 metabolism-related genes. The high-risk 
group had poorer prognosis than the low-risk group. 
The high-risk group was positively associated with 
Tregs and negatively associated with CD4 + T cells, NK 
cells. In addition, the high-risk group was more likely to 
develop drug resistance. These revealed that our model 
might support the prediction of patients’ response to 
chemotherapy and immunotherapy and provide a refer-
ence for individualized therapy for patients with HCC. 
More importantly, we demonstrated for the first time 

that Stard5 expression was positively correlated with sur-
vival time of HCC patients and negatively correlated with 
EMT, providing a precise therapeutic target.

EMT is a key cellular process that transforms polar-
ized epithelial cells into a mesenchymal phenotype with 
increased cell motility. In cancer, EMT allows malignant 
cells to separate from the primary tumor and spread 
into the circulation, a critical process for invasion and 
metastasis [18]. Altogether, EMT is an inevitable state 
that occurs prior to invasion and metastasis and could 
be used for predicting cancer progression and prognosis. 
Therefore, it is logical to group patients according to their 
EMT enrichment scores, which may eliminate the impact 
of many confounders on prognosis.

We can reasonably speculate that the energy require-
ments of a cell switching between motion and resting 
states must be altered, ultimately leading to metabolic 
reprogramming. In fact, recent evidence suggests that the 
link between EMT and metabolism is reciprocal, and that 

Fig. 6 The qRT-PCR results of 11genes. a–h. STARD5, FTCD, SCN4A, ADH4, CFHR3, CYP2C9, CCL14, and GADD45G were weakly expressed in HCC 
tissues. i–k. SOX11, SCIN, and SLC2A1 were upregulated in HCC tissues. N adjacent normal tissue, T tumor tissue
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altered metabolism can drive EMT in some cases. Multi-
ple metabolic pathways, involving in glucose metabolism, 
lipid metabolism, amino acids metabolism, mitochon-
drial biosynthesis, and many other events, are simul-
taneously altered in tumor progression and metastasis 
[14]. Currently prognostic models of HCC are mostly 
constructed from mono-metabolic part, rather than mul-
tiple metabolic parts. In contrast, we screened and con-
structed risk model by comparing metabolic pathways 

of carbohydrates, LIPID, NUCLEOTIDE, TCA, ENERG, 
VITAMIN, and AMINOACID between EMT subgroups. 
It will be more reliable in predicting prognosis, in view 
of its closer proximity to the molecular biological level 
of cancer cells prior to invasion. In our study, there were 
differences in metabolism between the EMT groups, 
most notably in terms of energy and lipids. We classified 
patients with HCC into three molecular subtypes based 
on genes of differential metabolic pathways. Prognostic 

Fig. 7 Stard5 downregulation is associated with poor prognosis of HCC. a. Six pairs of tumor and para-tumor tissues were randomly selected 
for western blot analysis (left panel). The relative intensity of Stard5 protein was normalized to β-actin (right panel). b, c. Representative IHC image 
percentage of Stard5 expression in HCC tumor (T) and para-tumor tissues (N). Scale bar, 500 μm or 125 μm. d, e Time to recurrence and overall 
survival of HCC patients in the high and low group were estimated using the Kaplan–Meier method. * p < 0.05



Page 13 of 17Li et al. Cancer Cell International          (2023) 23:277  

differences existed among these three subtypes, and clus-
ter 1 had the best prognosis. The KEGG analysis showed 
a major focus on cell polarity, extracellular matrix, 
and lipid metabolic pathways. Thus, targeting specific 

metabolic enzymes has the potential to reverse EMT and 
ultimately limit cancer metastasis.

In recent years, molecular prognostic markers have 
received increasing attention for predicting the survival 

Fig. 8 Knockdown of Stard5 promotes migration and invasion of HCC cells. a. Representative image of western blot showing the effect of stard5 
downregulation on the EMT pathway. b–d. Wound-healing and transwell assays were used to determine the migration (b, c) and invasion 
(d) abilities of the referred HCC stable cells. Scale bar, 50 μm. Quantification of the relative area or relative number of cells (b-d, right panel) 
was performed by ImageJ. **p < 0.01, ***p < 0.001
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of HCC [19, 20]. Compared to single gene marker, multi-
gene models have the advantage of higher predictive 
accuracy and more individualized results. Based on 
the DEGs among 3 clusters, a prognostic risk model 
including 11 genes (STARD5, FTCD, SCN4A, ADH4, 
CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, 
and SLC2A1) was developed using univariate Cox and 
LASSO-Cox regression. External databases validated this 
risk model as valid and stable in predicting the progno-
sis of patients with HCC. SLC2A1, also named GLUT1, 
have been widely confirmed overexpressing in HCC and 
promoting metastasis [21]. SOX11 was also significantly 

upregulated in HCC [22]. FTCD, ADH4, CFHR3, 
CYP2C9, CCL14, GADD45G was down-regulated in 
HCC [23–28]. These papers supported the high accu-
racy of our prognostic model. Among them, FTCD and 
CFHR3 have been reported to play a suppressive role in 
the invasion and migration of HCC [23, 29]. No studies 
have shown a link between the remaining molecules and 
EMT in HCC. In addition, there are no reports on the 
expression of SCN4A or SCIN in HCC. We demonstrate 
for the first time that they were risk factors for HCC and 
were associated with EMT, which contributes to a bet-
ter understanding of the molecular mechanisms of HCC 

Fig. 9 Stard5 overexpression inhibits migration and invasion of HCC cells. a. Representative image of western blot showing the effect of stard5 
overexpression on the EMT pathway. b–d. Wound-healing and transwell assays were used to determine the migration (b, c) and invasion (d) abilities 
of the referred HCC stable cells. Scale bar, 50 μm. Quantification of the relative area or relative number of cells (b–d, right panel) was performed 
by ImageJ. ***p < 0.001
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progression. These molecules may be crucial triggers in 
controlling HCC metastasis.

Then, tumor microenvironment of patients was ana-
lyzed in the two groups. High risk group tended to be 
more immunosuppressed, with higher Tregs, and fewer 
CD8 + T, CD4 + T, and NK cells. In addition, patients 
in the high-risk group were more resistant to chemo-
therapy. These results imply that the risk model can help 
predict the effectiveness of immunotherapy and chemo-
therapy. Targeting these metabolic genes may improve 
the response of patients to treatment and provide new 
ideas for personalized medicine.

Stard5 became the focus of our attention, which had 
hardly been studied in cancers. Stard5, a lipid-binding 
protein, has a conserved steroidogenic acute regulatory 

protein-related lipid transfer domain [30]. It is involved 
in the regulation of cholesterol homeostasis in  vivo by 
binding and transporting cholesterol and other sterol-
derived molecules to the liver [31]. In hepatocytes, 
Stard5 reduces lipid accumulation, suggesting that Stard5 
dysregulation may play an important role in fatty liver 
disease [31]. Mutations in the STARD gene may lead to 
autoimmune diseases or cancer [32]. Additionally, Mul-
ford et al. showed that knockdown of Stard5 expression 
resulted in reduced sensitivity of lung cancer cells to 
etoposide [33]. In the present study, we demonstrated for 
the first time that Stard5 was down regulated in HCC tis-
sue, and low Stard5 expression suggested poor prognosis. 
Stard5 deficiency contributed to the invasion and migra-
tion in HCC cell lines, while overexpression of Stard5 

Fig. 10 The correlation between Stard5 and EMT in HCC tissues. (a) Representative IHC images of Stard5, N-cadherin, Vimentin, E-cadherin and zo-1 
expression in HCC patient paraffin section. Pearson’s correlation of IHC score was calculated in 15 HCC tissues
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showed the opposite effect. The protein expression of 
EMT pathway was associated with Stard5 expression. 
These data suggest that Stard5 was a protective factor in 
patients with HCC.

Studies have found that endoplasmic reticulum (ER) 
stress increases Stard5 expression in mouse hepatocytes, 
and that Stard5 plays a key role in ER cholesterol homeo-
stasis during ER stress [31].

When tumor cells experience ER stress in response to 
intrinsic and extrinsic changes, a network of adaptive sig-
nals, known as the unfolded protein response (UPR), will 
be evoked to restore protein homeostasis. UPR hyperac-
tivation has been demonstrated to regulate cell survival, 
angiogenesis, inflammation, invasion, and metastasis 
[34]. Tumors exploit UPR signaling to promote EMT 
[35]. Therefore, we speculate that when ER stress occurs, 
Stard5 may transport excess cholesterol from the ER to 
the Golgi and then to the efflux pathway during the UPR, 
preventing excessive cholesterol accumulation in the 
ER, restoring ER homeostasis, and promoting apoptosis. 
When stard5 deficiency, ER stress induces cholesterol 
imbalance, the UPR may be hyperactive and unfolded 
proteins activate ER-resident sensors, which in turn pro-
motes the EMT. However, it remains to be experimen-
tally verified. Targeting stard5 directly during EMT with 
concomitant metabolic reprogramming may offer a pro-
spective direction for targeting therapy.

Some limitations remain in our study, the function 
of stard5 in inhibiting EMT still needs to be further 
explored. The role of the other 10 genes in HCC remains 
to be studied in  vitro and in  vivo. Furthermore, normal 
tissues require the same metabolic pathways for their 
survival and proliferation. This implies that targeting 
tumor metabolism faces a series of challenges.

Conclusions
In conclusion, we constructed a multigene prognostic 
model associated with EMT and metabolic reprogram-
ming that can effectively predict the prognosis of HCC 
patients and determine whether patients will be able to 
respond to chemotherapy or immunotherapy. For the 
first time, we show that Stard5 can act as a tumor sup-
pressor to inhibit EMT as well as tumor progression. Our 
findings provide a reference for studying the interaction 
between EMT and metabolic reprogramming and inhib-
iting tumor metastasis through therapeutic approaches 
targeting key metabolic molecules. This provides the 
basis for the development of precision medicine for tar-
geted metabolism in the treatment of aggressive tumors.
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